
A General Approach for Consensus Using Optimistic Planning

Lucian Buşoniu and Irinel-Constantin Morărescu

Abstract— An important challenge in multiagent systems is
consensus, in which the agents are required to synchronize
certain controlled variables of interest, often using only an
incomplete and time-varying communication graph. We pro-
pose a consensus approach based on optimistic planning (OP),
a predictive control algorithm that finds near-optimal control
actions for general dynamics and reward functions (costs). At
every step, each agent uses OP to solve a local control problem
with rewards that express the consensus objectives. Neighboring
agents coordinate by exchanging their predicted behaviors in a
predefined order. Due to its generality, OP consensus can adapt
to any agent dynamics and, by changing the reward function,
to a variety of consensus objectives. While theoretical analysis
is still open, OP consensus is demonstrated in experiments for
two problems. The first problem is velocity consensus (flocking)
with a time-varying communication graph, where OP preserves
connectivity better than a classical algorithm. The second
problem is the leaderless and leader-based consensus of robotic
arms, where OP easily deals with the nonlinear dynamics.

I. INTRODUCTION

Multi-agent systems [19] have applications in a wide va-

riety of domains such as robotic teams, energy and telecom-

munication networks, collaborative decision support systems,

data mining, etc. Each agent typically has only a local,

limited view, which means decentralized approaches are

necessary to control the overall system. In this decentralized

setting, requirements on the coherent behavior of the agents

are often expressed in terms of consensus, in which the

agents must reach agreement on controlled variables of

interest [14], [16], [13]. Existing approaches to consensus

problems are often limited to simple, linear agents, and are

each designed for a specific consensus objective.

In this paper, we exploit a recent optimistic planning (OP)

algorithm from artificial intelligence to control the agents

in discrete time [7]. OP addresses very general optimal

control problems, in which a nonlinear system’s transitions

are evaluated by rewards, and the cumulative reward must be

maximized. At each step, OP predicts the system’s response

to various sequences of actions from the current state, and

then chooses an action sequence that appears best. The first

action in the sequence is applied, leading to a new state in

which the algorithm is applied again, and so on. We express

the consensus problem as a set of local optimal control

problems for each agent, which are solved with OP. This

allows us to deal with general nonlinear agent dynamics, as

well as a variety of consensus objectives by simply changing

the reward functions: we exemplify full state consensus,

The authors are with Université de Lorraine, CRAN, UMR 7039 and
CNRS, CRAN, UMR 7039, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-
Nancy, France ({lucian.busoniu, constantin.morarescu}@univ-lorraine.fr).
L. Buşoniu is also with the Department of Automation, Technical University
of Cluj-Napoca, Romania.

partial state consensus (flocking) and leader-based consensus.

Coordination between the agent actions is a nontrivial chal-

lenge, and a sequential communication procedure [9] is used

to address it, in which agents communicate their predicted

action sequences in a predefined order.

We illustrate the effectiveness of OP consensus in two

problems. The first involves flocking (consensus on veloc-

ities) for linear, double integrators under communication

range constraints, where OP is compared to the standard

flocking algorithm, focusing on the open problem of pre-

serving graph connectivity [10]. In this problem we also

study the influence of the parameters of OP consensus. The

second problem is the leaderless and leader-based consensus

of robotic arms, similar to [11], in which we illustrate how

the algorithm deals with nonlinear dynamics. Due to the

generality of the approach, theoretical analysis is still open.

The field of consensus is broad, and we direct the inter-

ested reader to the surveys [14], [16], [13]. Many approaches

are focused on simple or double-integrator agents, whereas

OP consensus works for any nonlinear dynamics. Closer

to our work is nonlinear flocking and consensus, see for

example [17], [20] which handle agents with nonlinear

acceleration dynamics, [18] which deals with nonholonomic

robots, and [11] for Euler-Lagrange dynamics. While these

works exploit the characteristics of specific classes of dy-

namics to derive predefined control laws, OP consensus

automatically finds a near-optimal control law, making it

adaptable to various dynamics.

It must be noted that OP uses discretized control actions,

meaning it can only achieve consensus up to some error given

by the discretization accuracy. While this limitation is not

fundamental and continuous-action OP algorithms could be

used [3], other authors have shown positive theoretical results

for consensus with coarsely discretized actions [15].

Since OP is a type of predictive control, our approach

relates to distributed model-predictive control [1], and in fact

the sequential communication idea is taken from this field

[9]. Although nonlinear distributed MPC schemes do exist,

to the best of our knowledge in the consensus setting MPC

has only been applied to linear systems, e.g. [8], [6].

Next, in Section II, we formalize the consensus problem

addressed and introduce OP. The OP consensus approach

is explained in Section III. Sections IV and V show the

experiments on double-integrator flocking and robotic arm

consensus. Section VI concludes the paper.

II. PRELIMINARIES

A. Consensus problem

We consider a set of n agents with decoupled nonlinear

dynamics xi,k+1 = fi(xi,k, ui,k), i = 1, . . . , n. Assuming

for simplicity that the dimensionality of x, denoted m, is the

same for every agent (this can easily be relaxed), the goal

of achieving consensus on some or all of the state variables

can be formalized as:

lim
k→∞

∣∣xc
i,k − xc

j,k

∣∣ = 0 ∀i, j = 1, . . . , n,∀c ∈ C

where the consensus variables C ⊆ {1, . . . ,m}. For exam-

ple, all the variables are synchronized in full-state consensus,

while flocking only requires it for the velocities of the agents.

An agent only has a local view: it can receive informa-

tion only from its neighbors on a (possibly time-varying)

interconnection graph Gk = (V, Ek). The set of nodes

V = {1, . . . , n} represents the agents, and the edges Ek ⊆
V × V are the communication links. Denote by Ni,k =
{j | (i, j) ∈ Ek } the set of neighbors of node i at step k.

How the graph varies depends on the problem at hand, and

an example will be provided in Section IV.

A few other graph theory concepts will be useful. A path

through a generic graph G = (V, E) is a sequence of nodes

i1, . . . , iL so that (il, il+1) ∈ E , 1 ≤ l < L. The graph is

connected if there is a path between any pair of nodes i, j.

The graph’s adjacency matrix is A ∈ {0, 1}n×n
, with Ai,j =

1 iff (i, j) ∈ E ; and the degrees vector is: ∆ ∈ {0, . . . , n}n,

∆i =
∑

j Ai,j = |Ni|. The weights can generally take any

positive value but we only need unitary weights. The graph

is undirected if A is symmetric, and directed otherwise (if

some of the connections are one-way). Graph connectivity

is crucial for consensus, and all algorithms require it in one

way or another [14], [16], [13].

B. Single-agent optimistic planning

Consider an optimal control problem for a deterministic,

discrete-time nonlinear system xk+1 = f(xk, uk) with states

x and actions u. Each transition is associated with a bounded

reward rk+1 = ρ(xk, uk), and the goal is to find a state

feedback control policy h(x) that maximizes the infinite-

horizon discounted return:

V h(x) =

∞∑

k=0

γkrk+1 =

∞∑

k=0

γkρ(xk, h(xk)) (1)

from any state x, where x0 = x, xk+1 = f(xk, h(xk))
for k ≥ 0. The discount factor γ ∈ [0, 1) ensures the

boundedness of the return. The optimal (maximal) value

function, denoted V ∗ = maxh V h, always exists, is unique,

and leads to at least one optimal policy h∗ [2].1

Optimistic planning (OP) [7] explores a tree representation

of the possible action sequences from the current system

state, as illustrated in Figure 1. It requires a discrete (or

discretized) action space U =
{
u1, . . . , uM

}
, and rewards

bounded in [0, 1]. In the remainder of this section, we isolate

the current time step and by convention relabel the time

from k to 0, so that the system state is x0. OP starts with

a root node labeled by x0, and iteratively expands T well-

chosen nodes. Expanding a node x adds new children nodes

1Optimal control problems are often stated so that a cost is minimized,
rather than a return being maximized. The two formulations are equivalent.

x0

u
1

0

x
1

1 x
2

1

u
2

0

ρ x u(,)0 0

1
ρ x u(,)0 0

2

L

Fig. 1. Illustration of an OP tree T . Nodes are labeled by states,
arcs represent transitions and are labeled by the actions taken and the
resulting rewards. Subscripts are depths, superscripts index the M possible
actions/transitions from a node (here, M = 2). The leaves L are enclosed in
a dashed line, while the thick path highlights a possible optimistic sequence.

containing the next states for all possible discrete actions:

f(x, u1), . . . , f(x, uM). Note that a certain state may appear

several times in the tree – as many as the number of ways

it can be reached from the root. While keeping this in mind,

we denote nodes by their label x for simplicity.

Each node xd at some depth d is reached via a

unique path through the tree, associated to a sequence of

states [x0, . . . , xd] and a sequence of actions u(xd) :=
[u0, . . . , ud−1] (note the action sequence is shorter by one

element). For a leaf node xd ∈ L, the following gives an

upper bound on the returns of all infinite action sequences

having in common the initial subsequence up to xd:

b(xd) =
d−1∑

d′=0

γd′

ρ(xd′ , ud′) +
γd

1− γ
=: ν(xd) +

γd

1− γ

This is because all the rewards at depths larger than d are

in [0, 1]. For the same reason, ν(xd) is a lower bound. The

b and ν values can be efficiently maintained on the tree.

OP optimistically explores the space of action sequences,

by always expanding further the most promising sequence:

the one with the largest upper bound. This corresponds to

expanding the optimistic leaf x† = arg maxx∈L b(x). After

the T allowed node expansions are exhausted, a sequence

that maximizes the lower bound ν(xd) among the leaves

is returned, intuitively seen as a safe choice. Typically, the

first action in this sequence will be applied to the system.

Algorithm 1 summarizes the entire procedure.

Algorithm 1 Optimistic planning for deterministic systems

1: initialize tree: T ← {x0}
2: for t = 1, . . . , T do

3: find optimistic leaf: x† ← arg maxx∈L b(x)
4: add to T the nodes f(x†, uj), j = 1, . . . ,M
5: end for

6: output return u(x∗), where x∗ = arg maxx∈L ν(x)

Theoretical analysis shows that OP is a sound algorithm

[7]: it returns a near-optimal sequence, approaching the

optimal solution faster when the planning problem is simpler

in a certain sense. Usually, only the first action of the

sequence is applied, after which the loop is closed and OP

is executed again in the new state. This procedure preserves

near-optimality.

III. OPTIMISTIC PLANNING FOR CONSENSUS

Next, we present the OP-based approach to the consensus

problem in Section II-A. At every time step k, a local optimal

control problem is defined for each agent i, using information

locally available to it. The goal in this problem is to align the

consensus states with those of the neighbors Ni,k, and if the

connection graph is varying, to also maintain connectivity

with them. OP is used to near-optimally solve this control

problem, and the first action of the sequence returned is

applied by each agent. Then the system evolves, and the

procedure is applied at the next step, for the new states and

possibly changed graph.

To construct its optimal control problem, each agent needs

to know the predicted behavior of its neighbors. Here, agents

will exchange the near-optimal action sequences returned

by OP. Because the agents must act at the same time, how

they exchange predictions is nontrivial. The simplest solution

would be to use the neighbors’ predictions at the previous

step. However, since the neighbors revise their solutions in

the meantime, their actions may change, which leads to a

coordination problem. Coordination is a difficult challenge

in multi-agent systems and is typically solved in model-

predictive control by explicit, iterative negotiation over suc-

cessive local solutions [12]. However, in consensus it is

unlikely that the agents can afford to repeatedly communicate

and reoptimize their solutions at every step.

Therefore, we adopt a sequential communication pro-

cedure in which agents optimize once per step, similar

to the procedure for distributed MPC in [9]. Each agent

needs to know its index i as well as the indices of its

neighbors (one way to ensure this is an initial, centralized

assignment of indices to the agents). Agent i waits until the

neighbors j with j < i have found their action sequences.

These agents communicate their sequences to i. For j > i,
agent i heuristically assumes they will follow their previous

sequences. Agent i exploits all these sequences to predict the

likely evolution of its neighbors, optimizing its own behavior

while coordinating with this evolution. It then sends its own,

newly computed sequence to neighbors j > i.
To formalize the algorithm, recall first that the planner of

some agent i returns at step k an action sequence u
k
i =

[uk
i,k, uk

i,k+1, ..., u
k
i,k+d−1] (see Algorithm 1, remembering

that time k is relabeled there to 0). The superscript k is

needed to differentiate between sequences found at differ-

ent time steps, since they may have different actions at

corresponding positions (e.g., uk
i,k+1 may be different from

uk+1

i,k+1
). Consider now a specific agent i. At every step k,

it receives the states xj,k of its neighbors j ∈ Ni,k. For

neighbors j ∈ Ni,k, j < i, agent i directly receives their

sequence at k and uses this as an estimation of their future

behavior: û
i,k
j = u

k
j . For j ∈ Ni,k, j > i, it uses their

previously chosen sequences û
i,k
j = [uk−1

j,k , ..., uk−1

j,k−1+d−1
],

where the first action uk−1

j,k−1
has been discarded because it

has already been applied and is no longer informative. Note

we use the superscript i, k to highlight variables specific to

the control problem constructed by agent i at time k.

Using this information, agent i applies OP to an optimal

control problem with dynamics fi and the reward function:

ρk,i
d (xi,d, ui,d) =

1

|Ni,k|

∑

j∈Ni,k

[
− α(x̂j,d − xi,d)

⊤
W (x̂j,d − xi,d)

− β ·

{
1 if connection (i, j) lost at d

0 otherwise

]
(2)

The first term deals with alignment of the consensus states

and the second with maintaining connectivity, with α and β
weighing the relative importance of these terms. Typically, β
will be larger than the maximum range of the alignment term,

so that connectivity is given priority. Matrix W ∈ R
m×m

is diagonal and satisfies Wc,c = 0 if c /∈ C. Its nonzero

terms are used to weigh the relative importance of achieving

consensus on the different states. When the graph is fixed,

the second term is always 0 so the values of α, β become

irrelevant. Note that state differences should be saturated at

a sufficiently large value to keep the reward bounded, and

for the sake of OP the total reward should then be scaled

and translated in the interval [0, 1]. With modifications to

the reward function, additional objectives could be encoded,

such as formation maintenance or collision avoidance.

The time index d is used to reemphasize the fact that

time is equivalent to depth in the planning tree, and that

these rewards are “virtual” in the planning problem solved

at time k. The neighbor trajectories are simulated using their

communicated action sequences, x̂j,d+1 = fj(x̂j,d, û
i,k
j,k+d),

starting from x̂j,0 = xj,k. Depth d may exceed the length

of the available action predictions; when that happens those

neighbors’ actions are set to 0. In the implementation, the

agents could also exchange the predicted state sequences

instead of the actions, which at some extra communication

cost avoids resimulating the neighbor’s transitions up to

the prediction length. In any case, it should be noted that

agents do not optimize over the actions of their neighbors,

so complexity does not directly scale with the number of

neighbors.

The reward function ρk,i
d is time-varying (hence the sub-

script d), due to the dependence on the neighbors’ trajec-

tories. The problem solved by agent i is therefore more

general than the standard time-invariant problem introduced

in Section II-B. Nevertheless, OP does not rely on time

invariance and so it can deal with this generalization without

changes to its theoretical guarantees.

Algorithm 2 summarizes the resulting consensus protocol

for generic agent i. The main advantage of this algorithm

is the generality of the agent dynamics and consensus

objectives it can address. This generality comes at the cost

of communicating predictions, introducing a dependence of

the performance on the action discretization, and a relatively

computationally involved algorithm. Our empirical study

below will illustrate that a meaningful tradeoff between

discretization resolution and performance can be achieved,

Algorithm 2 OP consensus protocol at agent i

1: set initial action prediction u
−1
i to an empty sequence

2: for k = 0, 1, 2, . . . do

3: exchange states at k with all neighbors j ∈ Ni,k

4: send u
k−1
i to j < i, receive û

i,k
j from j > i

5: wait until new sequences û
i,k
j received from all j < i

6: run OP with reward (2), obtaining u
k
i

7: send u
k
i to j > i

8: execute first action uk
i,k and remove it from u

k
i

9: end for

and that limiting the length of the communicated sequences

to a small value does not reduce performance. As to com-

putational cost, the time complexity of each individual OP

application is between O(T log T) and O(T 2) depending

on the planning problem complexity, see [5]. The overall

complexity for all agents, if they run OP in parallel as soon

as the necessary neighbor predictions become available, is

larger by a factor equal to the length of the longest path

from any i to any j > i. Depending on the current graph

this length may be significantly smaller than n.

IV. RESULTS FOR DOUBLE-INTEGRATOR FLOCKING

In a first set of experiments, we will apply the framework

developed above to flocking. In this problem, the state of

each agent i consists of a position pi ∈ R
m/2 and a

velocity vi ∈ R
m/2, xi = [p⊤i , v⊤

i]
⊤

. Connectivity is time-

varying, and two agents i, j are directly connected if they

are within a communication range P , leading to Ek =
{(i, j) | i 6= j, ‖pi,k − pj,k‖ ≤ P }. The goal is consensus on

the velocities, achieved by setting C = {m/2 + 1, . . . ,m}.
The most commonly used agents are double integrators

[13], although results exist for nonlinear flocking, e.g. [18],

[17], [20]. The discrete-time dynamics and standard flocking

algorithm for double integrators are:

pi,k+1 = pi,k + Tsvi,k, vi,k+1 = vi,k + Tsuik, (3)

ui,k = αk

∑

j∈Ni,k

(vj,k − vi,k) (4)

where Euler discretization with sampling time Ts is em-

ployed, and αk < 1/maxi ∆i,k. If the graph remains

connected (in a certain weak sense, over time), flocking to

the average of the initial agent velocities, denoted v∗, will

be achieved [14].

An important unsolved problem, even for this simple case,

is ensuring connectivity, rather than simply assuming it as is

typically done. One interesting first step was taken by [10],

where connectivity is guaranteed to be maintained under

the condition that the initial velocity disagreement vector

δ0 = [v⊤
1,0 − v∗⊤, . . . , v⊤n,0 − v∗⊤]

⊤
has a norm smaller than

a certain robustness threshold δr. This threshold is related

to the maximum amount by which inter-agent distances can

grow while the graph still remains connected. These results

are for continuous-time double-integrators, but we expect a

similar result to hold in discrete time.

There is no reason for these limitations beyond the specific

algorithm used: the agents’ control constraints might still

allow them to maintain connectivity and achieve flocking.

So our first goal in this section is to empirically verify

if, by using OP consensus, we achieve flocking when the

robustness condition is sufficiently violated to cause the

failure of the classical algorithm. Secondly, we perform

a thorough numerical study of the influence of the OP

parameters on flocking performance.

A. Flocking results

Single-dimensional double integrators are considered

(m = 2). In the reward function, all the weights of the

consensus states are set to 1, and α = β = 0.5 (the velocity

disagreement term is normalized into the range [0, 1], so

the penalty on disconnection is always larger than that on

disagreement). Similarly to the example of [10], six agents

are initialized on an equidistant grid with a spacing of 2.

Their communication range is 5, so the initial graph has

some redundant connections. The sampling time is Ts = 1 s.
The initial velocities are initialized at v0 for the “top” three

agents, and −v0 for the “bottom” three.

0 20 40 60 80

−20

−10

0

10

20

30

k*T
s
 [s]

p
1

0 20 40 60 80

−0.4

−0.2

0

0.2

0.4

0.6

k*T
s
 [s]

v
1

(a) Classical flocking.

0 20 40 60 80

0

5

10

15

20

25

k*T
s
 [s]

p
1

0 20 40 60 80

−0.4

−0.2

0

0.2

0.4

0.6

k*T
s
 [s]

v
1

(b) OP flocking.

Fig. 2. Results for double integrators, when v0 = 2.5v
r. The left graph

shows the positions and the right graph the velocities. The left graph also
shows the final configuration of the agents, representing them as dots and
the communication graph with gray lines.

From the robustness condition, a critical initial velocity

vr ≈ 0.23 is obtained, for which ‖δ0‖ = δr. When v0 =
vr, algorithm (4) works (we do not show a graph since the

result is trivial). However, when v0 = 2.5vr, this classical

algorithm already fails, as shown in Figure 2(a).2 The gain in

(4) is α = 1/n. Turning to the OP method, it easily achieves

flocking, up to errors due mainly to the discretized actions,

see Figure 2(b). The discretized action set contains in this

case the 7 values −0.3,−0.122,−0.039, 0, 0.039, 0.122, 0.3,

2The initial disagreement is thus 2.5
√

6 ≈ 6 times larger than the critical
value. This is similar to the continuous-time results of [10], where the agents
failed to flock for a disagreement 5 times the critical value.

0 100 200 300 400 500
0.5

0.52

0.54

0.56

0.58

budget

d
is

a
g
re

e
m

e
n
t

(a) Budget.

3 5 7 9 11
0.4

0.6

0.8

1

number of discrete actions

d
is

a
g
re

e
m

e
n
t

(b) Action discretization.

0 1 2 3 4 5 Inf
0.5

0.55

0.6

0.65

0.7

length of communicated predictions

d
is

a
g
re

e
m

e
n
t

(c) Maximal prediction length (“Inf” means it is
not limited). An X marks lost connectivity in that
experiment.

Fig. 3. Influence of OP consensus parameters. Note the changing vertical scale.

and the planning budget is T = 200 node expansions. For

all the experiments, the discount factor γ is set to 0.98, i.e.

long-term rewards are considered with significant weight.

In conclusion, by acting less conservatively than the clas-

sical algorithm, OP consensus allows the agents to maintain

connectivity and achieve flocking from a wider range of

initial conditions. If sufficiently large discrete actions are

available, OP should be able to handle correspondingly large

initial disagreements.

B. Effects of OP tuning parameters

For the remainder of the experiments, the case where

v0 = 2.5vr is considered. To characterize performance

in each experiment with a single number, an inter-agent

velocity disagreement is computed at every step: δ̃k =∑
i<j ‖vi,k − vj,k‖, and the average of δ̃k across all steps

in the trajectory is reported.

a) Budget: First the algorithm is run with different

expansion budgets, T = 15, 25, 50, 75, 100, 200, . . . , 500. As

shown in Figure 3(a) and as expected from the theoretical

guarantees of OP, performance largely increases with T ,

although monotonicity is not guaranteed, as exemplified on

the graph around T = 100.

b) Action discretization: To investigate the influence of

the action discretization, we run OP flocking with several dis-

cretizations, having respectively 3, 5, 7, 9, and 11 elements;

the discrete values are symmetrical and logarithmically

spaced around 0, in the range [−0.3, 0.3] (see Section IV-

A for the 7-value set as an example). The budget is set to a

large value T = 500 to allow the trees to be well developed

even for the larger discretizations. Figure 3(b) presents the

results. Performance improves as the discretization becomes

finer, and the influence on the performance is much larger

than that of the budget above, although the gain tapers off

for the finest discretizations.

c) Length of action predictions: Since the communi-

cation overhead is important, we are interested in how OP

consensus works when the agents only exchange limited-

length action plans. Thus for T = 200 and the 7-action

grid we repeat the experiment while increasing the length

of communicated predictions from 0, i.e. no communica-

tion, gradually to 5, and then letting them be unlimited.

Figure 3(c) indicates that communicating plans is indeed

necessary; without them, connectivity is lost. Nevertheless,

plans of length 1 are already sufficient for good performance.

The lack of improvement (and even slight decrease) in

performance for larger lengths is more surprising; possibly,

due to the receding-horizon nature of the algorithm, making

errors in the predictions over the longer term is not too

important.

V. RESULTS FOR NONLINEAR ROBOTIC ARMS

To investigate the performance of the algorithm for non-

linear agent dynamics, we apply it to the consensus of

two-link robotic arms operating in a horizontal plane. The

state variables for each agent are the angles and angular

velocities of the two links, xi = [θi,1, θ̇i,1, θi,2, θ̇i,2], and the

actions are the torques of the motors actuating the two links

ui = [τi,1, τi,2]. The model is standard so we omit the details

and just note that the sampling time is Ts = 0.05 s; the other

parameters can be found in [4]. Applications of this type of

consensus problem include decentralized manipulation and

teleoperation.

First, we consider regular consensus starting from random

initial angular positions with zero initial velocities, see

Figure 4. Three robots are connected on the fixed communi-

cation graph shown on the left of the figure. The goal is to

achieve consensus on all states. The weights are set to W =
diag[1, 0.1, 1, 0.1], so the angles are given higher priority.

The discretized action set is {−1.5, 0, 1.5}×{−1, 0, 1}, and

the budget of each agent is T = 400. Consensus is easily

achieved by the algorithm.

The second task is consensus with a leader. In this case,

leader agent 1 is solving its own, single-agent control prob-

lem, and the other agents 2, . . . , n must synchronize with

it, so the graph is directed without any arcs pointing to the

leader; see Figure 5. Algorithm 2 is applied only at agents

i > 1, whereas the leader can use any control algorithm

with the restriction that it should provide predictions of the

leader’s behavior to the other agents. A natural choice is

single-agent OP (Algorithm 1).

Here, the control problem solved by the leader is track-

ing a circle with the end-effector. The circle has center

(0.35, 0.35) m, radius 0.2 m, and must be tracked at angu-

lar velocity 2π/3 rad/s. The leader’s rewards penalize the

deviations of the end-effector from the reference trajectory

2

1

3

0 5 10
−4

−2

0

2

4

t [s]

θ
1

robot 1

robot 2

robot 3

0 5 10
−4

−2

0

2

t [s]

θ
’ 1

0 5 10
−1

0

1

2

3

t [s]

θ
2

0 5 10
−2

0

2

4

t [s]

θ
’ 2

Fig. 4. Leaderless consensus of multiple robotic arms. Left: communication
graph. Right: controlled trajectories.

in cartesian coordinates: r1,k+1 = −(Xk −Xref
k)2 − (Yk −

Y ref
k)2. For all agents, the planning budget and action dis-

cretizations are the same as in the simple consensus problem,

and W also stays unchanged. Figure 5, right shows the

resulting trajectories. Agents 2 and 3 reach consensus with

the leader 1 after about 2.5 s and thereafter track the leader’s

trajectory (which in turn tracks the reference circle, although

this is not as easily visible in the figure).

1,L

2

3

0 5 10
−2

−1

0

1

2

t [s]

θ
1

robot 1

robot 2

robot 3

0 5 10
−5

0

5

t [s]

θ
’ 1

0 5 10
−2

0

2

4

t [s]

θ
2

0 5 10
−5

0

5

10

t [s]

θ
’ 2

Fig. 5. Leader-based consensus of multiple robotic arms. Agent 1 is the
leader.

VI. CONCLUSIONS

We have introduced a novel consensus approach based on

optimistic planning, a nonlinear predictive control algorithm

from the field of artificial intelligence. This approach has

shown good results for linear, as well as nonlinear agent

dynamics, and several types of consensus objectives. The

main open issue is the lack of consensus guarantees, and

future work will focus on providing such guarantees, ei-

ther for OP consensus or an extension of it. Among the

parameters of the algorithm, the discretization of the action

space has the greatest influence, and another opportunity is

to exploit continuous-action planning [3] in order to avoid

the discretization step.

REFERENCES

[1] A. Bemporad and D. Barcelli, “Decentralized model predictive con-
trol,” in Networked Control Systems, ser. Lecture Notes in Control and
Information Sciences, A. Bemporad, M. Heemels, and M. Johansson,
Eds. Springer, 2010, vol. 406, pp. 149–178.

[2] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Athena Scientific, 2007, vol. 2.

[3] L. Buşoniu, A. Daniels, R. Munos, and R. Babuška, “Optimistic
planning for continuous–action deterministic systems,” in 2013 IEEE

International Symposium on Adaptive Dynamic Programming and

Reinforcement Learning (ADPRL-13), Singapore, 16–19 April 2013.
[4] L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška, “Approximate

dynamic programming with a fuzzy parameterization,” Automatica,
vol. 46, no. 5, pp. 804–814, 2010.

[5] L. Buşoniu and R. Munos, “Optimistic planning for Markov decision
processes,” in Proceedings 15th International Conference on Artificial

Intelligence and Statistics (AISTATS-12), ser. JMLR Workshop and
Conference Proceedings, vol. 22, La Palma, Canary Islands, Spain,
21–23 April 2012, pp. 182–189.

[6] G. Ferrari-Trecate, L. Galbusera, M. Marciandi, and R. Scattolini,
“Model predictive control schemes for consensus in multi-agent sys-
tems with single- and double-integrator dynamics,” IEEE Transactions

on Automatic Control, vol. 54, no. 11, pp. 2560–2572, 2009.
[7] J.-F. Hren and R. Munos, “Optimistic planning of deterministic

systems,” in Proceedings 8th European Workshop on Reinforcement

Learning (EWRL-08), Villeneuve d’Ascq, France, 30 June – 3 July
2008, pp. 151–164.

[8] T. Keviczky and K. Johansson, “A study on distributed model predic-
tive consensus,” in Proceedings 17th IFAC World Congress (IFAC-08),
Seoul, Korea, 6–11 July 2008, pp. 1516–1521.

[9] J. Liu, X. Chen, D. M. de la Peña, and P. D. Christofides, “Sequential
and iterative architectures for distributed model predictive control of
nonlinear process systems,” American Institute of Chemical Engineers

(AIChE) Journal, vol. 56, no. 8, pp. 2137–2149, 2010.
[10] S. Martin and A. Girard, “Sufficient conditions for flocking via

graph robustness analysis,” in Proceedings 49th IEEE Conference on

Decision and Control (CDC-10), Atlanta, US, 15–17 December 2010,
pp. 6293–6298.

[11] J. Mei, W. Ren, and G. Ma, “Distributed coordinated tracking with a
dynamic leader for multiple euler-lagrange systems,” IEEE Transac-

tions on Automatic Control, vol. 56, no. 6, pp. 1415–1421, 2011.
[12] R. R. Negenborn, B. De Schutter, and H. Hellendoorn, “Multi-agent

model predictive control for transportation networks: Serial versus
parallel schemes,” Engineering Applications of Artificial Intelligence,
vol. 21, no. 3, pp. 353–366, 2008.

[13] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algo-
rithms and theory,” IEEE Transactions on Automatic Control, vol. 51,
no. 3, pp. 401–420, 2006.

[14] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the

IEEE, vol. 95, no. 1, pp. 215–233, 2007.
[15] C. D. Persis and P. Frasca, “Robust self-triggered coordination with

ternary controllers,” 2012, arXiv preprint 1205.6917.
[16] W. Ren and R. W. Beard, Distributed Consensus in Multi-Vehicle

Cooperative Control: Theory and Applications, ser. Communications
and Control Engineering. Springer, 2008.

[17] H. Su, G. Chen, X. Wang, and Z. Lin, “Adaptive second-order
consensus of networked mobile agents with nonlinear dynamics,”
Automatica, vol. 47, no. 2, pp. 368–375, 2011.

[18] H. Tanner, A. Jadbabaie, and G. Pappas, “Flocking in teams of
nonholonomic agents,” in Cooperative Control, ser. Lecture Notes
in Control and Information Sciences, V. Kumar, N. Leonard, and
A. Morse, Eds. Springer, 2005, vol. 309, pp. 458–460.

[19] N. Vlassis, A Concise Introduction to Multiagent Systems and Dis-

tributed Artificial Intelligence, ser. Synthesis Lectures in Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers,
2007.

[20] J. Zhou, X. Wu, W. Yu, M. Small, and J. Lu, “Flocking of multi-agent
dynamical systems based on pseudo-leader mechanism,” Systems &

Control Letters, vol. 61, no. 1, pp. 195–202, 2012.

