
Near-optimal strategies for nonlinear networked control systems

using optimistic planning

Lucian Buşoniu Romain Postoyan Jamal Daafouz

Abstract— We consider the scenario where a controller
communicates with a general nonlinear plant via a network,
and must optimize a performance index. The problem is
modeled in discrete time and the admissible control inputs
are constrained to belong to a finite set. Exploiting a recent
optimistic planning algorithm from the artificial intelligence
field, we propose two control strategies that take into account
communication constraints induced by the use of the network.
Both resulting algorithms have guaranteed near-optimality. In
the first strategy, input sequences are transmitted to the plant
at a fixed period, and we show bounded computation. In the
second strategy, the algorithm decides the next transmission
instant according to the last state measurement (leading to
a self-triggered policy), working within a fixed computation
budget. For this case, we guarantee long transmission intervals.
Examples and simulation experiments are provided throughout
the paper to illustrate the results.

I. INTRODUCTION

In a variety of applications, controllers are implemented

over networks in order to reduce installation costs and to

facilitate maintenance, leading to networked control sys-

tems (NCS). The control law therefore has to share the

communication bandwidth with other tasks. This constraint

cannot be ignored in general as it may have a serious

impact on the system performance. Various methodologies

for NCS have been developed over these last decades. Two

main approaches are distinguished based on whether the

transmissions are defined by a clock, see e.g. [1], [2], or

are triggered depending on the state of the plant, in which

case we talk of event- or self-triggered control, see e.g. [3]–

[8]. However, most of these works focus on stabilization or

estimation problems, while few address optimal control, and

then mostly for linear systems, e.g. [9]–[17]. One interesting

exception is [18], where model-predictive control is used

to address nonlinear systems with quadratic costs, focusing

on stability. Thus the general problem of optimal control in

nonlinear NCS remains largely open.

In this paper, we propose an online approach for the

near-optimal control of nonlinear NCS with general costs.

We focus on the challenge of reducing network usage,

without considering other effects such as delays, packet

drop-outs, etc. We borrow from the artificial intelligence

community a recent optimistic planning (OP) algorithm [19],

which works in discrete time and for very general optimal

control problems, having any nonlinear system dynamics.

The quality of state transitions is measured by bounded

The authors are with the Université de Lorraine, CRAN, UMR 7039 and
the CNRS, CRAN, UMR 7039, France ({lucian.busoniu, romain.postoyan,
jamal.daafouz}@univ-lorraine.fr). L. Buşoniu is also associated with the
Automation Department, Technical University of Cluj-Napoca, Romania.
J. Daafouz is also with the IUF.

rewards and the objective is to maximize the cumulative

reward. At each execution, the algorithm explores possible

sequences of actions (inputs) from the current state, using

their predicted cumulative rewards to guide the search. Thus,

OP can be seen as model-predictive control, while also being

based on insights from bandit theory [20], optimization, and

classical planning (heuristic search). Several OP algorithms

have been introduced, e.g. [21]–[24], and they have shown

good performance in problems from control [24], medicine

[23], and artificial intelligence, where they were the first to

achieve expert-level play in the game of Go [25]. In the

sequel, we use the method of [19] and call it simply ‘OP’.

Crucially for our approach, from the analysis of OP [19]

it turns out that it returns a long sequence of actions that has

near-optimal performance. Thus, rather than sending only the

first action in the sequence and then rerunning the algorithm,

as in [19], we choose to send a longer subsequence. This

simple idea allows us to reduce the need for communication

(and also computation) while guaranteeing near-optimality.

We propose two strategies. In the first, communication

between the plant and the controller is set to occur at a

fixed period which is freely selected. We then investigate

the resulting near-optimality and the induced computational

complexity. The second strategy enforces a fixed computa-

tion budget at every OP execution, and within this budget

generates a sequence of actions from the last measured plant

state. As a result, the communication interval adapts to the

state, leading to a self-triggered policy, e.g. [5], [6], [8]. We

then investigate how sequence length and near-optimality

vary with the computation budget. Both strategies allow

sending only an initial part of the sequences found, span-

ning a spectrum from the original method [19] which only

applies the first action, to applying the complete sequences.

Interestingly, shorter subsequences may do better in some

problems, but worse in others, and we provide results and

insight about this phenomenon.

OP requires a finite set of actions, so its performance is

limited by discretization accuracy. Nevertheless, as will be

illustrated in an example, the loss due to discretization is

often manageable. Further, the limitation is not fundamental

and continuous-action optimistic methods exist, e.g. [24],

although their analysis is not as well developed. On the

other hand, discrete actions may even be preferable due to

their benefits in NCS. Indeed, the size of communication

packets can be reduced by encoding the discrete actions

by their index, and actuator saturation can be dealt with

by simply discretizing within the operating ranges. Other

authors have shown interest and theoretical guarantees for

coarsely-discretized control [26].

Next, Section II describes the optimal control problem

and OP with its guarantees. In Section III, we introduce

and analyze our approach. Examples are used throughout

the paper to clarify important concepts, and Section IV

shows simulation experiments for the networked control of

a nonlinear robot arm. Section V concludes the paper.

II. BACKGROUND

A. Optimal control problem

Consider an optimal control problem for a deterministic,

discrete-time nonlinear system

xk+1 = f(xk, uk) (1)

with state x ∈ X and action u ∈ U , where X and U
are arbitrary, possibly multidimensional spaces (although

we restrict U to a finite set below). Each transition from

xk to xk+1 as a result of uk is associated with a reward

rk+1 = ρ(xk, uk), and the goal is to find for each state

x a sequence of actions u∞ = (u0, u1, . . .) ∈ U∞ that

maximizes the infinite-horizon discounted return (also called

the value)

V u∞(x) =

∞
∑

k=0

γkrk+1 =

∞
∑

k=0

γkρ(xk, uk) (2)

where x0 = x, xk+1 = f(xk, uk) for k ≥ 0. The discount

factor γ ∈ [0, 1) ensures the boundedness of the return, see

[15] for another method that uses discounting in NCS. Ele-

ments X , U , f , ρ, and γ together form a deterministic type

of Markov decision process (MDP). The optimal (maximal)

value function, defined as1 V ∗(x) = sup
u∞

V u∞(x), always

exists and is unique [27]. Note that this optimal control

formulation is nonstandard, since typically state feedback

control policies h(x) are used. While state feedback policies

are sufficient to achieve the optimal values, the action-

sequence formulation helps to more easily understand our

approach, and does not lose generality.

Assumption 1: The action space is discrete (or dis-

cretized), U =
{

u1, . . . , uM
}

. Rewards are bounded in [0, 1].
To ensure bounded rewards in practice, a first solution

is to directly saturate the reward function. This changes

the optimal solution, but may be sufficient if the changes

do not affect interesting state regions. On the other hand,

the physical limitations of the system may be meaningfully

modeled by saturating the states in the dynamics. If the

limits are known a reward bound follows. Finally, in most

cases a bounded reward function can be normalized to [0, 1]
without changing the optimal solution.2 Next, we exemplify

the framework with a classical LQR problem.

Example 1: Discounted LQR. Consider the problem of

optimally stabilizing a DC motor. Discretizing in time a

1In optimal control, often a cost J is minimized rather than a return or
value V being maximized. The two formulations are equivalent.

2One exception are tasks with absorbing states, which once reached
cannot be escaped and always provide zero rewards, for any action. Such
states can be used to represent e.g. “goal achieved” and “failure” situations.

first-principles model with the zero-order-hold method and

Ts = 0.01 s, we obtain the dynamics

f(x, u) = Ax + Bu, A ≈

[

1 0.0095
0 0.9100

]

, B ≈

[

0.0084
1.6618

]

where x1 = α is the shaft angle, x2 = α̇ the angular velocity,

and u the voltage. The goal is stabilizing the system around

x = 0, and is described by the reward function:

ρ(x, u) = −x⊤Qx− u⊤Ru, Q = diag(5, 0.001), R = 0.01

with discount factor γ = 0.9. Because the dynamics are lin-

ear and the rewards are quadratic, the optimal state feedback

policy is linear3 h(x) = L⊤x where L ≈ [−5.60,−0.28]
⊤

.

Figure 1, left shows a trajectory controlled with this policy.

We investigate the effects of the required assumptions.

First, as discussed above, the states and actions are restricted

using saturation to α ∈ [−π, π] rad, α̇ ∈ [−15π, 15π] rad/s,

u ∈ [−30, 30] V. Note that saturation effectively makes the

dynamics nonlinear, but this nonlinearity does not manifest

itself over the variable ranges in the figures we exemplify.

The rewards can then easily be rescaled into [0, 1]. The

actions are discretized into the set U = {−10,−3, 0, 3, 10}.
Figure 1, right shows a trajectory controlled by a policy

that is near-optimal for this discretization. Of course, dis-

cretization reduces performance (e.g. it introduces steady-

state error), but not greatly, which can also be seen in the

small difference between the returns V obtained along the

two trajectories: 9.082 with continuous actions, 9.067 with

discrete actions.4 �

0 0.2 0.4 0.6 0.8 1

0

1

2

α
 [

ra
d

]

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

α
’
[r

a
d

/s
]

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

u
 [

V
]

0 0.2 0.4 0.6 0.8 1

0.6
0.8

1

r
[−

]

t [s]

Fig. 1. Controlled trajectories from x0 = [2π/3, π]⊤, with continuous
actions (gray) and discretized actions (black).

3 The gains are computed with an extension of the LQR solution to the
discounted case, L = −γ(γB⊤Y B+R)−1B⊤Y A, where Y is the stabi-
lizing solution of the Riccati equation: Y = A⊤[γY −γ2Y B(γB⊤Y B +
R)−1B⊤]A + Q, see [27], Ch. 3.

4The discrete-action solution is computed with approximate value itera-
tion using a fine state discretization, specifically fuzzy Q-iteration [28], a
consistent algorithm i.e. one that obtains small errors for fine discretization.
The consistency proof in [28] also gives more insight into how solution
quality relates to the state and action discretization resolutions.

B. Optimistic planning

To introduce the algorithm, in this section we focus on a

particular state x where it must be applied, and by convention

set the current time to 0, so that x0 = x. Of course, the

procedure works at any time step.

u0

1

u0

2
ρ x(,)0

2
u0

L

f x(,)0

2
u0

ρ x(,)0 u0

1

f x u(,)0

1

0

u1

1
u1

2

d = 1

d = 2

d = 3

Fig. 2. Illustration of an OP tree T . Nodes are labeled by actions, arcs
represent transitions and are labeled by the rewards and next states resulting
by applying the corresponding action. Subscripts are depths, superscripts
index the M possible actions/transitions from a node (here, M = 2). The
leaves L are enclosed in a dashed line, while the thick path highlights an
action sequence.

Optimistic planning (OP) [19] explores a tree representa-

tion of the possible action sequences from the current state,

as illustrated in Figure 2. OP starts with an unlabeled root

node, and iteratively expands T nodes. Expanding a node

adds new children nodes corresponding to all the M actions

u1, . . . , uM . Each node at some depth d is reached via a

unique path through the tree, and can thus be uniquely as-

sociated to the sequence of actions ud = (u0, u1, . . . , ud−1)
on this path. In what follows, we will work interchangeably

with sequences and paths, keeping this equivalence in mind.

For a sequence ud, we define three quantities:

ℓx(ud) =

d−1
∑

d′=0

γd′

ρ(xd′ , ud′), bx(ud) = ℓx(ud) +
γd

1− γ

vx(ud) = ℓx(ud) + γdV ∗(xd) (3)

where the states are generated with the action sequence ud,

like in (2). The quantity ℓx(ud) provides a lower bound on

the value of any infinite sequence that starts with ud, while

bx(ud) is an upper bound (this is because all the rewards

at depths larger than d are in [0, 1]). The value vx(ud)
is obtained by continuing optimally after ud. Subscript x
indicates that the three quantities depend on the state x = x0

where OP is applied.

We denote the set of sequences corresponding to leaves by

L. OP optimistically explores the space of action sequences,

by always expanding further a most promising leaf sequence:

one with the largest upper bound bx(u). After a certain

number of expansions, a sequence that maximizes the lower

bound ℓx(u) among the leaves is returned, intuitively seen as

a safe choice. Algorithm 1 summarizes the entire procedure,

where the function ∆(·) gives the depth of a tree. We allow

the algorithm to terminate either after a given number of

expansions, or after a given depth has been explored (i.e. at

least a node has been expanded at that depth). The bx and ℓx

values can be efficiently maintained on the tree. Note that OP

is related to the classical A* search algorithm, and can also

be seen as a branch-and-bound optimization over sequences.

Algorithm 1 Optimistic planning for deterministic systems

Input: state x, budget n or depth d (set the other to ∞)

1: initialize tree: T ← {root}, i = 0
2: repeat

3: find optimistic sequence: u
† ∈ arg max

u∈L bx(u)
4: add children uj , j = 1, . . . ,M to the node of u

†

5: i← i + 1
6: until i = n or ∆(T) = d + 1
7: n← i; d← ∆(T)− 1

Output: u
∗ ∈ arg max

u∈L ℓx(u)

C. Theoretical guarantees

To characterize the complexity of finding the optimal

sequence from a given state x, we define κ(x) as the

asymptotic branching factor of the near-optimal subtree:

T ∗(x) =
{

ud

∣

∣ d ≥ 0, V ∗(x)− vx(ud) ≤ γd/(1− γ)
}

. In-

tuitively, T ∗(x) contains the sequences for which it is

impossible to tell, from their rewards up to d, whether or

not they are part of an optimal solution, because their near-

optimality is smaller than the amount of reward γd/(1− γ)
they might accumulate below depth d. In general, we say

that a sequence ud is ε-optimal when V ∗(x)− vx(ud) ≤ ε.

We provide the guarantees about OP in a form that brings

out its useful properties in NCS. Intuitively, part (i) of the

upcoming theorem shows that OP returns a long and near-

optimal sequence, and parts (ii), (iii) show that sequence

length and near-optimality are closely related to the compu-

tation budget, via the branching factor κ(x). These results

have either been obtained by [19] or are simple extensions

of the results proven there.

Theorem 2: OP has the following properties:5

(i) After developing a tree T , OP returns a sequence ud

of length6 d = ∆(T)− 1, which is also γd

1−γ
-optimal.

(ii) When OP is called in x with a large enough d: • If

κ(x) > 1 it will require a number of expansions

n(x) = O(κ(x)d). • If κ(x) = 1, n(x) = O(d).
(iii) When OP is called in x with a large enough n: • If

κ(x) > 1 it will reach a depth of d(x) = Ω(log n
log κ(x)),

and ε(x) = O(n−
log 1/γ
log κ(x)). • If κ(x) = 1, d(x) = Ω(n)

and ε(x) = O(γc(x)n), where c(x) is a constant. �

Since κ(x) is generally unknown, the computation re-

quirements or near-optimality of OP cannot be determined

in advance. However, Theorem 2 provides confidence that

the algorithm automatically adapts to the complexity of the

problem, described by κ(x). The smaller κ(x), the more

easily near-optimal sequences can be distinguished, and the

5The notations g = O(h) and g = Ω(h) mean that g asymptotically
grows, respectively, at most as fast / at least as fast as h. Note also that
d(x) = Ω(log n/ log κ(x)) will be used to emphasize the link of d(x)
with κ(x), even though Ω(log n/ log κ(x)) is equivalent to Ω(log n).

6OP may also return a sequence of maximal length ∆(T); to maintain
uniformity of notation, in that case the last action is removed, although this
is not necessary in practice.

better OP does. In particular, the best case is κ(x) = 1,

obtained e.g. when a single sequence always obtains rewards

of 1, and all the other rewards on the tree are 0. In this

case the algorithm must only develop this sequence. In the

worst case, κ(x) = M (the number of discrete actions);

this happens when all the sequences have the same value,

in which case the algorithm must explore the complete tree

uniformly, expanding nodes in order of their depth.

III. OP FOR NETWORKED CONTROL SYSTEMS

A. Setting

In this paper we consider a networked-control setting,

in which actuation and state signals are exchanged over a

network that must be efficiently utilized. To this end, the

controller should only communicate with the plant when

needed. OP is well equipped to handle this case, since it

guarantees that it will return long sequences of actions that

have near-optimal performance.

We envision the following setup. The sequence of trans-

mission instants is denoted by ki, i ∈ {0, 1, 2, . . .}, and it will

either be fixed by the user or defined by the controller itself.

At each ki, the controller receives the state’s measurement

and generates a sequence of control actions which is sent

as a single packet to the actuators’ buffer, like in [29]. The

actuators then apply the k′-th component of the sequence to

the plant at step ki + k′, until the full sequence has been

used. Afterwards, the new state’s measurement is sent to the

controller and the procedure is repeated. In this way, the

communication cost is reduced, since the channel is only

used at intervals equal to the lengths of the action sequences.

B. Algorithms

Algorithm 1 and Theorem 2 suggest two ways in which OP

could be exploited for NCS. The first possibility is to impose

a desired planning depth d at every controller execution step,

and then send to the plant either the full sequence or an

initial subsequence thereof. Denoting the length of the sent

(sub)sequence by d′ ≤ d, this means the communication

between the controller and the plant is set to occur at fixed

period d′, i.e. the transmission instants ki are multiples of

d′. Applying OP in this way is novel. Since the controller

execution interval is fixed, this first strategy is called Clock-

triggered OP (COP); it is summarized in Algorithm 2.

Algorithm 2 COP: Clock-triggered optimistic planning

Input: initial state x0, target depth d, subsequence length d′

1: k ← 0
2: loop

3: measure current state xk

4: apply OP(xk, d), obtaining a sequence ud

5: send initial subsequence ud′ to plant

6: k ← k + d′, wait d′ steps

7: end loop

The second possibility is to impose the computation

budget n, like in the classical application of OP, and let

the algorithm find the longest sequence it can within this

budget. Then, different from classical OP which sends just

one action, we send again either the whole sequence or a

subsequence. Since the returned sequence length, and so the

communication interval, will vary depending on the planning

complexity at the current state, the algorithm is called Self-

Triggered OP (STOP); it is summarized as Algorithm 3. To

allow sending subsequences, the algorithm is parameterized

by the fraction α ∈ (0, 1], so that if a sequence of length

d is returned by OP, only the first ⌈αd⌉ actions are actually

sent and applied. Here, ⌈·⌉ denotes the ceiling operator.

Algorithm 3 STOP: Self-triggered optimistic planning

Input: initial state x0, budget n, subsequence fraction α
1: k ← 0
2: loop

3: measure current state xk

4: apply OP(xk, n), obtaining a sequence ud(x)

5: send initial subsequence u⌈αd(x)⌉ to plant

6: k ← k + ⌈αd(x)⌉, wait ⌈αd(x)⌉ steps

7: end loop

It should be emphasized that the upcoming analysis of

these methods is performed under the assumption that the

model is correct. Of course, in practice model errors or

disturbances appear, which means the sequences cannot be

too long and the loop must be closed fairly often. Even

assuming correct models, some nontrivial relationships arise

between the performance of shorter and longer sequences,

as detailed in the next section.

C. Analysis

We first consider the near-optimality and complexity of COP.

Theorem 3: COP is γd

1−γ
-optimal. Furthermore, at every

state x where it is called, COP requires: • n = O(κ(x)d)
computation if κ(x) > 1; • n = O(d) computation if κ(x) =
1 (with κ(x) the branching factor from Section II-C). �

Thus, the quality of the solution grows with the imposed

sequence length d, and the computation requirements to

reach this length are bounded and characterized using κ(x).
Specifically, computation grows exponentially in d, with base

κ(x) – unless κ(x) = 1, in which case it grows linearly in

d. Next, we move on to STOP.

Theorem 4: For large computational budget n, the near-

optimality of STOP is: • O(n
−

log 1/γ
log κ(x0)) if κ(x0) > 1, and

• O(γc(x0)n) if κ(x0) = 1. Furthermore, at every state x
where it is called, STOP finds a sequence of length: • d(x) =
Ω(log n

log κ(x)) if κ(x) > 1, and • d(x) = Ω(n) if κ(x) = 1. �

In this case, the performance guarantee depends only on

the planning difficulty at the initial state x0: it is polynomial

in n when κ(x0) > 1, and exponential (better) when it is

κ(x0) = 1. The sequence length grows fast, in a way that is

characterized using κ(x), and which basically ‘inverts’ the

relationship between computation and length in COP.

It is essential to note that the subsequence length (rep-

resented by d′ in COP and α in STOP) does not affect

the near-optimality guarantee: there is no loss, whether the

loop is closed sooner or later. This is the main novelty in

Theorems 3 and 4, while the other results follow easily from

Theorem 2. Of course, this does not mean that the same

performance is obtained. In fact, applying shorter sequences

may achieve better or worse performance, depending on the

problem. The following result characterizes this behavior, in

a general way that applies to both COP and STOP.

Theorem 5: Consider OP returns a sequence ud. Define

the sequence (ud′ ,ud1
), formed by joining a subsequence

ud′ of ud, with the new sequence ud1
obtained by replanning

after ud′ (see Figure 3). Define similarly (ud′′ ,ud2
), where

d′′ > d′. Recall the value v of a sequence is the return

obtained by applying it and then acting optimally. Then:

v(ud′ ,ud1
) ≥ v(ud′′ ,ud2

)−
γd′+d1

1− γ

Furthermore, if OP runs with the same budget or target depth

to compute ud, ud1
, and ud2

, then the bound is tight: there

exist problems where it holds with equality. �

ud”

ud1

ud’

ud2

Fig. 3. Shorter versus longer subsequences.

The theorem says that applying a shorter sequence and

then replanning may lose some performance, but not too

much: the maximum loss is given by the accuracy of the

entire composite sequence (ud′ ,ud1
), i.e., γd′+d1

1−γ
. This result

is counterintuitive – one might expect shorter sequences

to be strictly better, since they allow reconsidering action

choices sooner. Nevertheless, since the bound is tight, noth-

ing stronger can be said in general. The following examples

provide more insight into this issue, using COP as it allows

to directly control the (sub)sequence length.

Example 2: Shorter sequences can perform better. Con-

sider an MDP with state space {1, 2, . . . , 5}, two actions

−1, 1 (“left” and “right”), and additive dynamics x+ =
max(1,min(5, x+u)). The rewards obtained upon reaching

each of the five states are, respectively, 0.8, 0.7, 0.5, 0.8, 0,

and the discount factor is 0.8, see Figure 4.

1 3

0.8 0.7

4

0.5

2 5

0.8 0

Fig. 4. A five-state MDP and two COP solutions. States are shown in
circles, and rewards in italics above them. The solution from x0 = 4 with
d′ = d = 2 is shown in gray on top of the figure, while the one for d′ = 1,
d = 2 is shown in black on the bottom. Solutions are shown as sequences
of actions, where the bullets mark the states in which planning is run, and
unapplied sequence tails are shown in dashed lines.

When applied from x0 = 4 with d′ = d = 2, COP exploits

the rewards of states 4 and 5 and cycles between these states

forever, obtaining a return of 3.17. When d′ is decreased to

1 however, the algorithm has a chance to replan in x1 = 3,

and with the same horizon d = 2 this allows it to detect the

larger rewards to the left. It eventually reaches state 1 and

remains there, achieving the optimal return of 3.62. �

Example 3: Longer sequences can perform better. A sim-

ilar MDP is taken but now with states {1, 2, . . . , 7} and the

rewards shown in Figure 5. The discount factor is the same.

1 3

0.5 0

4

0.7

2 5

0 0.2

6 7

1 0

Fig. 5. A seven-state MDP and two COP solutions, for d′ = d = 3 (top,
gray) and d′ = 1, d = 3 (bottom, black).

Now, when applied from x0 = 3 with d′ = d = 3, COP

discovers the large reward in state 6 and controls towards

this state, cycling afterwards between 5 and 6 for a return of

2.22. When d′ = 1 however, replanning from state 4 misleads

the algorithm into a shorter-horizon cycle that focuses on the

reward 0.7, achieving only a suboptimal return of 1.56. �

IV. RESULTS FOR A NONLINEAR ROBOT ARM

To illustrate our approach, we apply STOP to stabilize a

nonlinear, two-link robot arm operating in a horizontal plane.

The state variables are the angles and angular velocities of

the two links, xi = [θi,1, θ̇i,1, θi,2, θ̇i,2], and the actions are

the torques of the motors actuating the links: ui = [τi,1, τi,2].
The model is standard so we omit the details and just

note that the sampling time is Ts = 0.05 s, and that time

discretization is performed with the fourth-order Runge-

Kutta method; the other parameters can be found in [28].

The goal of stabilizing in the zero state is modeled by a

quadratic reward similar to that in Example 1, with weights

Q = diag[1, 0.05, 1, 0.05] and R = diag[0.01, 0.01]. The

discount factor is γ = 0.95, and the discretized action set is

{−1.5, 0, 1.5}×{−1, 0, 1}. STOP is applied with n = 1000
and α = 0.4 from the initial state x0 = [π, 0, π, 0]

⊤
, and

the results are shown in Figure 6. A good performance is

achieved – subject to the limitations of the action discretiza-

tion, due to which adjustments have to be made close to

the equilibrium state. Note the variation of the sequence

lengths with the complexity of the planning problem at

different states: in particular, at states further away from the

equilibrium sequences are shorter due to higher complexity,

whereas at states closer to the equilibrium the complexity

decreases and the sequences are longer.

V. CONCLUSIONS

Two novel methods have been introduced for the optimal

networked control of nonlinear systems. They both rely

on properties of optimistic planning (OP) and guarantee

near-optimal performance. Clock-triggered OP repeatedly

sends action sequences of a fixed length, and bounds the

0 1 2 3 4 5

−2

0

2

θ
1
,

θ
2
 [

ra
d

]

0 1 2 3 4 5

−2

0

2

4

θ
’ 1

,
θ
’ 2

 [
ra

d
/s

]

0 1 2 3 4 5
−2

0

2

τ
1
,

τ
2
 [

N
m

]

0 1 2 3 4 5

0.2
0.4
0.6
0.8

1

r
[−

]

t [s]

0 1 2 3 4 5
0

10

20

30

t [s]

d

 Planning depth

Length of applied subsequences

Fig. 6. Results of STOP for robot arm stabilization: trajectory (top),
planning depths and lengths of the applied subsequences (bottom).

computation required to find them. Self-triggered OP works

with fixed computation, and adapts the sequence length –

and thus the communication interval – to the current state,

guaranteeing long sequences. Interestingly, applying shorter

subsequences instead of the full sequences may work better

or worse, depending on the problem.

The most important topic for future work is reducing

the dependence on a fully known, deterministic model. The

first step towards this goal will be to exploit planning

algorithms for stochastic systems, in order to handle certain

classes of random disturbances. Furthermore, similar ideas to

those presented here can be used to apply continuous-action

planning to networked control systems.

REFERENCES

[1] M. Branicky, S. Phillips, and W. Zhang, “Scheduling and feedback
co-design for networked control systems,” in CDC (IEEE Conference

on Decision and Control) Las Vegas, U.S.A., 2002, pp. 1211–1217.

[2] J. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” IEEE Special Issue on Technology of

Networked Control Systems, vol. 95, no. 1, pp. 138–162, 2007.

[3] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp.
1680–1685, 2007.

[4] W. Heemels, J. Sandee, and P. van den Bosch, “Analysis of event-
driven controllers for linear systems,” International Journal of Control,
vol. 81, no. 4, pp. 571–590, 2009.

[5] A. Anta and P. Tabuada, “To sample or not to sample: self-triggered
control for nonlinear systems,” IEEE Transactions on Automatic

Control, vol. 55, no. 9, pp. 2030–2042, 2010.

[6] X. Wang and M. Lemmon, “Self-triggered feedback control systems
with finite-gain L2 stability,” IEEE Transactions on Automatic Con-

trol, vol. 45, pp. 452–467, 2009.

[7] T. Henningsson, E. Johannesson, and A. Cervin, “Sporadic event-based
control of first-order linear stochastic systems,” Automatica, vol. 44,
pp. 2890–2895, 2008.

[8] M. Velasco, J. Fuertes, and P. Marti, “The self triggered task model for
real-time control systems,” 24th IEEE Real-Time Systems Symposium,
pp. 67–70, 2003.

[9] A. Molin and S. Hirche, “On LQG joint optimal scheduling and
control under communication constraints,” in CDC (IEEE Conference

on Decision and Control) Shangai: China, 2009.
[10] T. Henningsson and A. Cervin, “Scheduling of event-triggered con-

trollers on a shared network,” in CDC (IEEE Conference on Decision

and Control) Cancun, Mexico, 2008.
[11] R. Blind and F. Allgöwer, “On the optimal sending rate for networked

control systems with a shared communication medium,” in CDC / ECC

(IEEE Conference on Decision and Control and European Control

Conference) Orlando, U.S.A., Orlando: U.S.A., 2011.
[12] ——, “Analysis of Networked Event-Based Control with a Shared

Communication Medium: Part I - Pure ALOHA,” in 14th IFAC World

Congress, Milan, Italy, 2011.
[13] A. Molin and S. Hirche, “On the optimal design of decentralized event-

triggered controllers for large-scale systems with contention-based
communication,” in CDC / ECC (IEEE Conference on Decision and

Control and European Control Conference) Orlando, U.S.A., Orlando:

U.S.A., 2011.
[14] M. Rabi, K. Johansson, and M. Johansson, “Optimal stopping event-

triggered sensing and actuation,” in CDC (IEEE Conference on Deci-

sion and Control) Cancun, Mexico, 2008, pp. 3607–3612.
[15] D. Antunes, W. Heemels, and P. Tabuada, “Dynamic programming

formulation of periodic event-triggered control: Performance guaran-
tees and co-design,” in IEEE Conference on Decision and Control,

Hawai: U.S.A., 2012, pp. 7212–7217.
[16] J. B. Berglind, T. Gommans, and W. Heemels, “Self-triggered MPC

for constrained linear systems and quadratic costs,” in IFAC Nonlinear

Model Predictive Control Conference, Noordwijkerhout: The Nether-

lands, 2012, pp. 342–348.
[17] E. Henriksson, D. Quevedo, H. Sandberg, and K. Johansson, “Self-

triggered model predictive control for network scheduling and control,”
in IFAC Symposium on Advanced Control of Chemical Processes,

Singapore, 2012, pp. 432–438.
[18] A. Eqtami, D. Dimarogonas, and K. Kyriakopoulos, “Novel event-

triggered strategies for model predictive controllers,” in IEEE Con-

ference on Decision and Control and European Control Conference

(CDC-ECC), Orlando: U.S.A., 2011, pp. 3392–3397.
[19] J.-F. Hren and R. Munos, “Optimistic planning of deterministic

systems,” in Proceedings 8th European Workshop on Reinforcement

Learning (EWRL-08), Villeneuve d’Ascq, France, 30 June – 3 July
2008, pp. 151–164.

[20] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[21] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” in
Proceedings 17th European Conference on Machine Learning (ECML-

06), Berlin, Germany, 18–22 September 2006, pp. 282–293.
[22] S. Bubeck and R. Munos, “Open loop optimistic planning,” in Pro-

ceedings 23rd Annual Conference on Learning Theory (COLT-10),
Haifa, Israel, 27–29 June 2010, pp. 477–489.

[23] L. Buşoniu, R. Munos, B. De Schutter, and R. Babuška, “Optimistic
planning for sparsely stochastic systems,” in Proceedings 2011 IEEE

International Symposium on Adaptive Dynamic Programming and

Reinforcement Learning (ADPRL-11), Paris, France, 11–15 April
2011, pp. 48–55.

[24] C. Mansley, A. Weinstein, and M. L. Littman, “Sample-based planning
for continuous action Markov decision processes,” in Proceedings

21st International Conference on Automated Planning and Scheduling,
Freiburg, Germany, 11–16 June 2011, pp. 335–338.

[25] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modification of UCT
with patterns in Monte-Carlo Go,” INRIA, Tech. Rep., 2006.

[26] C. De Persis and P. Frasca, “Robust self-triggered coordination with
ternary controllers,” arXiv: 1205.6917, 2012.

[27] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Athena Scientific, 2007, vol. 2.

[28] L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška, “Approximate
dynamic programming with a fuzzy parameterization,” Automatica,
vol. 46, no. 5, pp. 804–814, 2010.

[29] A. Chaillet and A. Bicchi, “Delay compensation in packet-switching
networked controlled systems,” in CDC (IEEE Conference on Decision

and Control), Cancun, Mexico, 2008, pp. 3620–3625.

