
Discounted near-optimal control of general continuous-action

nonlinear systems using optimistic planning

Lucian Buşoniu, Előd Páll, Rémi Munos

Abstract— We propose an optimistic planning method to
search for near-optimal sequences of actions in discrete-time,
infinite-horizon optimal control problems with discounted re-
wards. The dynamics are general nonlinear, while the action
(input) is scalar and compact. The method works by iteratively
splitting the infinite-dimensional search space into hyperboxes.
Under appropriate conditions on the dynamics and rewards,
we analyze the shrinking rate of the range of possible values in
each box. When coupled with a measure of problem complexity,
this leads to an overall convergence rate of the algorithm to the
infinite-horizon optimum, as a function of computation invested.
We provide simulation results showing that the algorithm
is useful in practice, and comparing it with two alternative
planning methods.

I. INTRODUCTION

We consider optimal control problems that require max-

imizing a discounted sum of rewards (the value), along an

infinitely long discrete-time trajectory of the system [9], [16].

Such problems are encountered not only in automatic control,

but also in many other fields including artificial intelligence

(AI), operations research, economics, etc. When the system

and reward function have a general form, numerical algo-

rithms must be applied to solve the problem approximately.

We focus on algorithms that solve the problem locally,

for the current state of the system, obtaining a sequence

of actions (inputs). The initial action is applied, and the

procedure is repeated online for subsequent states. This is

called receding horizon model predictive control [6], or on-

line planning in AI [11]. The direct dependence on the state

space size is removed, while computation still grows with

the action space size and with the search horizon. Nonlinear

predictive control, for example, often searches over a fixed

finite horizon. The near-optimality of such solutions may be

unclear when measured via the true, infinite-horizon value.

A good approach is to search directly over the space of

infinitely long solutions. This is the approach taken by the

optimistic planning (OP) class of algorithms [15], which we

consider here.

OP methods originate in AI and perform a branch-and-

bound search over the space of infinitely long sequences,

always refining the region with the best upper bound on the

value – hence the “optimistic” label. The main strengths of

OP are the generality of the dynamics and rewards addressed,

and a tight relation between computation and near-optimality,

L. Buşoniu and E. Páll are with the Automation Department,
Technical University of Cluj-Napoca, Romania (lucian@busoniu.net,
pall.elod@gmail.com). R. Munos is with Google DeepMind London, UK
(munos@google.com). This work was supported by a grant of the Roma-
nian National Authority for Scientific Research, CNCS-UEFISCDI, project
number PNII-RU-TE-2012-3-0040.

which exploits ideas from reinforcement learning [15]. Many

OP variants have been proposed for discrete actions, e.g. [4],

[8], [10], [13], [17]. In contrast, we focus here on continuous

actions, since they are essential in control.

We propose optimistic planning with continuous actions

(OPC), which works in general nonlinear systems with scalar

bounded actions. The method iteratively splits the infinite-

dimensional hypercube of continuous-action sequences into

smaller hyperboxes, leading to an adaptive search horizon.

Under Lipschitz continuity of the dynamics and rewards and

a stability-like condition, we derive an upper bound on the

range of values inside a box (a diameter), and thereby an

optimistic selection rule for the box to split next. An essential

insight is that each dimension k contributes to the bound with

weight γk, where γ is the discount factor, and this is used to

select the specific dimension to split. We characterize the rate

at which the diameter shrinks with the number of splits, and

define (as a measure of problem complexity) the branching

factor of an associated tree [5], [8]. Using these, we derive

an overall near-optimality guarantee for the algorithm as a

function of computation invested, measured by the number

of transitions simulated. Empirical results in a linear and a

nonlinear system validate the method in practice.

Several other OP methods have been proposed for con-

tinuous actions, but without an analysis; OPC is the first

to guarantee a convergence rate. Lipschitz planning (LP) [7]

uses a similar upper bound but lacks the insight on the impact

γk, so it uses a heuristic rule to choose which dimension

to split. Our earlier method called simultaneous optimistic

optimization for planning (SOOP) [3] exploits an inkling

of this insight, imposing instead of γk a tunable empirical

weight αk. The box selection rule in SOOP is also heuristic.

Other continuous-action planners only optimize over fi-

nite horizons, e.g. HOOT [12], sequential planning [7], or

HOLOP [18]. OPC applies the principle of deterministic

optimistic optimization (DOO) [14] to control, while the

analysis of DOO does not work because its assumptions are

not satisfied for infinite-horizon continuous-input problems,

so we provide novel analysis adapted to this setting.

Next, Section II formalizes the problem and Section III

describes OPC. Sections IV and V provide analysis and

simulation results. Section VI concludes the paper.

II. PROBLEM STATEMENT

We consider an optimal control problem for a discrete-time

nonlinear system:

xk+1 = f(xk, uk) (1)

where x ∈ X ⊆ R
p, u ∈ U , and U will be described in

our main assumption below. A function ρ : X × U → R

assigns a numerical reward rk = ρ(xk, uk) to each state-

action pair. Under a fixed initial state x0, define an infinitely-

long sequence of actions u∞ = (u0, u1, . . .) and the infinite-

horizon discounted value of this sequence:

v(u∞) =
∞
∑

k=0

γkρ(xk, uk) (2)

where γ ∈ (0, 1) is the discount factor, and xk+1 =
f(xk, uk). Discounting is used in many other works, e.g. [1],

[9]. The objective is to find (a near-optimal approximation

of) the optimal value:

sup
u∞

v(u∞) =: v∗

and an action sequence that achieves this (near-optimal)

value.

So far the problem is extremely general: no specific form

is required for either the dynamics f or the reward function

ρ. Next, we impose some assumptions that allow us to derive

an efficient algorithm.

Assumption 1: The following conditions hold.

(i) The rewards are bounded in [0, 1].
(ii) The action is a real scalar, bounded in the unit interval,

so that U = [0, 1].
(iii) The dynamics and rewards are Lipschitz, i.e. ∃Lf , Lρ

so that ∀x, x′ ∈ X,u, u′ ∈ U :

‖f(x, u) − f(x′, u′)‖ ≤ Lf (‖x − x′‖ + |u − u′|)

|ρ(x, u) − ρ(x′, u′)| ≤ Lρ(‖x − x′‖ + |u − u′|)

where ‖·‖ is an appropriately chosen norm.

(iv) The dynamics satisfy γLf < 1.

Reward boundedness as in Assumption 1(i) can be

achieved e.g. by saturating a possibly unbounded original

reward function. This changes the optimal solution, but

is often sufficient in practice. Another example is when

physical limitations in the system are modeled by saturating

the states and actions, from which a reward bound follows.

In combination with Assumption 1(i), discounting will

ensure that returns are bounded for any sequence – a

property required by the analysis. Under appropriate stability

conditions, boundedness may also be guaranteed without dis-

counting, but only for (near-)optimal sequences; tightening

the analysis so that it still holds in this case is an interesting

topic for future work.

The scalar action from Assumption 1(ii) could be gener-

alized to multiple dimensions, e.g. by always splitting along

all of these dimensions in the algorithm of Section III. This

would however introduce overhead in the analysis that would

not be useful in grasping its main features, so here we choose

to restrict to the scalar case. On the other hand, the compact

nature of U is fundamental, since our algorithm numerically

refines this action space. In both Assumptions 1(i) and 1(ii),

the unit interval is taken only for convenience, and can be

achieved by simply rescaling any bounded interval.

Assumption 1(iii) is a regularity condition, while Assump-

tion 1(iv) can be interpreted as a stability requirement: the

dynamics need not be strictly contractive on their own, but

must become so when combined with a shrink rate given by

the discount factor γ.

III. OPTIMISTIC PLANNING FOR CONTINUOUS ACTIONS

We apply the principles of DOO [14] to maximize the ob-

jective function v over the space of infinitely long sequences

U∞. The main idea is to iteratively split the search space

into smaller subsets, where at each iteration the set to split

further is selected optimistically, as the one with the largest

upper bound on the values of sequences within it.

To derive the splitting procedure, U∞ can be visualized

as an infinite dimensional hypercube, with each dimension

k the action space at step k. This hypercube is iteratively

split into smaller hyperboxes (boxes, for short), like in [3],

[7], each of which gets a unique index i. Such a box

Ui ⊆ U∞ is the cross-product of a sequence of intervals

(µi
0, . . . , µ

i
Ki−1, U, U, . . .) where µi

k ⊆ U and Ki − 1 is

the largest discretized dimension; for all further dimensions

µi
k = U . A box is further explored by splitting into M pieces

the interval of some dimension k, which corresponds to

discretizing the action at step k. In Figure 1, left an example

exploration of U∞ is shown. Define di
k to be the length

of the interval µi
k in box Ui, and ui

k a sample action taken

somewhere in this interval (e.g., at the center). For each box,

the sequence of rewards ri
k obtained by applying ui

k from

x0 is computed by simulating the system.

k = 0

k = 2

k = 1

T

5

6

7

8

9

9

9

9

0

1 2 3

4 5 6

7 8 9

Fig. 1. Left: Example partition of U∞ after 3 splits. Here M = 3, which
is its smallest value with the nice feature that the center point of the parent
box can be reused for the middle child box. Dimensions 4 and higher are
left out of the figure. Note that boxes that have already been split (U3,U4)
are not labeled, to avoid clutter. Right: Tree corresponding to this partition.

The collection of boxes will be organized into a tree T
with the root consisting of the entire space, and where each

node has M children, one for each of the M boxes resulting

from its splitting, see Figure 1, right. Each node is labeled

by index i of the box, as well as by the box itself, and we

will use these notations interchangeably. The depth h of a

box i in this tree is therefore equal to the number of splits

needed to obtain the box, and the root has depth 0. Denote

by si : {0, 1, . . . } → {0, 1, . . . } a function that gives the

number of splits along dimension k, so si(k) = 0 when

k ≥ Ki. We have:

h =

∞
∑

k=0

si(k) (3)

Note that di
k = M−si(k). Note also that a given box may

be obtained along multiple paths along the tree, but for sim-

plicity the algorithm does not make use of this information,

and keeps all the copies. In a practical implementation it

is of course advisable to merge them. Denote the leaves of

T by L; at any iteration, these leaves must be considered

for splitting, and a leaf with the largest upper bound on the

values of sequences in its box is selected.

To find the upper bounds, a crucial requirement is a

Lipschitz property of v with respect to its argument u∞.

Lemma 2: Given Assumption 1, for any u∞,u′
∞ ∈ U∞:

|v(u∞) − v(u′
∞)| ≤

Lρ

1 − γLf

∞
∑

k=0

γk |uk − u′
k| (4)

In addition to this Lipschitz property, an important ob-

servation is that only the rewards ri
0, . . . , r

i
Ki−1 of the

sample sequence ui
0, . . . , u

i
Ki−1 are known. Nevertheless,

the other rewards are at most 1, and this fact can be used

to complete the bound. Extend by convention the finitely

long sample sequences of actions and rewards of the box

into infinitely long versions by appending zeros, so that

u
i
∞ = (ui

0, . . . , u
i
Ki−1, 0, 0, . . .), and let:

v(ui
∞) =

Ki−1
∑

k=0

γkri
k

Define Lv =
max{1,Lρ}

1−γLf
and a new metric:

|v(u∞) − v(u′
∞)| ≤ Lv

∞
∑

k=0

γk |uk − u′
k| =: ℓ(u∞,u′

∞)

(5)

Then, for any u∞ ∈ Ui we have:

v(u∞) ≤ v(ui
∞) + sup

u∞∈Ui

ℓ(u∞,u′
∞)

≤ v(ui
∞) + Lv

∞
∑

k=0

γkdi
k =: b(Ui) (6)

The upper-bound property holds because, given di
k = 1 for

k ≥ Ki, the tail of the sum satisfies Lv

∑∞
k=Ki

γkdi
k ≥ γKi

1−γ ,

and this latter term is an upper bound on the discounted

return after step Ki. So, at the expense of some conservative-

ness due to the constant Lv , we have eliminated the need to

separately handle discretized and undiscretized dimensions.

The upper bound b(Ui) is also called a b-value, and the

quantity δ(Ui) := Lv

∑∞
k=0 γkdi

k is a diameter of the box

Ui, which measures the uncertainty on the values in this box.

Thus, the algorithm starts with the full box U∞, and

proceeds by splitting at each iteration an optimistic box i†

that maximizes the b-value (6). The only remaining question

is which dimension of this box to split, and the choice is

intuitively clear – split one that has maximal contribution to

the diameter, so as to minimize the resulting uncertainty:

arg max
k

Lvγkdi
k = arg max

k
γkdi

k (7)

This maximization will produce at most dimension Ki, since

its contribution is larger than all later dimensions. So, the

method either refines further an already discretized dimen-

sion, or starts splitting the first undiscretized dimension. The

overall resulting algorithm is called optimistic planning with

continuous actions, OPC, see Algorithm 1. At the end, it

returns a sample sequence with the largest value v.

Algorithm 1 Optimistic planning with continuous actions

1: input: state x0, model f , ρ, split factor M , budget n
2: initialize T with root U0 = U∞

3: while computation n not exhausted do

4: select box i† = arg maxi∈L b(Ui)

5: select k† = arg maxk γkdi†

k

6: expand Ui† along k†: create its M children on T
7: end while

8: output û := u
i∗

∞ where i∗ = arg maxi∈L v(ui
∞)

Computation is measured by the number n of evaluations

of the model, i.e. of the pair f, ρ, since for a nonlinear

system simulating f is often expensive. Note that each

box expansion may take up to MKi† evaluations. In our

experiments, we always use M = 3, sample at interval

centers, and reuse samples, which leads to a cost per box

expansion of 3 model calls when k† = Ki† , and 2(Ki† −k†)
otherwise. On reaching the budget limit algorithm may either

be allowed to expand its last box, or immediately stopped

while rolling back the changes made at the interrupted step.

OPC is similar to LP in [3], [7]. However, LP does not

use the streamlined expression (5) for the metric, instead

stopping at an intermediate formula. This prevents the im-

portant insight that each dimension contributes with factor γk

in the metric. The SOOP algorithm in [3] does empiricaly

apply this intuition but for a discount factor α in the metric,

different from γ – and without a theoretical justification.

Our metric allows us to analyze in detail the near-

optimality of OPC, in the next section. Importantly, although

OPC applies the main principle of DOO, the guarantees of

DOO cannot be directly applied, since the boxes obtained

do not satisfy certain geometric properties required by DOO

[14]. Thus, we need to provide novel analysis, adapted to the

setting of continuous actions.

IV. ANALYSIS

The main analytical objective is to characterize the sub-

optimality of the algorithm as a function of the computational

budget n invested. First, we will provide an a posteriori

guarantee, which is standard for the optimistic class of

algorithms, and shows that the sub-optimality is at most the

smallest diameter among expanded boxes (Proposition 3).

The major novelty of the analysis is the characterization

of this diameter, which is nontrivial due to the infinite

dimensionality of each box (Theorem 4). Finally, we will

define a measure of problem complexity, in the form of

an effective branching factor of the subtree explored (Def-

inition 5), and using this put the computational budget in

relation to the smallest diameter above, leading to an a priori

near-optimality result (Theorem 6). Due to space limitations,

we only provide a proof sketch for the most interesting result

– Theorem 4.

Proposition 3: OPC only expands boxes U that satisfy

b(U) ≥ v∗. Further, the sub-optimality v∗ − v(û) of the

returned sequence is at most δmin, the smallest diameter

among all expanded boxes.

Since δmin is known after the algorithm terminates, Propo-

sition 3 provides a directly computable, a posteriori bound.

We are however interested in a stronger, a priori guarantee.

To this end we characterize the decrease of the diameters

with the depth in the tree.

Theorem 4: If M > 1/γ, then ∃c > 0 so that for each

box U at depth h, δ(U) ≤ c
√

2h(τ − 1)γ

q

2h τ−1

τ2 =: δh,

where τ =
⌈

log 1/M
log γ

⌉

and ⌈·⌉ denotes the ceiling operator

(the smallest integer at least as large as the argument).

Proof: (sketch) To upper-bound the diameter of an

arbitrary box U , notice first that due to dimension selection

(7), all the boxes at a given depth h have the same shape.

Recall function s(k), which (given M > 1/γ) decreases in

steps of at most 1, see also Figure 2. Denote the lengths of

the constant ranges in s by τ0, τ1, . . . , τN where N is the

last, infinitely long range with s = 0. It can be shown by

induction that:

τ0 ≤ τ

τi ∈ {τ − 1, τ} for 1 ≤ i < N

τN = ∞

(8)

K

s
K’

τ

KK’

s

s
K

τ

...

τ

τ

τ-1

τ-1

1

Fig. 2. Various split functions used in the proof. Continuous black: s
K

for arbitrary K; gray: s̄ yielding K; dashed black: s
K′ where K′ ≤ K.

The next step is to find, for fixed h, a lower bound on

s(k) under constraints (3), (8). If the length K of the box is

fixed and (3) is ignored (thereby relaxing the problem), then

a lower bound sK on any split function for this K is obtained

by filling in s with ranges of τ ; see Figure 2. Now sK(k)
is decreasing with K for any k, so we must find a lower

bound on K, denoted K. To this end, we fill in a function

s̄ with all ranges of τ − 1, except τ0 which is equal to 1,

see again Figure 2; while imposing a relaxed version of (3),

namely h ≤
∑∞

k=0 s̄(k). After some calculation we get K ≥
4− 2τ +

√

2h(τ − 1) =: K ′. Using this, we obtain a lower-

bound split function as sK′ , which is

√

2h τ−1
τ2 − k

τ +(4/τ−2)

for k < K ′ and 0 otherwise.

Plugging this function in the diameter δ(U), we get:

Lv

∞
∑

k=0

γkM−s(k) ≤ Lv

K′−1
∑

k=0

γkM−sK′ +
γK′

1 − γ

≤ c
√

2h(τ − 1)γ

q

2h τ−1

τ2

with c a positive constant, which is the desired result.

The main intuition for Theorem 4 is that since γ < 1, the

term γ

q

2h τ−1

τ2 asymptotically dominates
√

2h(τ − 1), and

makes the diameter converge to zero; in formal asymptotic

notation1, δh = Õ(γ

q

2h τ−1

τ2). Convergence is exponential

not directly in the depth h, but in its square root modulated by

2(τ−1)/τ2. Condition M > 1/γ imposed in the proposition

is not restrictive since γ is often taken close to 1, and for

γ > 0.5, M = 2 already suffices. This allows avoiding the

rarely seen case M ≤ 1/γ.

From Proposition 3, at depth h OPC only expands boxes

in the set:

T ∗
h = {U at h | b(U) ≥ v∗}

This set will generally not contain all the nodes at h in the

full tree T . The final concept in deriving an a priori guarantee

is a characterization of the size of T ∗
h .

Definition 5: The asymptotic branching factor is the

smallest m so that ∃C > 0 for which |T ∗
h | ≤ Cmh,∀h,

where |·| denotes set cardinality.

Note that m may be noninteger but lies in the interval

[1,M] – since there is at least one node in T ∗
h , the one

containing the optimal solution; and at most Md (the entire

set of nodes). This is very similar to the asymptotic branching

factor in OPD [8] and plays a related role to other measures

of problem complexity used to characterize optimistic meth-

ods, e.g. [4], [15]. However, its meaning is different in our

continuous-action optimal control problem.

Theorem 6: For large budgets n, when m > 1 we have:

v∗ − v(û) = Õ(γ

q

2(τ−1) log n

τ2 log m), while when m = 1 v∗ −

v(û) = Õ(γn1/4a) where a =
√

2(τ−1)

τ2
√

MC
and C is the

constant from Definition 5.

Thus, the convergence rate of the algorithm is modulated

by the problem complexity as expressed by branching factor

m. The smaller m, the easier the problem and the faster the

bound reduces with increasing n. In particular, when m = 0
the bound is exponential in n1/4 – faster than in the general

case where the dependence is in log n.

V. SIMULATION RESULTS

OPC is evaluated for an example with linear dynamics,

and a strongly nonlinear system.

A. DC motor

Consider a DC motor with states: shaft angle x1 ∈
[−π, π] rad, angular velocity x2 ∈ [−15π, 15π] rad/s, and

action: voltage u ∈ [−10, 10] V, where the bounds are

enforced by saturation. The dynamics are linear:

f(x, u) = Ax + Bu, A ≈

[

1 0.0095
0 0.9100

]

, B ≈

[

0.0084
1.6618

]

The goal is to stabilize both states at zero, and is described

by the unnormalized reward function ρ̃(x, u) = −(x2
1 +

0.001x2
2), which is normalized to [0, 1] using the known

1Let g, h : (0,∞) → R. Statement f(t) = Õ(g(t)) means that ∃a >
0, b ≥ 0 so that f(t) ≤ a(log g(t))bg(t),∀t > 0. When the statement is
made for large t, the inequality must hold for ∀t ≥ t0 where t0 > 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1

0

1

2

3

α
 [
ra

d
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−30

−20

−10

0

10

α
’
[r

a
d

/s
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

−5

0

5

u
 [
V

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.8

0.9

1

r
[−

]

t [s]

Fig. 3. Controlled trajectory of the DC motor with OPC (gray) and the

optimal solution (black), from x0 = [2π/3, π]⊤.

bounds on the states. The input is also normalized to [0, 1]
to apply OPC. We consider this system because of its

simplicity: disregarding the saturation, an optimal solution

can be computed analytically as in Ch. 3 of [2], and we

compare OPC with this solution. Although here Lipschitz

constants might be found, in general they are difficult to

compute so we treat Lv as a tuning parameter and set it to

10. The budget n is 500, which is sufficient to find a good

solution.

Figure 3 shows the results. Although of course the al-

gorithm only approximately discretizes the continuous se-

quences so the controls are coarser than the optimal ones, the

trajectories of the states are very close and the rewards nearly

the same; indeed the discounted returns along the trajectory

are 2.2668 for OPC and 2.2681 for the optimal solution.

B. Rotational pendulum

Our second example is the Quanser rotational pendulum,

see Figure 4. This system consists of a heavy rod sitting on

an unactuated rotational joint at the end of an intermediate,

horizontal link actuated through a motor. The problem has

four state variables: the angle α ∈ [−π, π) rad of the

pendulum (zero pointing up), the angle θ ∈ [−π, π) rad

of the horizontal link (zero pointing forward), their angular

velocities α̇, θ̇ in [−100, 100] rad/s, and the input voltage in

[−9, 9] V. The two angles “wrap around” the ends of the

interval to obtain the true, manifold state space of the system.

The dynamics are:

α̈ =
ad sin α − b2α̇2 sinα cos α − beθ̇ cos α + bfu cos α

ac − b2 cos2 α

θ̈ =
−bcα̇2 sinα + bd sin α cos α − ceθ̇ + cfu

ac − b2 cos2 α

where a = 0.0112, b = 0.0046, c = 0.0048, d = 0.2099,

e = 0.0729, f = 0.1281 are computed from the physical

parameters. The goal is to reach the zero equilibrium, but

Fig. 4. Rotational pendulum.

the system is underactuated so the pendulum must first be

swung back and forth to accumulate energy, which means

that long trajectories must be found; the horizontal link

further complicates the dynamics. The problem is therefore

challenging for planning methods. The unnormalized reward

function is ρ̃(x, u) = −(α2 + 0.05θ2). The sampling time is

chosen 0.05 s.

In this problem we use OPC with a tighter b-value, which

exploits the knowledge that rewards are at most 1 and that

action samples are always at the centers of the intervals:

b(Ui) =

Ki−1
∑

k=0

γk min{1, ri
k +Lρ

k
∑

j=0

Lk−j
f

di
j

2
}+

γKi

1 − γ
(9)

We compare OPC with the two algorithms closest to it:

LP [7] in a variant that uses bound (9) but selects dimensions

using its own rule, different from OPC; and SOOP [3] which

does not compute upper bounds at all, but expands all the

boxes that may be optimistic in a certain sense. Recall that

SOOP uses a criterion similar to (7) to select dimensions,

but with a tuning parameter α replacing γ.

We set γ = 0.85 and a large budget of n = 2000
so that the algorithms can find a near-optimal solution.

We treat again the Lipschitz constants as tuning param-

eters and to study their impact on performance, we set

them equal Lρ = Lf =: L and vary L in the set

{0.7, 0.8, . . . , 1.2, 1.5, 2, 2.5}, for both OPC and LP. For

SOOP α is varied in {0.5, 0.7, 0.8, 0.85, 0.9, 0.95}. The

algorithms are run for 80 steps from initial state α = −π,

α̇ = θ = θ̇ = 0, and the resulting returns are shown in

Figure 5. The first observation is that Lipschitz constants

around 1 perform best in OPC. OPC outperforms LP for

nearly all values of L; since they use the same upper bound

and only the dimension selection is different, this illustrates

that the insight in Lemma 2 and (7) on the impact of the

different dimensions pays off. Finally, even though SOOP is

not theoretically well fundamented, it performs better than

both OPC and LP. This is likely because SOOP does not use

upper bounds so it does not suffer from the limitations of (9)

(over- or underestimation of L, fixed L whereas smoothness

0.5 1 1.5 2 2.5

2.9

3

3.1

3.2

L

re
tu

rn

OPC, return

LP, return

0.5 0.6 0.7 0.8 0.9 1

2.9

3

3.1

3.2

α

re
tu

rn

SOOP, return

Fig. 5. Compared performance of OPC, LP, and SOOP.

0 0.5 1 1.5 2 2.5
−30

−20

−10

0

10

α
,

α
’

α [rad]

α’[rad/s]

0 0.5 1 1.5 2 2.5
−15

−10

−5

0

5

θ
,

θ
’

θ [rad]

θ’[rad/s]

0 0.5 1 1.5 2 2.5
−10

−5

0

5

10

u

0 0.5 1 1.5 2 2.5
0

0.5

1

r

k

Fig. 6. Rotational pendulum trajectory with OPC, for L = 1.

varies over the state space, etc.) This result strongly points

towards adapting SOOP so that it can be analyzed in the

framework of Section IV.

The actual controlled behavior with OPC is illustrated in

Figure 6. The swingup is achieved by applying large actions,

while near the equilibrium small corrections are applied to

keep the pendulum upright – which illustrates the benefits

of the adaptive discretization procedure in OPC.

VI. CONCLUSIONS AND FUTURE WORK

We have presented optimistic planning for continuous ac-

tions, which works for general nonlinear systems with scalar

inputs. The convergence rate of the algorithm to the optimal

value has been analyzed as a function of the computation

invested. Empirical results showed that the algorithm works

in practice, while an alternative algorithm called SOOP

worked better in a nonlinear problem, despite its lack of

guarantees.

This last result strongly points towards a promising direc-

tion of future work: extending OPC to sidestep the explicit

usage of upper bounds like in SOOP, while keeping the

algorithm compatible with the theoretical framework so that

it can be analyzed. A practical step is extending the method

to work with multiple action variables.

REFERENCES

[1] D. Antunes, W. Heemels, and P. Tabuada, “Dynamic programming
formulation of periodic event-triggered control: Performance guaran-
tees and co-design,” in IEEE Conference on Decision and Control,

Hawai: U.S.A., 2012, pp. 7212–7217.
[2] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.

Athena Scientific, 2007, vol. 2.
[3] L. Buşoniu, A. Daniels, R. Munos, and R. Babuška, “Optimistic

planning for continuous–action deterministic systems,” in 2013 IEEE

International Symposium on Adaptive Dynamic Programming and

Reinforcement Learning (ADPRL-13), Singapore, 16–19 April 2013.
[4] L. Buşoniu and R. Munos, “Optimistic planning for Markov decision

processes,” in Proceedings 15th International Conference on Artificial

Intelligence and Statistics (AISTATS-12), ser. JMLR Workshop and
Conference Proceedings, vol. 22, La Palma, Canary Islands, Spain,
21–23 April 2012, pp. 182–189.

[5] L. Buşoniu, E. Páll, and R. Munos, “An analysis of optimistic,
best-first search for minimax sequential decision making,” in 2014

IEEE International Symposium on Adaptive Dynamic Programming

and Reinforcement Learning (ADPRL-14), Orlando, 10–12 December
2014.

[6] L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory

and Algorithms. Springer, 2011.
[7] J.-F. Hren, “Planification optimiste pour systèmes déterministes,”

Ph.D. dissertation, Lille 1 University - Science and Technology, 2012.
[8] J.-F. Hren and R. Munos, “Optimistic planning of deterministic

systems,” in Proceedings 8th European Workshop on Reinforcement

Learning (EWRL-08), Villeneuve d’Ascq, France, 30 June – 3 July
2008, pp. 151–164.

[9] K. Katsikopoulos and S. Engelbrecht, “Markov decision processes
with delays and asynchronous cost collection,” IEEE Transactions on

Automatic Control, vol. 48, no. 4, pp. 568–574, 2003.
[10] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” in

Proceedings 17th European Conference on Machine Learning (ECML-

06), Berlin, Germany, 18–22 September 2006, pp. 282–293.
[11] S. M. La Valle, Planning Algorithms. Cambridge University Press,

2006.
[12] C. Mansley, A. Weinstein, and M. L. Littman, “Sample-based planning

for continuous action Markov decision processes,” in Proceedings

21st International Conference on Automated Planning and Scheduling,
Freiburg, Germany, 11–16 June 2011, pp. 335–338.

[13] K. Máthé, L. Buşoniu, R. Munos, and B. D. Schutter, “Optimistic
planning with a limited number of action switches for near-optimal
nonlinear control,” in Proceedings 53nd Conference on Decision and

Control (CDC-14), Los Angeles, USA, 15–17 December 2014, pp.
3518–3523.

[14] R. Munos, “Optimistic optimization of a deterministic function without
the knowledge of its smoothness,” in Advances in Neural Information

Processing Systems 24, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. C. N. Pereira, and K. Q. Weinberger, Eds., 2011, pp. 783–791.

[15] ——, “The optimistic principle applied to games, optimization and
planning: Towards foundations of Monte-Carlo tree search,” Founda-

tions and Trends in Machine Learning, vol. 7, no. 1, pp. 1–130, 2014.
[16] M. L. Puterman, Markov Decision Processes—Discrete Stochastic

Dynamic Programming. Wiley, 1994.
[17] T. J. Walsh, S. Goschin, and M. L. Littman, “Integrating sample-based

planning and model-based reinforcement learning,” in Proceedings

24th AAAI Conference on Artificial Intelligence (AAAI-10), Atlanta,
US, 11–15 July 2010.

[18] A. Weinstein and M. L. Littman, “Bandit-based planning and learning
in continuous-action Markov decision processes,” in Proceedings 22nd

International Conference on Automated Planning and Scheduling

(ICAPS-12), São Paulo, Brazil, 25–19 June 2012.

