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Abstract— This paper presents a predictive, planning algo-
rithm for nonlinear switched systems where there are two
switching signals, one controlled and the other uncontrolled,
both subject to constraints on the dwell time after a switch.
The algorithm solves a minimax problem where the controlled
signal is chosen to optimize a discounted sum of rewards, while
taking into account the worst possible uncontrolled switches. It
is an extension of a classical minimax search method, so we call
it optimistic minimax search with dwell time constraints, OMSδ.
For any combination of dwell times, OMSδ returns a sequence
of switches that is provably near-optimal, and can be applied in
receding horizon for closed loop control. For the case when the
two dwell times are the same, we provide a convergence rate to
the minimax optimum as a function of the computation invested,
modulated by a measure of problem complexity. We show how
the framework can be used to model switched systems with
time delays on the control channel, and provide an illustrative
simulation for such a system with nonlinear modes.

I. INTRODUCTION

Switched systems toggle their dynamics among those in

a set of linear or nonlinear modes, according to controlled

or uncontrolled switching rules [13]. They model real-world

systems subject to known or unknown abrupt parameter

changes, e.g. in the automotive, aerospace, and energy man-

agement industries. Switched systems are therefore heavily

studied, with a main research focus placed on stability and

stabilization [21], [14], while work has also been done in

performance optimization [1], [24]. Here, we focus on per-

formance optimization for a class of switched systems where

there are two different switching signals: one controlled

and another uncontrolled. Such systems may be used to

model important practical situations in e.g. smart grids [20],

wireless networks [23], or networked control systems, as we

illustrate in this paper. However, they have only recently

started to be considered in the literature, e.g. by [2] where

they are called dual switched systems.

We aim to optimize the controlled switching signal so that

a discounted sum of rewards (negative costs) is maximized,

subject to taking into account the worst-case values of the

uncontrolled switching signal. Time is discrete, while both

the controlled and uncontrolled switches may be subject

to dwell time constraints, so that after a switch they must

be kept constant for at least an imposed number of steps.
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The modes can have arbitrary nonlinear dynamics, while

the rewards must be bounded. This is a minimax problem,

which we solve by extending the approach from [5], called

optimistic minimax search (OMS). OMS explores a tree

representation of the possible sequences of max and min

agent actions (here, mode switches); it is a variant of B* [17]

and related to other classical minimax search methods [10],

[18], [12]. It returns a near-optimal sequence with respect to

the minimax-optimal value.

To extend OMS to the dual switching problem, the dwell-

time conditions must be imposed, by ensuring that sequences

that switched too recently keep their action constant. This

is easy to implement for any combination of max and min

dwell times, obtaining a variant that we call OMSδ, but the

impact on the analysis turns out to be nontrivial. In particular,

while the algorithm produces an a posteriori near-optimality

bound as easily as OMS, obtaining an a priori convergence

rate is more challenging, because the structure of the tree

obtained after eliminating nodes that violate the dwell time

condition is very intricate. We provide a convergence rate in

the case where the dwell-time limits of the two signals are

the same, equal to δ; the complexity of the algorithm in this

case is exponential in the depth reached (horizon) divided by

δ, compared to the original OMS where it was exponential

in just the depth, and thus larger in general.

OMSδ is to our knowledge the first algorithm for optimal

control in dual switched systems with nonlinear modes; the

earlier work by [2] was for linear modes and focused on

stability. Here we focus instead on near-optimality guaran-

tees, since stability is a separate, difficult problem for the

discounted costs that we use [19]. Our work also bears a

relation to robust control in switched systems [7].

Note that due to its origins in minimax search for games,

OMSδ natively handles problems where the max and min

switches are applied in turn, so the min signal is considered

to be generated by a smart agent that already knows the max

action chosen. Nevertheless, we show how to model in this

framework problems in which the max and min switches

are generated simultaneously, with some conservativeness

since the extra knowledge is in fact not available to the min

agent in this setting. Finally, we show how to use the min

action to model a time delay on the communication channel

between the controller and the actuator, see also [6]; and

provide illustrative numerical results in such a problem with

nonlinear modes.

In the context of artificial intelligence and optimistic

planning [16], [11], [9], [22], [15], the closest algorithm is

again OMS [5], compared to which the main novelty here

is the convergence analysis under dwell-time constraints,

leading to a new complexity measure. The planning method



for max-only switched systems from our work [3] leads to a

similar complexity measure and reduction compared to the

no-dwell-time case, but there the analysis is much easier due

to the lack of the min agent.

Next, Section II introduces our formal framework, Sec-

tion III gives the algorithm, Section IV provides its analysis,

Section V gives an application to systems with a delayed

switching signal, and Section VI concludes.

II. PROBLEM DEFINITION

Consider an adversarial switched problem where a con-

trolled, maximizer switching signal affects the system to-

gether with an uncontrolled, minimizer switching signal.

The max and min actions (mode switches) are respectively

denoted u and w, and belong to sets U and W . These

sets contain Nu and Nw elements respectively, so that there

are a total of Nu · Nw modes. A generic action is denoted

z ∈ Z := U ∪W , and can be either a max or min action.1

In general, max and min mode changes are applied in turn,

so that each step h is alternately either a max or a min

decision step, which can be differentiated by checking if

zh ∈ U or ∈ W (if the two sets are not disjoint, special

markers can be added). We will show in Example 1 how

simultaneous decisions can be handled. For many switched

systems it is important to ensure a minimum amount of time

during which the mode remains constant, e.g. to guarantee

fundamental stability or performance properties, to obey

actuation constraints, etc. Therefore, each switching signal u
and w may be required to obey a minimum dwell-time limit

δu and δw, respectively. E.g. for the max agent the dwell-time

is defined as the number of max decision steps during which

the action/mode u remains constant after a change, and the

condition requires that all dwell times along the sequence are

at least as large as δu. The situation is similar for the min

actions w. Note that taking a limit equal to 1 is equivalent

to not imposing a dwell-time condition for that signal.

Denote an infinite sequence of actions by z∞ =
(z0, z1, z2, z3, . . . , z2k, z2k+1, . . . ) = (u0, w0, u1, w1, . . . ,
uk, wk, . . . ) ∈ Zδu,δw

⊂ (U ×W )∞ where Zδu,δw
is the set

of sequences that satisfy the two dwell-time conditions. Here

h counts all decision steps; while step k only increases with

pairs of max-min decisions. Note that by definition, dwell

times only increase once every two steps h (corresponding

to one step k). A finite sequence of h actions is denoted

zh = (z0, z1, . . . , zh−1), with z0 the empty sequence by

convention. The truncation of z∞ to h initial elements is

denoted z∞|h. An example of switching minimax actions is

given in Figure 1.

At each step h ∈ N, the system evolves as follows:

xh+1 = f(xh, zh) (1)

where xh ∈ X is the state, zh ∈ Z is the max or min action,

and f : X × Z → X are the mode dynamics. A reward

(negative cost) ρ(xh, zh) is assigned, where ρ : X×Z → R.

1Notations u and w are used when the max and min actions are regarded
separately; otherwise, we use generic notation z.

h
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Fig. 1: Illustration of a minimax sequence developed when

δu = δw = 2. The applied actions are shown by a

blue continuous line and a red dashed line for max and

min actions respectively. Note that initially the dwell-time

condition is assumed satisfied for both agents.

Then, the overall infinite-horizon value of sequence z∞ is:

v(z∞) :=
∞
∑

h=0

γhρ(xh, zh) (2)

where γ ∈ [0, 1] is the discount factor. The goal is to find

the minimax-optimal value, defined as:

v∗ := lim
k→∞

[

max
u0∈U(z0)

min
w0∈W (z1)

· · · · · ·

max
uk∈U(z2k)

min
wk∈W (z2k+1)

2k
∑

h=0

γhρ(xh, zh)

]

(3)

when this limit exists. Here, U(zh) and W (zh) respectively

denote the set of all max and min actions at depth h that

satisfy the dwell-time constraints given prior actions zh. E.g.,

U(zh) = U when zh already satisfies the max dwell time

condition at h, and otherwise U(zh) is equal to the last max

action along sequence zh.

Assumption 1: The rewards ρ(x, z) are in [0, 1] for all x ∈
X, z ∈ Z.

This boundedness assumption means that (2) is in [0, 1
1−γ ]

for any sequence. It also helps to define, for any finite

sequence zh, lower and upper bounds on the values of

all sequences z∞ starting with zh, which are essential in

developing our algorithm later:

l(zh) :=

h−1
∑

j=0

γjρ(xj , zj), b(zh) := l(zh) +
γh

1− γ
(4)

with the convention that an empty sum is 0. Thus, v(z∞) ∈
[l(zh), b(zh)]. Let δ(h) = γh

1−γ denote the gap between the

two bounds, an uncertainty on the values of sequences z∞

starting with zh.

Next, we show how to represent problems in which max

and min mode changes are applied simultaneously.

Example 1: Simultaneous min-max switching. Define the

dynamics yk+1 = g(yk, uk, wk) and the rewards rk+1 =
r(yk, uk, wk), with yk ∈ Y , for a problem where max and

min decisions u and w are simultaneous. The infinite-horizon

value to optimize is
∑∞

k=0 βkr(yk, uk, wk). To represent this

problem in the turn-based formalism (1)-(3), we introduce an

augmented state vector xh = [x⊤
1,h, x2,h]⊤ ∈ Y ×{U ∪ {s}}.



The first element of this vector is always the current state

of the system. The second element takes special value

s /∈ U to signify max decision steps, and at min steps

it remembers the latest max decision. Formally, at steps

h = 2k, xh = [y⊤
k , s]⊤, while at h = 2k+1, xh = [y⊤

k , uk]⊤.

Using this augmented state, the simultaneous dynamics g are

represented by the following turn-based dynamics f in (1):

f(xh, zh) =











[x⊤
1,h, zh]⊤ = [y⊤

k , uk]⊤ if x2,h = s

[g⊤(x1,h, x2,h, zh), s]⊤

= [g⊤(yk, uk, wk), s]⊤ otherwise

where k = ⌊h/2⌋ (floor). Rewards are similarly represented:

ρ(xh, zh) =

{

0, if x2,h = s

r(x1,h, x2,h, zh) = r(yk, uk, wk) otherwise

(5)

We have
∑∞

h=0 γhρ(xh, zh) = γ
∑∞

k=0 γ2kr(yk, uk, wk), so

to optimize the intended objective function with discount

factor β, it suffices to take γ =
√

β. In closing, recall that

this turn-based representation is conservative since it assumes

the min agent knows, and can react to, the max action, even

though in fact it does not due to the simultaneous actions. �

III. ALGORITHM

Optimistic minimax search with dwell-time constraints

(OMSδ) explores a tree representation of the possible action

sequences. It starts with a root node corresponding to the

empty sequence, and iteratively expands n nodes taking

into account dwell-time conditions. Figure 2 illustrates, with

squares representing max decision nodes, and disks min

decision nodes. Each node is labeled by two dwell times, for

max and min decisions, separated by slashes in the figure.

Note that by convention both dwell time conditions are taken

satisfied at h = 0, so e.g. the root node in the figure has

dwell times δu/δw, namely 2/2. A max decision node is

expanded by adding children corresponding to max actions,

and similarly for min decision nodes. Each arc is labeled

by the action taken at the parent node to reach the child.

Specifically, at max nodes, if the max dwell-time is at least

δu then Nu children nodes are created, one for every max

action; otherwise, i.e. if the max dwell-time condition is

not satisfied, only the child that keeps the action constant

is added. Similarly, Nw children nodes are added at a min

node if its min dwell-time is at least δw, and only the

constant-action child is added otherwise. For example, the

node labeled 1/3 in the figure has max dwell time 1 because

the max action taken to reach it, ‘b’, is different from the

previous max action ‘a’ taken two levels higher (at the root),

so a max switch just occurred. These two different actions

are highlighted by gray arcs. Note that this particular node is

not immediately affected by the non-satisfaction of the max

dwell time, since it is a min decision node; indeed, both its

children are created since the min dwell time is still 3, and

the constraint only has an effect at the next depth, where the

only allowed max action is ‘b’. Figure 2 also illustrates some

constrained min node expansions, from depth 5 to 6.

a b

c d c d

a b

2/42/11/45/4

5/1 1/1

1/41/1
4/44/1

1/34/3

3/2

2/2h=0

1

2

3

4

5

6

3/3

Fig. 2: Illustration of a minimax tree developed by the

algorithm. The max agent has modes a and b, while the min

agent has modes c and d, so that Nu = Nw = 2. The dwell

time limits are taken δu = δw = 2.

Each node at some depth h is reached via a unique

path through the tree, and so is uniquely associated to the

sequence of actions zh on this path. We denote by δu(zh)
and δw(zh) the current max and min dwell-times at depth h.

We will work interchangeably with sequences and nodes.

Let T denote the current tree, L(T ) the leaf nodes of this

tree, and C(z) the children of node z, all satisfying the dwell-

time constraints. The algorithm computes lower and upper

bounds L(z) and B(z) for each node. They are initialized at

the leaves using l and b and propagated upwards in the tree:

L(z) =











l(z), if z ∈ L(T )

max
z
′∈C(z) L(z′), if z max node, z /∈ L(T )

min
z
′∈C(z) L(z′), if z min node, z /∈ L(T )

B(z) =











b(z), if z ∈ L(T )

max
z
′∈C(z) B(z′), if z max node, z /∈ L(T )

min
z
′∈C(z) B(z′), if z min node, z /∈ L(T )

(6)

At each iteration, to choose the next leaf to expand, OMSδ
starts from the root and constructs a path by recursively

selecting an optimistic child for the agent at the current

node, in the same way as OMS in [5]: a child with the

largest upper bound at max nodes, and one with the smallest

lower bound at min nodes. The main difference between

OMSδ and OMS is in the expansion of this leaf, which

in OMSδ is constrained to only create the children that

obey the dwell time conditions, as explained above. After n
node expansions, the algorithm stops and returns, like OMS,

the sequence ẑ and bounds of the deepest node expanded.

Algorithm 1 summarizes OMSδ, where (·, ·) denotes the

concatenation of two sequences and h(·) yields the depth

of a sequence.

OMSδ will typically be used to find max decisions to

apply. The algorithm should then be applied in receding

horizon, calling it with the current state at max decision steps

where the dwell time condition is satisfied. If it is not, then

the max action must be kept constant anyway so it is not

useful to run OMSδ. To exemplify, assume that the minimax

switching sequence in Figure 1 is obtained by such a closed-

loop application of OMSδ. The algorithm is first called at

h = k = 0, resulting in the first max action (mode), which

is applied and the min agent generates its own mode in an

unknown way. OMSδ is next called at h = 2, corresponding

to k = 1, at which time it generates a different mode, and



Algorithm 1 OMS with dwell-time constraints (OMSδ)

Input: budget n
1: initialize: T ← {z0}, the root

2: for iteration t = 1 to n do

3: z← z0

4: while z /∈ L(T ) do

5: z←
{

arg max
z
′∈C(z) B(z′), if z max node

arg min
z
′∈C(z) L(z′), if z min node

6: end while

7: z(t)← z

8: expand z(t), by adding its children to T :

9: if z(t) max node then

10: if δu(z(t)) ≥ δu, add children (z(t), u)∀u ∈ U
11: else, add the single child that keeps u constant

12: else

13: if δw(z(t)) ≥ δw, add children (z(t), w)∀w ∈W
14: else, add the single child that keeps w constant

15: end if

16: compute bounds for all z ∈ T with (6)

17: end for

Output: ẑ := arg max
z(t),t=1,...,n h(z), l(ẑ), b(ẑ)

again the min agent responds. Now, since a max switch has

occurred, the max action must be kept constant for the next

step too, and OMSδ is only called again at h = 6, or k = 3,

and so on. Note that min switches also satisfy their own

dwell time, and OMSδ takes advantage of this information.

IV. ANALYSIS

We extend the analysis of OMS in [5] to OMSδ. The first

part of our analysis establishes basic properties of the mini-

max algorithm that still hold under the additional dwell-time

constraints. The second part gives our main novel results:

a complexity measure of the problem and a corresponding

convergence rate of OMSδ. Due to space limits we skip all

proofs except that of the main result, but where applicable

we point out relations to [5].

Lemma 2: At any iteration t, for any nodes z, z
′ ∈ C(z)

on the optimistic path, [L(z), B(z)] ⊆ [L(z′), B(z′)].
This is a direct extension of Lemma 5 in [5]. Define now

for any node zh of finite depth h the minimax value v(zh)
among infinite sequences starting with zh. Formally:

v(zh) =

h−1
∑

j=0

γjρ(xj , zj)+























max
zh∈U(zh)

min
zh+1∈W (zh+1)

· · ·
∞
∑

j=h

γjρ(xh, zh), if zh max

min
zh∈W (zh)

max
zh+1∈U(zh+1)

· · ·
∞
∑

j=h

γjρ(xh, zh), if zh min

(7)

Recall that U(zh) and W (zh) denote the sets of allowed

max or min actions following sequence zh that satisfy the

dwell-time constraints.

Next we characterize the subset of nodes that the algorithm

will expand, which is in general smaller than the full tree.

This result is a nontrivial adaptation of Lemma 3 from [5]

to the dwell-time case.

Lemma 3: At depth h in the tree, OMSδ only expands

nodes in the set:

T ∗
h :=

{

zh

∣

∣ |v∗ − v(zp)| ≤ δ(h),

∀zp on path from root to zh

} (8)

The following result, corresponding to Theorem 6 in [5],

gives an a posteriori near-optimality bound, which can be

directly evaluated once the algorithm has stopped.

Theorem 4: Let h∗ be the largest depth of any expanded

node. Then, |v∗ − v(ẑ)| ≤ δ(h∗) and v∗ ∈ [L(z0), B(z0)].
The results presented so far, in this first part of the

analysis, are extensions of those for OMS in [5]. The goal

of the second part is to provide an a priori near-optimality

bound, and this will differ significantly from [5] because

the size of the expanded subtree T ∗ =
⋃

h≥0 T ∗
h must be

characterized, and this tree has a very complicated structure

due to the elimination of sequences that violate the dwell-

time conditions. Another essential remark about the results

up to now is that they hold in general, for any dwell time

conditions. For the same reason of tree complexity, to make

the subsequent convergence rate analysis feasible we must

impose the following, admittedly conservative, condition.

Assumption 5: The max and min switching signals have

equal dwell-times, δu = δw =: δ.

We believe similar convergence rates apply when this

assumption is not satisfied, but we leave this extension for

future work. Denote also q = max(Nu, Nw). Thus, both max

and min nodes check the same dwell time limit, and create at

most q children nodes. We define next a complexity measure

that characterizes the rate of growth of T ∗ with the depth.

Definition 6: Let κ be the smallest positive number so

that ∃C > 0, |T ∗
h | ≤ Cκh/δ,∀h ≥ 0, where |·| denotes set

cardinality.

The value of κ quantifies the complexity of the search

problem: the larger κ is, the more difficult the problem. The

following two interesting special cases show that κ always

exists in the interval [1, δq].
Case 1. All sequences optimal: Consider the problem

where all the rewards are identical, equal to 1. Any sequence

is optimal in this case, and the algorithm must explore the

entire tree uniformly, so T ∗
h contains all the nodes at h. It can

be shown that the number of these nodes is upper-bounded

by δ3q(q − 1)(δq)
h
δ , so κ = δq. Since T ∗

h is the largest

possible in this case, this value is also the largest for κ. �

Case 2: One optimal sequence: Consider a problem where

|T ∗| has a single path that satisfies the dwell-time constraints

and is minimax optimal. At each max node along this path,

one child satisfying the max dwell time has reward 1 and

all other children have reward 0. The situation is reversed at

min nodes. Figure 3 illustrates a tree with one such optimal

path, highlighted by the thick lines (dwell time constraints

are ignored for clarity). It can be shown that, with or without

dwell time constraints, the number of nodes expanded is at

most a constant C at each depth, i.e. |T ∗
h | ≤ C and κ = 1.

Since there must always be at least one node in T ∗
h , this

value of κ is also the smallest possible. �
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Fig. 3: Illustration of a tree with κ = 1. Rewards are shown

along the transitions. Figure adapted from [5].

We are finally ready to give our main a priori result.

Theorem 7: Given budget n, we have:

|v∗ − v(ẑ)| ≤ δ(h∗) ≤
{

O(n−δ
log 1/γ
log κ ) if κ > 1

O(γn/C) if κ = 1
(9)

where C is the constant from the definition of κ and γ is

the discount factor.

Proof: The first inequality is due to Theorem 4, so we

prove the second one. Define h(n) to be the smallest depth so

that n ≤∑h(n)
j=0 |T ∗

h |; this means the algorithm has expanded

nodes at h(n) (perhaps not yet at h(n) + 1) so, h∗ ≥ h(n).
Since sequence δ(h) is decreasing, one has δ(h∗) ≤ δ(h(n)).

Let κ > 1, then n ≤ ∑h(n)
j=0 Cκj/δ , which yields n ≤

C κ(h(n)+1)/δ−1
κ1/δ−1

. After some derivations, h(n) ≥ δ log n
log κ − c1.

Thus, δ(h(n)) ≤ c2n
−δ

log 1/γ
log κ . Here, c1, c2 denote unknown

positive constants.

If κ = 1, then n ≤
∑h(n)

j=0 C = C(h(n) + 1), and h(n) ≥
n
C − 1 so δ(h(n)) ≤ γ

n
C

−1

1−γ . The theorem is proven.

Therefore, when κ is smaller (the problem is simpler), the

algorithm converges faster with n, since the negative expo-

nent of n is larger in magnitude. Furthermore, stronger dwell

time conditions, represented by larger δ, directly increase

this magnitude, so the algorithm is also faster when the

dwell time limits are larger, which makes sense since there

are fewer solutions to consider. When κ = 1 (the simplest

possible type of problem), convergence is exponential in n.

V. APPLICATION TO SWITCHED SYSTEMS WITH DELAYS

We provide a numerical illustration of the OMSδ algorithm

for problems with communication delays on the control chan-

nel. This is relevant in networked control systems where the

controller is connected to the actuator by a communication

network. Inspired by [8], we model this time-varying delay

as an uncontrolled switch, represented in our framework by

a min agent. Specifically, consider the system:

ỹk+1 = g̃(ỹk, uk−wk
), ∀k > 0 (10)

where ỹk ∈ R
n represents the system state at time k ∈

Z
+, uk−wk

is a controlled, but delayed switching signal,

and wk is the delay at step k, which takes integer values

in {0, 1, . . . ,m},m ≥ 0. A reward function r̃(ỹk, uk−wk
)

is used that takes values in [0, 1]; note that the reward uses

the delayed input, which means that it is generated at the

system side. The delay is taken to satisfy a min dwell-time

condition such that its value should be maintained for δw

steps after a change. In other words, if wk+1 6= wk then

wk+1 = wk+2 = . . . = wk+δw
. Such a condition arises e.g.

when the time delays have bounded rates of change, which

is often assumed. The switching signal generated u is itself

constrained to have a dwell-time of at least δu (although note

that it cannot be guaranteed that the signal obtained after the

application of the time delay will still satisfy this condition).

The goal is to optimize the controller decisions u so as to

maximize the discounted sum of rewards, while taking into

account the worst possible delays w. To this end, we will

transform the problem in the minimax form of Example 1,

by defining dynamics g(y, u, w) and rewards r(y, u, w) that

work with an augmented state vector y. This vector is, at

step k:

yk = [y0
k, y1

k, y2
k, · · · , ym

k ]⊤:= [ỹk, uk−1, uk−2, · · · , uk−m]⊤

Then, the augmented dynamics that represent (10) are:

yk+1 = g(yk, uk, wk) = [ỹk+1, uk, uk−1, · · · , uk−m+1]
⊤

= [ỹk+1, uk, y1
k, · · · , ym−1

k ]⊤

where the underlying state ỹk+1 is computed as follows:

ỹk+1 =

{

g̃(ỹk, uk) = g̃(y0
k, uk) if wk = 0

g̃(ỹk, uk−wk
) = g̃(y0

k, ywk

k ) if wk > 0

The augmented reward function that represents r̃ is:

r(yk, uk, wk) :=

{

r̃(ỹk, uk) = r̃(y0
k, uk) if wk = 0

r̃(ỹk, uk−wk
) = r̃(y0

k, ywk

k ) if wk > 0

By further transforming this problem into the form (1), (2)

as in Example 1, we can then apply OMSδ in closed loop,

receding horizon to produce a switching signal uk. Recall

that once a switch has occurred, uk is simply held constant

for δu steps before calling OMSδ again. To our knowledge,

no other existing technique can handle this type of switched

minimax control problem with dwell-time constraints.

Our framework is general enough to allow any nonlinear

modes in dynamics g̃. Next, we illustrate it in a simulation

of an inverted pendulum driven by a DC motor, with two

states: angle α and angular velocity α̇. The delay wk is

generated uniformly randomly in the set {0, 1} (so it is at

most one step long), at all steps where it satisfies a minimum

dwell-time of δw = 2; at other steps it is kept constant.

The continuous-time dynamics are given e.g. in [4], and are

discretized via numerical integration with Ts = 0.05 s to

obtain g̃. The goal is to stabilize the mass pointing upwards

(corresponding to α = 0), and the maximum voltage is 3 V,

which from some initial states is insufficient to bring the

mass up in one go; instead it must be swung back and forth

to accumulate energy before being stabilized. To perform

these swing-ups, the control therefore requires large planning

horizons, as well as fast actions, so adding time delays makes

the problem very challenging. The reward is taken quadratic,

−(5α2+0.1α̇2+u2), and normalized to [0, 1] using the state

bounds α ∈ [−π, π] rad, α̇ ∈ [−15π, 15π] rad/s; we also take

γ =
√

0.95. Noted that the implementation computes tighter



bounds than the general formulas (4), by exploiting the fact

that rewards are 0 at max steps, see (5).

As before, the modes u represent voltage levels: −3, 0, or

3 V. No dwell time is imposed on u. Figure 4 shows typical

results for budget n = 3000. The pendulum is stabilized,

although it requires two swings, whereas without delay

it would only require 1. Sometimes the controller ‘loses’

the pendulum and must re-swing it. This happens because

nonzero actions must be applied to keep the pendulum

around the unstable equilibrium, and depending on the delays

these actions may sometime fail and the pendulum falls.

Thus, even with m = 1 the problem is already very difficult;

indeed we increased m to 2 and in that case the pendulum

can only rarely be stabilized for longer periods.

0 1 2 3 4 5
−5

0

5

α
 [

ra
d

]

0 1 2 3 4 5
−20

0

20

α
’ 
[r

a
d

/s
]

0 1 2 3 4 5
−5

0

5

u
 [

N
m

]

0 1 2 3 4 5

0.7
0.8
0.9

r 
[−

]

t [s]

Fig. 4: Inverted pendulum trajectory.

VI. CONCLUSIONS

The paper introduced OMSδ, an optimistic minimax

search algorithm for a dual switched problem where max-

imizer and minimizer switching signals must obey dwell-

time conditions. We showed that the algorithm converges

towards the optimal value, and provided a convergence rate

with respect to the computational budget when the two

dwell time limits are the same. The framework was used

to model switched systems with time delays on the control

channel, and illustrated in a simulation of such a system

with nonlinear modes. An interesting future direction is

to extend the convergence rate analysis by removing the

equality condition on the dwell time constraints.

REFERENCES

[1] U. Ali and M. Egerstedt, “Optimal control of switched dynamical
systems under dwell time constraints,” in 53rd IEEE Conference on

Decision and Control, Dec 2014, pp. 4673–4678.
[2] P. Bolzern, P. Colaneri, and G. D. Nicolao, “Design of stabilizing

strategies for dual switching stochastic-deterministic linear systems,”
in Proceedings 19th IFAC World Congress, Cape Town, South Africa,
24–29 August 2014, pp. 4080–4084.
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