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Abstract—Reinforcement learning (RL) allows agents to learn
how to optimally interact with complex environments. Fueled
by recent advances in approximation-based algorithms, RL has
obtained impressive successes in robotics, artificial intelligence,
control, operations research, etc. However, the scarcity of survey
papers about approximate RL makes it difficult for newcomers
to grasp this intricate field. With the present overview, we take
a step toward alleviating this situation. We review methods
for approximate RL, starting from their dynamic programming
roots and organizing them into three major classes: approximate
value iteration, policy iteration, and policy search. Each class
is subdivided into representative categories, highlighting among
others offline and online algorithms, policy gradient methods,
and simulation-based techniques. We also compare the different
categories of methods, and outline possible ways to enhance the
reviewed algorithms.

Index Terms—reinforcement learning, function approximation,
value iteration, policy iteration, policy search.

I. INTRODUCTION

Using reinforcement learning (RL), agents (controllers) can

learn how to optimally interact with complex environments

(systems). RL can address problems from a variety of do-

mains, including artificial intelligence (AI), robotics, automatic

control, operations research, economics, medicine, etc. For

instance, in AI, RL provides a way to build learning agents that

optimize their behavior in initially unknown environments [1]–

[3]. In automatic control, RL can in principle solve nonlinear

and stochastic optimal control problems, without requiring a

model [4]–[7]. An RL agent interacts with its environment by

measuring states and applying actions according to its policy.

A reward signal indicates the immediate performance, and the

goal is to find an optimal policy that maximizes the value

function, i.e., the cumulative long-term reward as a function

of the states and possibly of the actions.

Classical RL requires exact representations of value func-

tions and policies, and is therefore limited to small, discrete

problems. However, most realistic problems have variables

with a large or infinite number of possible values (e.g.,

continuous variables); in such problems, value functions and

policies must be approximated. Fueled by recent advances in

approximation-based algorithms, RL has obtained impressive

successes in applications such as robot control [8], autonomous

helicopter flight [9], interfacing an animal brain with a robot

arm [10], simulated treatment of HIV infections [11], etc.

Unfortunately, a newcomer to the field of approximate RL

will find it difficult to grasp, due to the intricate and extensive

landscape of algorithms and results, coupled with the scarcity

of survey papers1. In this overview, we take a step toward

alleviating this situation, by painting a high-level picture of

1See however Sec. VII, Further reading, for recent overview texts with an
important approximate RL component.

the field, and going in-depth into representative approaches.

Starting from their exact dynamic programming (DP) and

RL roots, we describe three major classes of approximate

RL techniques: approximate value iteration, policy iteration,

and policy search. We introduce offline algorithms, as well as

online algorithms, which collect their own data by interaction

with the system. We pay attention to policy gradient and actor-

critic methods, as well as to simulation-based policy iteration.

In closing, the various types of approaches are compared,

several important ways to enhance approximate RL methods

are outlined, and pointers to further reading are provided.

Next, Sec. II introduces classical, exact DP and RL. Then,

Sec. III discusses the need for approximation in RL and

a taxonomy of approximate RL methods. Sections IV – VI

present, in turn, approximate value iteration, policy iteration,

and policy search. Sec. VII closes the paper with a discussion

and an outlook.

II. PRELIMINARIES. CLASSICAL DP AND RL

This section briefly introduces the RL problem, together

with classical algorithms to solve it, in the framework of

Markov decision processes.

Consider a Markov decision process with state space X and

action space U . For now, X and U are assumed countable, but

under appropriate technical conditions, the formalism can be

extended to uncountable sets [12]. The probability that the next

state xk+1 is reached after action uk is taken in state xk is

f(xk, uk, xk+1), where f : X×U×X → [0, 1] is the transition

probability function. After the transition to xk+1, a reward

rk+1 = ρ(xk, uk, xk+1) is received, where ρ : X ×U ×X →
R is the reward function. The symbol k denotes the discrete

time index.2 The expected infinite-horizon discounted return

of initial state x0 under a policy h : X → U is:

Rh(x0) = lim
K→∞

Exk+1∼f(xk,h(xk),·)

{
K∑

k=0

γkrk+1

}
(1)

where rk+1 = ρ(xk, uk, xk+1), γ ∈ (0, 1) is the discount

factor, and the notation xk+1 ∼ f(xk, h(xk), ·) means that

xk+1 is drawn from the distribution f(xk, h(xk), ·). The goal

is to find an optimal policy h∗ that maximizes the return (1)

from every x0 ∈ X . Other types of return can also be used,

such as finite-horizon or averaged over time [13], [6].

Many algorithms employ value functions to find h∗. The

Q-function (state-action value function) of a policy h is

the expected return when starting in a given state, apply-

ing a given action, and following h thereafter: Qh(x, u) =
Ex′∼f(x,u,·)

{
ρ(x, u, x′) + γRh(x′)

}
. The optimal Q-function

2We use control-theoretical notation; operations-research and AI notation
are also commonly employed in RL.



is the best that can be obtained by any policy: Q∗(x, u) =
maxh Qh(x, u). Any policy h∗ that selects at each state an

action with the largest optimal Q-value, i.e., that satisfies:

h∗(x) ∈ arg max
u

Q∗(x, u) (2)

is optimal (it maximizes the return). In general, a policy that

chooses actions by maximizing a certain Q-function is called

greedy in this Q-function. Policy Q-functions and, respec-

tively, the optimal Q-function satisfy the Bellman equations:

Qh(x, u) = Ex′∼f(x,u,·)

{
ρ(x, u, x′) + γQh(x′, h(x′))

}
(3)

Q∗(x, u) = Ex′∼f(x,u,·)

{
ρ(x, u, x′) + γ max

u′

Q∗(x′, u′)
}

(4)

State value functions can be used as an alternative to

Q-functions. In particular, the V-function of policy h is

V h = Qh(x, h(x)), and the optimal V-function is V ∗(x) =
maxu Q∗(x, u). Henceforth, we will prefer using Q-functions,

because they make greedy policies easier to find – see (2) –

than when V-functions are employed. Modulo this difficulty,

many of the algorithms easily extend to the V-function case.

DP, model-based
algorithms

RL, model-free
algorithms

value iteration

policy iteration

policy search

value iteration
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Fig. 1. A taxonomy of DP and RL algorithms.

Fig. 1 shows the algorithms taxonomy that we will employ.

DP algorithms are model-based: they find h∗ using knowledge

of the model (the functions f and ρ).3 RL algorithms are

model-free: they find h∗ from transition and reward data,

without using f and ρ. Moreover, online RL algorithms collect

their own data, by interacting with the system while they

learn. Some RL algorithms are model-learning (not shown in

Fig. 1): they estimate f and ρ, and apply DP techniques to

these estimates.

Looking at the path they take to find an optimal policy, the

algorithms can be classified along a second, orthogonal axis

into three classes: value iteration, policy iteration, and policy

search. We next introduce these classes, together with several

central algorithms useful later in this survey.

Value iteration algorithms directly search for an optimal

value function, which they use to compute an optimal policy.

An important DP algorithm from this class is Q-iteration4,

which starts from some initial Q0 and updates it at each itera-

tion ℓ by turning the Bellman equation (4) into an assignment:

Qℓ+1(x, u) = Ex′∼f(x,u,·)

{
ρ(x, u, x′) + γ max

u′

Qℓ(x
′, u′)

}

(5)

In the countable state-action spaces assumed, the expectation

can be written as a sum. Q-iteration asymptotically converges

to Q∗, which can then be used to obtain h∗ with (2).

3DP is just one model-based paradigm for optimal control; there are many
others, such as model-predictive control.

4Throughout the paper, sans-serif font is used for algorithm names.

The most widely used RL algorithm from the value iteration

class is Q-learning [14], which updates the Q-function online,

using observed state transitions and rewards, i.e., data tuples

of the form (xk, uk, xk+1, rk+1):

Qk+1(xk, uk) = Qk(xk, uk)+

αk[rk+1 + γ max
u′

Qk(xk+1, u
′)−Qk(xk, uk)] (6)

where αk ∈ (0, 1] is the learning rate. Q-learning can be seen

as a sample-based, stochastic approximation of Q-iteration. At

each step, the estimate for the optimal Q-value of (xk, uk)
is corrected by the ‘temporal difference’ between the update

target rk+1 +γ maxu′ Qk(xk+1, u
′) – given by the Q-iteration

update (5) or the Bellman equation (4) – and the current

estimate Qk(xk, uk).
To converge to Q∗, Q-learning crucially requires explo-

ration: the probability of attempting new, non-greedy actions

must always be non-zero, to avoid becoming stuck in a local

optimum. The tradeoff between exploration and greedy action

choices (‘exploitation’) is essential for the performance of any

online RL algorithm. A classical way to achieve this tradeoff

is the ε-greedy policy, [1, Sec. 2.2]:

uk = hk(xk) =

{
u ∈ arg maxū Qk(xk, ū) w.p. 1− εk

a uniform random u ∈ U w.p. εk

(7)

where εk ∈ (0, 1) is the exploration probability at step k.

Policy iteration algorithms evaluate policies by construct-

ing their value functions (policy evaluation step), and use

these value functions to find greedy, improved policies (policy

improvement step). For instance, a DP algorithm for policy

iteration starts with some initial policy h0, and at every

iteration ℓ ≥ 0, finds Qhℓ by iteratively applying the Bellman

equation (3), in a similar way to Q-iteration. Then, an improved

policy is determined:

hℓ+1(x) ∈ arg max
u

Qhℓ(x, u) (8)

and the algorithm continues with this policy at the next

iteration. This algorithm is guaranteed to converge to h∗, see

[1, Sec. 4.3].

A well-known algorithm from the online RL, policy itera-

tion class is SARSA [15]. SARSA employs tuples of the form

(xk, uk, rk+1, xk+1, uk+1) to update the Q-function:

Qk+1(xk, uk) = Qk(xk, uk)+

αk[rk+1 + γQk(xk+1, uk+1)−Qk(xk, uk)] (9)

and applies an exploration-exploitation policy such as ε-

greedy (7). In contrast to Q-learning, the update target is

rk+1 + γQk(xk+1, uk+1). Since uk+1 = hk+1(xk+1), this

target is derived from the Bellman equation (3), and under a

fixed policy, SARSA would perform online policy evaluation.

However, since the exploitative part of the policy is always

greedy in Qk, SARSA implicitly performs policy improve-

ments, and is therefore a type of online policy iteration.

Policy search algorithms aim to find an optimal policy

directly. To this end, they solve an optimization problem:



h∗ ∈ arg maxh s(h), where s(h) is a score value represen-

tative for the returns obtained by h. We will delve into details

about policy search in Sec. VI, in the approximate setting.

Relation to other taxonomies: Policy search is sometimes

called ‘approximation in policy space’, and by contrast value

and policy iteration are grouped together into ‘approximation

in value function space’ [6]. Also, it may seem striking

that we classify Q-learning as online value iteration and

SARSA as online policy iteration, since traditionally value and

policy iteration are offline, while Q-learning and SARSA are

respectively ‘off-policy’ and ‘on-policy’ (on-policy means here

that the Q-value Q(xk+1, uk+1) of the actually chosen next

action uk+1 is used in the updates, while off-policy methods

may use another action). However, as seen above, Q-learning

is an online, incremental way of performing Q-iteration, and

SARSA is an incremental policy iteration where policy im-

provements are ‘hidden’ in the greedy action selections. We

find this deeper relationship more interesting; e.g., some policy

iteration methods can use data collected off-policy!

Finally, we wish to emphasize the distinction between

model-based and model-learning methods. While the latter

are (somewhat confusingly) called ‘model-based’ in the AI

literature, we reserve the name ‘model-based’ for methods that

truly require an a priori model of the problem.

III. APPROXIMATION IN RL

Classical RL and DP algorithms require exact representa-

tions of value functions Q,V or policies h. The only general

way to guarantee exactness is to store distinct values for every

state or state-action pair. Unfortunately, this is impossible

when X , and possibly U , contain a very large or infinite

number of elements. Instead, function approximators must be

used to represent Q, V , or h. Combining approximators with

RL leads to approximate RL, the main subject of this paper.

Many types of approximators exist, e.g., linearly or non-

linearly parametrized, nonparametric, fixed or adapted while

learning, as well as more specialized representations such as

factored or relational. Many approximators can be seen as gen-

eralizing values over certain areas of the state(-action) space.

Selecting the right approximator is crucial in successfully

solving an RL problem, because the approximator affects the

behavior of the algorithm, the quality of the solution obtained,

the requirements on the data to use (e.g., its distribution, how

to explore in online RL), etc. To reasonably restrict the scope

of the paper, we make the following choices:

(i) We focus on parametric approximation, at places con-

sidering linear parametrizations in more detail. For instance, a

linearly parameterized Q-function approximator uses n basis

functions (BFs) φ1, . . . , φn : X × U → R and a parameter

vector θ ∈ R
n. Approximate Q-values are computed with:

Q̂(x, u; θ) =

n∑

i=1

φi(x, u)θi = φT(x, u)θ (10)

where φ(x, u) = [φ1(x, u), . . . , φn(x, u)]T is the vector of

BFs. An example of nonlinearly parameterized approxima-

tor is a multilayer neural network. Due to their simplicity,

these predefined approximators are useful to understand the

principles of approximate RL. We point out more advanced

approximators in Sec. VII.

(ii) We assume that maximal Q-values (and, consequently,

greedy actions) can be found efficiently, see, e.g., (6), (8).

A widely used approach to guarantee this is to employ only

a few discrete actions; in this case, maximal Q-values can

be found by enumerating over these actions. Generally, for

example when actions are continuous, finding maximal Q-

values involves difficult optimization problems that can only

be solved approximately.

approximate
value iteration
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online

approximate
policy iteration

offline

rollout-based

online
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policy search

policy gradient
& actor-critic
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Fig. 2. A taxonomy of approximate RL algorithms.

The upcoming presentation of approximate RL algorithms

is organized along the taxonomy shown in Fig. 2. Note that

approximate policy search is related to approximate policy

iteration; for instance, some policy search algorithms use

policy evaluation to estimate the score of a policy, exploiting

the fact that Rh(x) = V h(x) = Qh(x, h(x)). We distinguish

the two classes by requiring that policy iteration performs

policy improvements that are – with the possible exception of

exploration – fully greedy (8), whereas policy search improves

policies using traditional optimization techniques, such as

gradient-based updates.

Due to space limitations and the great breadth of the field,

we only introduce a selection of representative algorithms. In

making this selection, we prefer established, important meth-

ods that have each generated their own subfield of research. We

describe these methods in depth, and discuss the convergence

and solution quality guarantees of the different classes of

algorithms. We thus hope to provide the reader with a good

understanding of the structure of the field.

IV. APPROXIMATE VALUE ITERATION

In this section and the next two, we review algorithms for

approximate RL. Note that, although X and U were assumed

countable, the algorithms introduced are also applicable to

uncountable (e.g., continuous) state-action spaces.

A. Offline value iteration

In the offline, model-free case, a batch of transition samples

is available:

{(xj , uj , x
′
j , rj) | j = 1, . . . , N} (11)

where for every j, the next state x′
j and the reward rj have

been observed as a result of taking action uj in the state xj .

The transition samples may be independent, they may belong

to a set of trajectories, or to a single trajectory.

A prominent example of offline, approximate value iteration

is fitted Q-iteration [16]–[18]. To understand how this algorithm



is obtained, consider first classical Q-iteration (Sec. II), but in

the deterministic case. In this case, the dynamics simplify to

xk+1 = f(xk, uk), the reward function to rk+1 = ρ(xk, uk),
and the Q-iteration update becomes:

Qℓ+1(x, u) = ρ(x, u) + γ max
u′

Qℓ(f(x, u), u′) (12)

To obtain fitted Q-iteration, three changes are made: (i) Since

the exact Q-function Qℓ(x, u) is unavailable, an approximate

Q-function Q̂(x, u; θℓ), parameterized by θℓ, is used instead.

(ii) Target Q-values for the updates are only computed for

the pairs (xj , uj). For each j, the (unknown) f(xj , uj) and

ρ(xj , uj) are replaced by the observations x′
j and rj , leading to

the target Q-value sample: qtarg
ℓ+1,j = rj+γ maxu′ Q̂(x′

j , u
′; θℓ).

Because the system is deterministic, x′
j = f(xj , uj) and

rj = ρ(xj , uj); thus, the replacements are exact. (Note also

the similarity with the Q-learning update target in (6).) (iii)

Rather than computing an entire updated Q-function Qℓ+1,

regression is performed on the available samples, to find a

new parameter vector θℓ+1 so that Q̂(xj , uj ; θℓ+1) ≈ qℓ+1,j .

Thus, the entire fitted Q-iteration update can be written:

θℓ+1 = regr
{

(xj , uj), rj + γ max
u′

Q̂(x′
j , u

′; θℓ)
}

(13)

where the generic regression algorithm ‘regr’ can be instanti-

ated, e.g., to least-squares regression.

In the stochastic case, the target Q-value Qtarg
ℓ+1 (xj , uj) is

Ex′∼f(xj ,uj ,·)

{
ρ(xj , uj , x

′) + γ maxu′ Q̂(x′, u′; θℓ)
}

, i.e., an

expectation of a random variable, of which qtarg
ℓ+1,j is only a

sample. Nevertheless, most regression algorithms, including

least-squares, seek to approximate the expected value of their

output variable conditioned by the input. This means that the

regression actually looks for θℓ+1 such that Q̂(x, u; θℓ+1) ≈
Qtarg

ℓ+1 (x, u), and therefore the update (13) remains valid in the

stochastic case.

B. Online value iteration

Online RL algorithms must collect their own data, by

interacting with the system while they learn. Similarly to

the classical case, approximate Q-learning is the most widely

used online algorithm from the approximate value iteration

class. Classical Q-learning (6) can be easily combined with

parametric approximation by using the gradient-based update

(see [1, Ch. 8]):

θk+1 = θk + αk

[
rk+1 + γ max

u′

Q̂(xk+1, u
′; θk)

− Q̂(xk, uk; θk)
]∂Q̂(xk, uk; θk)

∂θk

(14)

The square brackets contain an approximation of the temporal

difference. Approximate Q-learning has been used with a va-

riety of approximators, including linear parametrizations [19],

[20], fuzzy rule-bases [21], neural networks [22], etc.

A ‘pseudo-online’ category of algorithms can be obtained

by interspersing offline updates with online episodes in which

the currently available solution (e.g., an ε-greedy policy in the

current Q-function) is used to collect new, more informative

samples [11], [23].

C. Convergence issues

Convergence and near-optimality guarantees for offline

value iteration often rely on contraction properties [24], [16].

For instance, the Q-iteration update (5) is a contraction. If

additionally the approximator Q̂(x, u; θ) and the regression

algorithm in (13) are nonexpansions, the entire fitted Q-

iteration update is a contraction, and therefore asymptotically

converges. More recently, so-called ‘finite-sample’ theoretical

results have been developed, which do not rely on contract-

ing updates, but which provide probabilistic near-optimality

bounds on the solution obtained after a finite number of

iterations, by using a finite number of samples [25], [18], [26].

Convergence of online approximate Q-learning was proven

for linear parameterizations, under the restrictive requirement

of using a fixed policy [19], [20], [27]. Some of these results

also require non-expansive approximation [19], [20].

Another theoretical question is consistency: whether the

algorithm converges to an optimal solution, asymptotically as

the approximation power increases. Some approximate value

iteration algorithms are provably consistent [24], [20].

V. APPROXIMATE POLICY ITERATION

A. Offline policy iteration

In Sec. III, it was assumed that greedy actions can be

computed efficiently. This means the policy improvement step

(8) of approximate policy iteration can be performed exactly

and efficiently, on demand for every state where an improved

action is necessary. Hence, we mainly focus on the policy

evaluation problem.

One class of offline policy evaluation can be obtained

similarly to offline value iteration, e.g., by performing iterative

updates based on the Bellman equation for Qh (3). Such a

fitted policy evaluation algorithm was proposed in [28].

However, if a linear Q-function parametrization (10) is used,

Q̂(x, u; θ) = φT(x, u)θ, a more specialized class of policy

evaluation algorithms can be obtained. Consider the following

mapping derived from the Bellman equation (3):

[Th(Q)](x, u) = Ex′∼f(x,u,·) {ρ(x, u, x′) + γQ(x′, h(x′))}
(15)

Classical policy evaluation aims to solve the Bellman equation

Qh = Th(Qh), which is equivalent to (3). Projected policy

evaluation algorithms instead look for a solution of the pro-

jected Bellman equation [6, Ch. 6]:5

Q̂h = Pw(Th(Q̂h)) (16)

where the mapping Pw performs a weighted least-squares

projection onto the space of representable Q-functions, i.e.,

on
{
φT(x, u)θ | θ ∈ R

n
}

. The weight function w : X ×U →
[0, 1] controls the distribution of the approximation error, and

is also used as a probability distribution, so it must satisfy∑
x,u w(x, u) = 1. To guarantee that Pw(Th) is a contraction

5Another important class of policy evaluation approaches aims to minimize
the Bellman error (residual), which is the difference between the two sides

of the Bellman equation:
R

X×U
( bQh(x, u)− [T h( bQh)](x, u))2d(x, u), see,

e.g., [29], [30].



and (16) has a unique solution, the weight of each state-

action pair should be the steady-state probability of this pair

occurring along an infinitely-long trajectory generated with h
[6, Sec. 6.3]. In practice, however, (16) also has meaningful

solutions for other weight functions [31].

By exploiting the linearity of the approximator in the

parameters in combination with the linearity of the mapping

Th in the Q-values, (16) can eventually be written as a linear

equation in the parameter vector: Γθh = z, where Γ ∈ R
n×n

and z ∈ R
n can be estimated from transition samples.

Consider a batch of N samples (11), so that the sampling

probability of each pair (x, u) is w(x, u). The estimates of Γ
and z are initialized to zeros and updated with:

Γj = Γj−1 + φ(xj , uj)
[
φ(xj , uj)− γφ(x′

j , h(x′
j))

]T

zj = zj−1 + φ(xj , uj)rj

(17)

Least-squares temporal difference for Q-functions (LSTD-Q)

[31], [32] is a policy evaluation algorithm that processes all

the samples using (17) and then solves:

(ΓN/N)θ̂h = zN/N

to find an approximate parameter vector θ̂h. When N → ∞,

ΓN/N → Γ and zN/N → z, so that θ̂h → θh. By combining

LSTD-Q policy evaluation with exact policy improvements

(8), an offline algorithm for approximate policy iteration is

obtained, called least-squares policy iteration [31], [33]. An

alternative to LSTD-Q is the so-called least-squares policy

evaluation for Q-functions (LSPE-Q) [34], [35].

B. Rollout-based policy evaluation

Rollout-based algorithms for policy evaluation do not rep-

resent the value function explicitly, but evaluate it on demand,

using Monte Carlo simulations. For example, to estimate the

Q-value Q̂h(x, u) of a given state-action pair (x, u), a number

NMC of trajectories are simulated, where each trajectory has

length K and starts from the pair (x, u). The estimated Q-

value is then the average of the sample returns obtained along

these trajectories:

Q̂h(x, u) =
1

NMC

NMC∑

i0=1

[
ρ(x, u, xi0,1)+

K∑

k=1

γkρ(xi0,k, h(xi0,k), xi0,k+1)

]

For each trajectory i0, the first state-action pair is fixed to

(x, u) and leads to xi0,1 ∼ f(x, u, ·). Thereafter, actions are

chosen using the policy h, thus xi0,k+1 ∼ f(xi0,k, h(xi0,k), ·).
This procedure is called a rollout [36], [37].

Using rollouts can be computationally expensive, especially

in the stochastic case, and the computational cost is propor-

tional to the number of points at which the value function

must be evaluated. Therefore, rollouts are most useful when

this number is small, and Bellman-equation based methods

may be preferable when the value function must be evaluated

at many (or all) points.

C. Online policy iteration

So-called optimistic policy iteration algorithms can be ob-

tained from offline algorithms, by collecting samples online

and performing policy improvements once every few samples,

without waiting to complete an accurate evaluation of the

current policy. Optimistic policy improvements have been

combined with, e.g., LSPE-Q [38] and LSTD-Q [39]. Approx-

imate SARSA [40], an algorithm obtained from SARSA by

using gradient-based updates, can also be seen as a kind of

optimistic policy iteration. It updates the parameters with:

θk+1 = θk + αk

[
rk+1 + γQ̂(xk+1, uk+1; θk)

− Q̂(xk, uk; θk)
] ∂

∂θk

Q̂(xk, uk; θk) (18)

similarly to approximate Q-learning (14). Actions should be

chosen with an exploratory policy derived from a policy

greedy in Q̂(x, u; θk).
Offline policy iteration can be used in a ‘pseudo-online’

way (as explained in Sec. IV-B), by making offline updates in-

between online episodes of samples collection [41]. Extensions

of gradient-based policy evaluation are given in [42], [43].

D. Convergence issues

If the policy evaluation and policy improvement errors are

bounded at each iteration, offline policy iteration eventually

produces policies with a bounded suboptimality, [31], [4,

Sec. 6.2]. (In the algorithms above, only exact policy improve-

ments were considered, leading to a zero policy improvement

error.) However, in general the convergence to a fixed policy

is not guaranteed; instead, the policy may, e.g., oscillate.

Finite-sample results are also available [29], [30], [44]. Many

theoretical works focus on policy evaluation only [45]–[47].

Under appropriate conditions, approximate SARSA con-

verges to a fixed point [27]. The behavior of general optimistic

policy iteration has not been properly understood yet, and

can be very complicated. For instance, a phenomenon called

chattering can occur, whereby the value function converges

while the policy sequence oscillates [4, Sec. 6.4].

VI. APPROXIMATE POLICY SEARCH

Algorithms for approximate policy search represent the pol-

icy explicitly, usually by a parametric approximator, and seek

an optimal parameter vector using optimization techniques.

A. Policy gradient and actor-critic algorithms

In policy gradient methods, the policy is represented us-

ing a differentiable parametrization, and gradient updates are

performed to find parameters that lead to (locally) maximal

returns [8]. The policy is usually stochastic, to include explo-

ration: u ∼ h(x, u;ϑ), where ϑ ∈ R
N is the policy parameter.

Policy gradient methods are usually formalized under the

average return criterion, different from the discounted return

(1) considered in the other sections. The expected average

return from x0 under the policy parameterized by ϑ is:

Rϑ(x0) = lim
K→∞

1

K
E uk∼h(xk,·;ϑ),

xk+1∼f(xk,uk,·)

{
K∑

k=0

ρ(xk, uk, xk+1)

}



Under appropriate conditions, see [6, Ch. 4], the average return

is the same for every initial state (denote it by Rϑ), and

together with a so-called differential V-function, satisfies a

variant of Bellman equation.

A parameter ϑ∗ that (locally) maximizes Rϑ must be found.

To this end, gradient ascent updates are performed:

ϑ← ϑ + α
∂Rϑ

∂ϑ
(19)

where α is the step size. The core problem is estimating ∂R
ϑ

∂ϑ
.

The gradient can be rewritten in a form that allows it to

be estimated using simulations similar to rollouts [48]. An

alternative is to explicitly approximate the V-function, leading

to actor-critic algorithms (the original actor-critic was given in

[49]). The V-function can be found, e.g., by using average-

return variants of LSTD and LSPE [6, Sec. 6.6].

Another class of algorithms can be obtained by expressing

the gradient in terms of a Q-function. It has been shown [50],

[51] that such a gradient estimate remains valid even if the Q-

function is linearly approximated, given that a set of so-called

compatible BFs, derived from the policy parametrization, are

used. Actor-critic variants that exploit such a parameterization

have been given, e.g., in [50], [51].

The so-called ‘natural’ policy gradient [52] leads to faster

convergence than the ‘vanilla’ policy gradient in (19), besides

other advantages [8]. Natural policy gradients were used to

develop natural actor-critic algorithms in, e.g., [53], [54].

Policy gradient and actor-critic algorithms provably con-

verge to a local optimum under mild conditions.

B. Gradient-free policy search

Gradient-based policy search is based on the assumptions

that the policy is differentiable and that the locally optimal

parameters found by the gradient method are near the global

optimum. When these assumptions are not satisfied, global,

gradient-free optimization algorithms must be used to search

for the policy parameters. For instance, the problem may

require a rich policy parametrization that is not differentiable,

or that leads to a return landscape with many local optima.

Many gradient-free optimization techniques can be used, in-

cluding evolutionary computation, tabu search, pattern search,

the cross-entropy method, etc. For instance, policy search was

combined with evolutionary computation in [55], [56, Ch. 3],

and with cross-entropy optimization in [57], [58].

VII. DISCUSSION AND OUTLOOK

Comparison of approaches: A general, qualitative compari-

son of the classes of algorithms introduced is provided next.

In the offline case, policy iteration often converges in a small

number of iterations [1, Sec. 4.3], possibly smaller than value

iteration. However, this does not mean that policy iteration is

computationally less demanding, since policy evaluation is a

difficult problem in itself, and must be solved at every policy

iteration. In certain conditions, approximate value iteration

provably converges to a unique solution [59], whereas this

is more difficult to guarantee for approximate policy iteration,

which generally only converges to a sequence of policies that

all provide a guaranteed performance [4].

Offline algorithms like fitted Q-iteration and least-squares

policy iteration typically exploit data more efficiently than

gradient-based, online algorithms such as approximate Q-

learning and approximate SARSA; this comes at the cost

of increased computational complexity. Interspersing offline

updates with online sample collection leads to ‘pseudo-online’,

yet still data-efficient, algorithms (see the ‘Outlook’ below for

other ways to improve data efficiency).

Within the approximate policy search class, policy gradient

and actor-critic algorithms have useful convergence guarantees

and moderate computational demands. They can be applied

when an appropriate, differentiable policy parametrization can

be found, which makes them very suitable to certain classes

of problems such as robot control [8]. However, their conver-

gence point is only locally optimal, which is a disadvantage

with respect to value and policy iteration, which do provide

global performance guarantees.

Even when a good policy parametrization cannot be ob-

tained, approximate policy search can still be useful in its

gradient-free, global optimization forms, which can however

incur larger computational costs. An important benefit of

policy search is that, in contrast to value and policy iteration,

it can handle continuous action spaces without difficulty.

Outlook: We outline some important issues in approximate

RL that, due to space limitations, could not be addressed in

detail in the survey.

Designing a good parametric approximator for the value

function is difficult; nonparametric and adaptive approxi-

mators can alleviate this problem (potentially at the cost

of endangering convergence). Such approximators have been

extensively studied, e.g., for value iteration [24], [16], [26]

(nonparametric), [20], [60]–[62] (adaptive), as well as for

policy evaluation and iteration [63], [38], [30], [64] (nonpara-

metric), [65]–[68] (adaptive).

For value and policy iteration, it was assumed that Q-

function maximizations can be performed easily. This is not

true in general, especially when continuous actions are needed.

Methods that deal with continuous actions were given in, e.g.,

[69], [18], [23], [70].

The data efficiency of online methods can be increased by:

using eligibility traces, [1, Ch. 7]; reusing stored transition

samples, in the experience replay approaches [22]; and build-

ing a model, which can then be used to generate new samples,

in the so-called Dyna or model-learning methods [71], [9].

Other important issues include RL in relational domains

[72], efficient exploration [73], [74], exploiting problem de-

compositions to scale RL methods [75], solving tasks in which

not all the state variables can be perceived (called ‘partially

observable’), approximate RL for multiple agents, etc.

Further reading: We have largely focused on the RL

literature from the AI field, and did not cover the rich, control-

oriented field called ‘approximate DP’, which despite its name

does provide RL algorithms. Good overviews of this field are



given in the edited book [5] and the special issue [76].

Extensive accounts of RL and DP can be found in

the books: [1]–[3] (artificial-intelligence oriented), [4], [6]

(optimal-control oriented), [77] (operations-research oriented),

[78] (perturbation-theory oriented), [56] (with a focus on

simulation-based methods), as well as our recent book [7],

which focuses explicitly on approximate RL and DP.

The recent overview texts [79], [35] center on policy

iteration and least-squares policy evaluation, while touching

many other topics; [80] outlines RL from a machine learning

perspective. For surveys of DP, see [81] (control-theoretic

perspective) and [82] (economics perspective).

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.
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[25] R. Munos and Cs. Szepesvári, “Finite time bounds for fitted value
iteration,” Journal of Machine Learning Research, vol. 9, pp. 815–857,
2008.

[26] A. M. Farahmand, M. Ghavamzadeh, Cs. Szepesvári, and S. Man-
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