
An analysis of optimistic, best-first search

for minimax sequential decision making

Lucian Buşoniu

Department of Automation

Technical University of Cluj-Napoca, Romania

Email: lucian@busoniu.net

Rémi Munos

Team SequeL

INRIA Lille, France

Email: remi.munos@inria.fr

Előd Páll

Department of Automation

Technical University of Cluj-Napoca, Romania

Email: pall.elod@gmail.com

Abstract—We consider problems in which a maximizer and a
minimizer agent take actions in turn, such as games or optimal
control with uncertainty modeled as an opponent. We extend the
ideas of optimistic optimization to this setting, obtaining a search
algorithm that has been previously considered as the best-first
search variant of the B* method. We provide a novel analysis
of the algorithm relying on a certain structure for the values of
action sequences, under which earlier actions are more important
than later ones. An asymptotic branching factor is defined as a
measure of problem complexity, and it is used to characterize the
relationship between computation invested and near-optimality.
In particular, when action importance decreases exponentially,
convergence rates are obtained. Throughout, examples illustrate
analytical concepts such as the branching factor. In an empirical
study, we compare the optimistic best-first algorithm with two
classical game tree search methods, and apply it to a challenging
HIV infection control problem.

I. INTRODUCTION

The recent paradigm of optimistic optimization and plan-
ning combines ideas from global optimization, bandit the-
ory for exploration in reinforcement learning, classical graph
search algorithms, and optimal control in Markov decision
processes [16]. The driving idea is optimism in the face
of uncertainty, which in this context means that given par-
tial information about possible solutions to an optimization
problem, the most promising region of the solution space
is refined further. In applications to different problems, the
optimistic paradigm has led to some good algorithms, e.g.
for optimization [15], for optimal control of discrete-actions
deterministic systems [7] or stochastic Markov decision pro-
cesses [3], [5], or for continuous actions [4], [14]. A core
feature of optimistic methods is generality, e.g. in control they
allow arbitrary nonlinear systems and nonquadratic reward
functions. Another major advantage is a quantitative analysis
that relates computation invested with near-optimality, where
the relationship depends on a complexity measure for the
problem. Related algorithms include e.g. upper confidence
trees [9] and forward search sparse sampling [21].

Here, we consider the extension of optimistic ideas to
sequential, adversarial decision-making problems, see e.g.
[12, Ch. 10]. Two adversarial agents take discrete actions in
turn, one of them aiming to maximize the infinite-horizon
cumulative value of the actions, and the other to minimize
it. This framework can model important classes of problems,
including e.g. turn-based games such as go or chess, as well
as optimal control under uncertainty, where the uncertainty

Acknowledgement: This work was supported by a grant of the Romanian
National Authority for Scientific Research, CNCS-UEFISCDI, project number
PNII-RU-TE-2012-3-0040.

is conservatively treated as the action of the opponent agent.
It turns out that applying optimism in the adversarial setting
naturally leads to the best-first search variant [17] of B*, a
classical minimax algorithm proposed by [2] in 1979. Since
the name “best-first search” has been used for many other
methods (including A* and even two minimax techniques:
fixed-depth [19] and adaptive-depth best-first search [11]),
to avoid confusion we call the algorithm optimistic minimax
search (OMS), always keeping in mind its relation to B*.

OMS explores a tree representation of the possible se-
quences of max and min agent actions, as do other minimax
search algorithms such as alpha-beta pruning [8] or those in
[19], [11]. At each leaf node, OMS requires lower and upper
bounds on the values of action sequences passing through that
node, and it propagates these bounds upwards in the tree by
maximization or minimization according to the type of node.
The next leaf to expand is selected optimistically, by starting
from the root and recursively moving to a child that maximizes
the upper bound at max nodes, or minimizes the lower bound
at min nodes. OMS can stop after any number of iterations,
after which it returns the deepest expanded node. Thus it is an
adaptive-depth, anytime algorithm.

By exploiting the optimistic framework, we are able to
develop theoretical performance guarantees for OMS – which
to our best knowledge were missing from the literature on B*
search. Specifically, we provide conditions under which OMS
is guaranteed to approach the minimax-optimal solution as the
budget of node expansions increases. These conditions impose
structure on the value function so that earlier decisions are
more important than later ones, and require this structure to
be reflected in the bounds. A posteriori, OMS is then near-
optimal to the extent of the gap between the upper and lower
bounds at the deepest expanded node. To obtain an a priori
bound, we characterize the size of the subset of nodes that
OMS expands by its asymptotic branching factor, and use
this factor to provide a tight relationship between computation
invested and near-optimality. In particular, when the gaps
decrease exponentially with the depth, the convergence rate
is directly characterized. Throughout the paper, we illustrate
the theoretical framework in several classes of problems,
including function optimization, games, and optimal control
under uncertainty. In these examples, we study the value of the
branching factor, illustrating that it is a meaningful measure of
problem complexity. An empirical study illustrates the analyt-
ical properties of OMS, and also includes the control problem
of optimal treatment of HIV infection under uncertainty on
drug effectiveness.

The importance of the effective branching factor in the
analysis of minimax algorithms was understood as early as [8],

[18], where it was applied to alpha-beta pruning, see also [10].
However, OMS is adaptive-depth and behaves quite differently
from fixed-depth methods like alpha-beta. It is closer to the
adaptive-depth best-first method of [11], which does not have
an analysis and in fact may converge to suboptimal solutions,
as we will show in an example. Here we provide a general
analysis of OMS near-optimality and branching factor, placing
them in direct connection with (smoothness) properties of the
value function – something that is largely missing in works
analyzing classical minimax methods. From this perspective
our branching factor is closer to other complexity measures
in optimistic methods, such as the branching factor in [7],
the near-optimality dimension in [15], and the near-optimality
exponent in [5]. Different from these however, it works in
minimax problems and filters nodes using a nontrivial, nonlo-
cal property, which must hold for the entire path to the node.
Finally, it must be noted that the B* search algorithm, of which
OMS is a special case, aims only to find the optimal action
at the root, whereas OMS as applied here further refines the
value at the root even after the first action is clear, which is
useful in optimization.

Next, Section II introduces our formal framework, with
examples, Section III gives the algorithm, Section IV pro-
vides its analysis, again with examples, and Section V gives
illustrative experiments where OMS is compared with alpha-
beta pruning [8] and adaptive-depth best-first search [11].
Section VI concludes.

II. PROBLEM DEFINITION

Consider an adversarial, sequential decision-making prob-
lem where a maximizer (max) and a minimizer (min) agent
take actions in turn. The max and min actions are respectively
denoted u and w, and belong to action spaces U and W . We
assume that U and W contain finitely many elements, NU

and NM respectively. A generic action is denoted z ∈ Z :=
U ∪ W , and can be either a max or min action. Denote an
infinite sequence of actions by z∞ = (z0, z1, z2, z3, . . .) =
(u0, w0, u1, w1, . . .) ∈ (U × W)∞, and a finite sequence
of h actions by zh = (z0, z1, . . . , zh−1), with z0 the empty
sequence by convention. The truncation of z∞ to h initial
elements is denoted z∞|h. Finally, define a sequence of reward

functions ρh : (U ×W)⌊h⌋×U⌈h⌉ → R, h ≥ 1 were notation
⌊h⌋ means the result of the integer division of h by 2 and ⌈h⌉
the remainder. Here, the convention is that a set to power 0 is
omitted. The meaning of ρh(zh) is that of immediate reward
following a sequence of h decisions. Then, the overall infinite-
horizon value of sequence z∞ is:

v(z∞) :=
∞
∑

h=1

ρh(z∞|h) (1)

The goal is to find the minimax-optimal value, defined as:

v∗ := lim
k→∞

[

max
u0

min
w0

· · ·max
uk−1

min
wk−1

2k
∑

h=1

ρh(zh)

]

(2)

when this limit exists.1 This problem is similar e.g. to the one
in [12, Ch. 10].

1Decisions u, w, and index k are used when the max and min actions are
regarded separately; otherwise, we use generic decision z and index h.

Define Z(zh) =
{

z∞
∣

∣

z∞|h = zh

}

, the set of sequences
starting with zh. The following requirement sits at the core of
our approach.

Assumption 1: There exist functions l and b and a decreas-
ing sequence {δ(h)}h≥0 of positive real numbers so that for
any action sequence zh:

l(zh) ≤ v(z∞) ≤ b(zh),∀z∞ ∈ Z(zh) (3)

b(zh)− l(zh) ≤ δ(h) (4)

Thus, (3) says that l and b are lower and upper bounds
on values of sequences starting with zh. Our algorithm will
require access to such bounds. Equation (4) intuitively restricts
to problems where later decisions matter less than earlier ones.
We will also call δ(h) the gap (between the two bounds).

Example 1: Adversarial optimization. Our first example
is academic, and will later provide important insight into
the behavior of the algorithm. Consider a function f(x, y),
f : [0, 1] × [0, 1] → R. Both agents take binary decisions,
U = W = {0, 1}, with the following meaning. The max
agent takes the domain [0, 1]× [0, 1] and splits it in half along
dimension x, selecting the first half if u = 0 and the second if
u = 1. The min agent then takes the resulting set and similarly
splits it in half along dimension y. The max agent takes over
and splits along x, and so on, see Figure 1. An infinite sequence
z∞ corresponds to a point and its value is v(z∞) = f(x, y),
assuming f can be decomposed in the form (1).

0,0

y

u0=1

w0=0

u1=0

...

x1

1

Fig. 1. Adversarial optimization. The max agent takes action 1 choosing
the continuous-outline box, the min agent 0 choosing the dashed box, and the
max agent then applies 0 to choose the dotted box. Any infinite sequence of
decisions is uniquely associated to a point.

Take, for example, function f(x, y) = x + y, which
satisfies this property. For this function, upper and lower
bounds can be easily found as follows. Each finite sequence
zh corresponds to a box (X,Y,∆x,∆y) where X,Y are the
lower-left coordinates and ∆x, ∆y the lengths of the sides.
Then, l(zh) = X + Y , b(zh) = X + Y + ∆x + ∆y .

Further, ∆x = 2−⌊h+1⌋,∆y = 2−⌊h⌋, so that b(zh)− l(zh) ≤
2 · 2−h/2+1 ≤ 4 · (1/

√
2)h =: δ(h). The minimax-optimal

value is v∗ = maxx miny f(x, y) = 1 and the corresponding
minimax solution is the lower-right corner of the domain. �

Example 2: Two-player games with discount. Consider a
turn-based game such as go, where the state of the board
is represented by vector x. At turn k ≥ 0, the player
takes decision uk = z2k and the opponent responds with
wk = z2k+1. These decisions affect the board according to

a transition function, xh+1 = f(xh, zh), and the player attains
rewards ρ̃(xh, zh, xh+1), e.g., in go related to the territory and
the number of pieces taken. The goal is to achieve discounted,
minimax-optimal play:

lim
k→∞

[

max
u0

min
w0

· · ·max
uk−1

min
wk−1

2k
∑

h=0

γhρ̃(xh, zh, xh+1)

]

This is modeled in our framework by taking ρh(zh) :=
γh−1ρ̃(xh−1, zh−1, xh), while noting that the dependence of
the rewards on the sequence of previous actions is collapsed
into the state signal.

To ensure Assumption 1, we impose the following:

Assumption 2: Rewards are bounded to the unit interval,
ρ̃ : X × Z ×X → [0, 1].

This may require rescaling the original, nonunit rewards. Since
all rewards after applying zh are in [0, 1], we have l(zh) =
∑h−1

j=0 γj ρ̃(xj , zj , xj+1) and b(zh) = l(zh) + γh

1−γ , with the

convention that an empty sum is 0. Therefore, δ(h) = γh

1−γ ,

and Assumption 1 is satisfied.

There may be terminal, game-over states, from which any
transition ends up in the same state with reward 0. �

Example 3: Discounted optimal control with disturbance.
Finally, take an optimal control problem for a system affected
by disturbances. The dynamics at discrete-time step k are:
xk+1 = f(xk, uk, wk), where u is now the applied action and
w is the disturbance. A reward rk+1 = ρ̃(xk, uk, wk, xk+1) is
obtained, and the goal is to achieve the best possible discounted
return, conservatively taking into account the worst possible
disturbances, as usually done in robust control:

lim
k→∞

max
u0

min
w0

· · ·max
uk−1

min
wk−1

k−1
∑

j=0

γj ρ̃(xj , uj , wj , xj+1)

To place this in our framework, take:

ρh(zh) :=

{

0, if h = 2k + 1

γkρ̃(xk, uk, wk, xk+1) if h = 2k + 2

We again impose reward boundedness to the unit interval:

Assumption 3: The reward function satisfies ρ̃ : X × U ×
W ×X → [0, 1].

Then, l(zh) =
∑⌊h⌋−1

k=0 γkρ̃(xk, uk, wk, xk+1) and b(zh) =

l(zh) + γ⌊h⌋

1−γ , so that δ(h) = γ⌊h⌋

1−γ ≤
γ

1−γ

√
γh

, and Assump-

tion 1 is satisfied. �

It must be emphasized that in contrast to Example 1, Ex-
amples 2 and 3 comprise entire classes of practical problems.

More generally, lower and upper bounds can be derived if
v is Lipschitz under a metric ℓ on the space of sequences:

|v(z∞)− v(z′∞)| ≤ ℓ(z∞, z′∞)

and if for any set Z(zh), we have access to the value
of a sample z∞ ∈ Z(zh). Define diam(Z(zh)) :=
sup

z
′
∞∈Z(zh) ℓ(z∞, z′∞), then ∀z′∞ ∈ Z(zh):

v(z′∞) ≥ v(z∞)− diam(Z(zh)) =: l(zh)

v(z′∞) ≤ v(z∞) + diam(Z(zh)) =: b(zh)

Then, δ(h) = 2diam(Z(zh)) and the condition on δ(h) from
Assumption 1 turns into a requirement on the diameters and
thus on the smoothness of v.

In fact, in e.g. Example 1 the bounds follow from the
Lipschitz property of f(x, y) = x + y in the L1 metric. In
Example 2, a Lipschitz property of v holds for the metric

ℓ(z∞, z′∞) = γh(z∞,z′∞)

1−γ , where h(z∞, z′∞) is the first index

where the two sequences are different (a similar property holds
for Example 3). However, the bounds in the examples were
computed in a smarter way that did not require access to the
exact value of a sample; indeed such a value will often be
difficult to obtain since it is an infinite sum.

In general, we allow any procedure for computing the
bounds (3) as long as they together with v satisfy the smooth-
ness property (4).

III. ALGORITHM

Optimistic minimax search (OMS) explores a tree repre-
sentation of the possible action sequences, as illustrated in
Figure 2. OMS starts with a root node corresponding to the
empty sequence, and iteratively expands n nodes. Expanding
a node adds new children nodes corresponding to all the NU

max actions (for max nodes) or NW min actions (for min
nodes). Each node at some depth h is reached via a unique
path through the tree, and is thus uniquely associated to the
sequence of actions zh = (z0, z1, . . . , zh−1) on this path. In
what follows, we will work interchangeably with sequences
and nodes, keeping this equivalence in mind.

(1)

h 0=

h = 3

h = 1

(1,0) (1,1)(0,0) (0,1)

(1,0,0) (1,0,1)

h = 2
[.5,1.5][0,1]

[0,1]

[.75,1.5]

[.75,1.5]

[1,2]

[.5,1.25]

[.75,1.5]

[.75,1.5]

(0)

()

Fig. 2. Illustration of a minimax tree developed by the algorithm when
applied to Example 1. Squares are max nodes, and circles min nodes. Nodes
are labeled by action sequences, shown inside the node, as well as by the
interval [L, B], shown outside. Four nodes have been expanded, and the thick
path leads to the node that the algorithm would expand at iteration five.

Let T denote the current tree, L(T) the leaf nodes of this
tree, and C(z) the children of node z. The algorithm computes
lower and upper bounds L(z) and B(z) for each node. They
are initialized at the leaves using l and b from Assumption 1,
and propagated upwards in the tree:

L(z) =

l(z), if z ∈ L(T)

max
z
′∈C(z) L(z′), if z max node, z /∈ L(T)

min
z
′∈C(z) L(z′), if z min node, z /∈ L(T)

B(z) =

b(z), if z ∈ L(T)

max
z
′∈C(z) B(z′), if z max node, z /∈ L(T)

min
z
′∈C(z) B(z′), if z min node, z /∈ L(T)

(5)

To choose the next leaf to expand, the algorithm starts
from the root and constructs a path by recursively selecting
an optimistic child for the agent at the current node. That

is, at max nodes a child with the largest upper bound is
selected (optimistic for the max agent), while at min nodes
the algorithm moves to a child with the smallest lower bound,
which is optimistic for the min agent (it is pessimistic for the
max agent).

OMS stops after n node expansions, and returns the
deepest node expanded: its sequence ẑ and bounds. Algo-
rithm 1 summarizes the entire procedure, where (·, ·) means
the concatenation of the argument sequences and h(·) yields
the depth (length) of the argument sequence. Ties in the
maximizations and minimizations can be broken arbitrarily.
Measuring computation by the number of node expansions is
motivated by the fact that these operations are often the most
expensive, such as e.g. in the control problem of Example 3,
where expansion requires the simulation of the dynamics. OMS
is an anytime algorithm: n does not have to be specified in
advance, and the algorithm can be stopped after any number
of expansions.

Algorithm 1 Optimistic minimax search

Input: budget n
1: initialize: T ← {z0}, the root
2: for iteration t = 1 to n do
3: z← z0

4: while z /∈ L(T) do

5: z←
{

arg max
z
′∈C(z) B(z′), if z max node

arg min
z
′∈C(z) L(z′), if z min node

6: end while
7: z(t)← z

8: expand z(t), by adding to T its children:
(z(t), u) ∀u ∈ U , if z(t) max node
or (z(t), w) ∀w ∈W , if z(t) min node

9: compute bounds for all z ∈ T with (5)
10: end for
11: ẑ← arg max

z(t),t=1,...,n h(z)
Output: ẑ, l(ẑ), b(ẑ)

Sometimes, OMS will be used with the intention of finding
a decision to apply, rather than an approximation of the optimal
value. In this case, the first action of the sequence ẑ is applied
by the max agent, which then waits for the min agent’s
response and then reapplies OMS from the resulting situation
(e.g., state). This can be seen as receding-horizon control [13].
Note that the min agent could itself apply OMS to find the
actions, simply by starting with a min root node and then
applying the algorithm as usual. Finally, the bounds L and
B can be efficiently maintained by only updating at iteration
t the path from the last expanded node z(t) to the root.

IV. ANALYSIS

Let us first establish a basic property of OMS.

Lemma 4: At any iteration t, for any nodes z, z
′ ∈ C(z)

on the optimistic path, we have [L(z), B(z)] ⊆ [L(z′), B(z′)].

Proof: If z is a max node, B(z) = B(z′) and L(z) ≥
L(z′) since L(z) is the maximum among the children’s L-
values. The situation is symmetrical at min nodes.

Define for any node zh of finite depth h the minimax value
v(zh) among infinite sequences starting with zh. Formally:

v(zh) =
h

∑

j=1

ρj(zj)+

lim
k→∞

[max
u0

min
w0

· · ·max
uk−1

min
wk−1

2k
∑

j=1

ρh+j((zh, z↑j))]

if zh max node

lim
k→∞

[min
w0

· · ·max
uk−1

min
wk−1

2k−1
∑

j=1

ρh+j((zh, z↓j))]

if zh min node

(6)

again assuming that the limits exist. Here, z↑j =
(u0, w0, uk−1, wk−1), z↓j = (w0, uk−1, wk−1).

The second and final Lemma is essential to the analysis
below, since it characterizes a restricted subset of nodes outside
which the algorithm will never expand.

Lemma 5: At depth h in the tree, OMS only expands nodes
in the set:

T ∗
h :=

{

zh

∣

∣ |v∗ − v(zp)| ≤ δ(h),

∀zp on path from root to zh

} (7)

Proof: We will show by induction from leaves to the root
that:

v(z) ∈ [L(z), B(z)], ∀z ∈ T
At any leaf, the base case holds by definition: v(z) ∈
[l(z), b(zh)] = [L(zh), B(zh)]. For the general case, consider
an inner node z, and assume the property is true at all its
children z

′. We have by definition (6):

v(zp) =

{

max
z
′∈C(zp) v(z′) if zp max node

min
z
′∈C(zp) v(z′) if zp min node

We first show that L(z) ≤ v(z). If z is a max node, take child
z
′ so that L(z) = L(z′), then L(z) = L(z′) ≤ v(z′) ≤ v(z). If

z is a min node, take child z
′ so that v(z′) = v(z), therefore:

L(z) ≤ L(z′) ≤ v(z′) = v(z). Property B(z) ≥ v(z) is shown
in a symmetrical way: If z is a max node, take child z

′ so that
v(z′) = v(z), therefore B(z) ≥ B(z′) ≥ v(z′) = v(z). If
z is a min node, take child z

′ so that B(z) = B(z′), then
B(z) = B(z′) ≥ v(z′) ≥ v(z).

Consider now any leaf zh selected for expansion on the
current tree, and any node zp at depth p on the path from the
root to this leaf. Applying Lemma 4 iteratively from zp down
to the leaf zh, we have [L(zp), B(zp)] ⊆ [L(zh), B(zh)] =
[l(zh), b(zh)]. Then:

v(zp) ∈ [l(zh), b(zh)] (8)

At the root, v(z0) = v∗. For any zp the values v∗ and v(zp) are
in the interval [l(zh), b(zh)], which has length at most δ(h),
so the property in (7) holds. This concludes the proof.

At this point, we can already provide an a posteriori
bound for the algorithm that can be directly evaluated after
the algorithm has run.

Theorem 6: Let h∗ be the largest depth of any expanded
node. Then, |v∗ − v(ẑ)| ≤ δ(h∗) and v∗ ∈ [L(z0), B(z0)].

Proof: Follows immediately from (8) and Algorithm 1.

Note again that B(z0) − L(z0) ≤ b(ẑ) − l(ẑ) = δ(h∗).
To obtain a more refined bound, which works a priori, we
characterize the size of the expanded subset T ∗ =

⋃

h≥0 T ∗
h .

Let |·| denote the cardinality of the argument set.

Definition 7: Let κ be the smallest positive number so that
∃C > 0, |T ∗

h | ≤ Cκh,∀h ≥ 0.

The quantity κ is an asymptotic branching factor of T ∗,
and it quantifies the complexity of the search problem. The
smaller κ, the simpler the problem. The smallest possible
value for κ is 1, when T ∗

h contains a constant number of
nodes at every h (e.g., just one minimax-optimal path), and
the largest value is

√
NUNW , when T ∗

h contains all the nodes

at h, namely N
⌊h+1⌋
U N

⌊h⌋
W nodes. Below we exemplify κ in

several problems. Note that κ is similar with other complexity
measures used in optimistic optimization and planning [16],
such as the branching factor in [7], the near-optimality dimen-
sion in [15], and the near-optimality exponent in [5]. These
previous measures and algorithms are for problems involving
a single decision-maker, and κ is more general since it applies
to minimax problems. A crucial feature of κ and T ∗ is the
nonlocal character of the inequality in (7), which must hold for
any parent and not just the expanded node. This is important
since it significantly reduces the size of the tree in some
problems, as we will illustrate in Example 4.

Theorem 8: (i) Let h(n) be the smallest depth h so that
∑h

j=0 Cκj ≥ n. Then, |v∗ − v(ẑ)| ≤ δ(h(n)). (ii) Further,

when ∃c > 0, β ∈ (0, 1) so that δ(h) ≤ cβh, i.e. when the gap
sequence decreases exponentially fast, then:

δ(h(n)) ≤
{

c(κ−1
Ck · n)−

log 1/β
log κ = O(n− log 1/β

log κ) if κ > 1

cβn/C−1 = O(βn/C) if κ = 1
(9)

Proof: For arbitrary h, OMS expands at most all the nodes
up to h in T ∗ before expanding a node at h + 1. Hence,

since T ∗ contains at most
∑h(n)−1

j=0 Cκj nodes until h(n)−1,
and the algorithm expands more nodes than this (since by

assumption n >
∑h(n)−1

j=0 Cκj). So, at least one node at h(n)
is expanded. From this h∗ ≥ h(n) and since sequence δ(h) is
decreasing, part (i) follows from Theorem 6.

To show part (ii), let κ > 1. Then n ≤ ∑h(n)
j=0 Cκj =

C κh(n)+1−1
κ−1 , and solving this for h(n) we get h(n) ≥

log n(κ−1)/Cκ
log κ , which when replaced in δ(h(n)) gives the de-

sired inequality. Similarly, if κ = 1, we have n ≤∑h(n)
j=0 C =

C(h(n) + 1), from where h(n) = n
C − 1 which is substituted

in δ(h(n)).

Part (ii) of Theorem 8 is of practical importance, since
in many problems the gap δ(h) will decrease exponentially
with h, as e.g. in Examples 1–3, where β is respectively
1/
√

2, γ, and
√

γ. The big-O expressions in (9) highlight
the qualitative, asymptotic behavior of the algorithm, whereas
the detailed expressions preceding them make the constants
explicit. Suboptimality decreases polynomially fast with the
computation n invested when κ > 1 (since the expanded
tree grows exponentially), and exponentially fast with n when
κ = 1 (since only a constant number of paths must be

explored). Since κ is generally unknown, the near-optimality of
OMS cannot be determined in advance. However, Theorem 8
provides confidence that the algorithm automatically adapts to
the complexity of the problem.

Example 4: Adversarial optimization: branching factor.
We will find κ for Example 1 with f(x, y) = x + y. For
any finite sequence zh the minimax-optimal value v(zh) is
the value of f in the lower-right corner of the corresponding
box. Consider some arbitrary odd depth h; boxes zh at this

x=1,
y=0

2

3

4

D

1

Fig. 3. Counting the nodes in T ∗

h
. Some minimax-optimal points are

highlighted with black disks.

depth are small tall rectangles like those shown in continuous
outline at the bottom-right of Figure 3. Then the gap of these
boxes is δ(h) = 3∆ = 3 · 2−(h+1)/2. Recall (7): if we can
find a larger box containing zh which is more than δ(h) away
from the optimal value, then zh will not be expanded. Now the
suboptimality of any box is the distance between its lower-right
corner and the main diagonal of the unit square. Since boxes 1
and 2 are 4∆-away from optimum, no subbox zh inside these
larger boxes will be expanded. Boxes 3 and 4 are 8∆-away
so no subbox will be expanded there either, and continuing
iteratively like this we can fill the entire domain except the
lower-right corner, which contains 8 boxes. At depth h + 1,
boxes are square and have diameter 2∆ (shown in gray dotted
line) so we can eliminate in a similar way all of them except
the 16 in the corner. It follows that |T ∗

h | ≤ 16,∀h, and κ = 1:
the problem is easy. The regret bound, including constants, is
4(1√

2
)n/16−1.

It must be emphasized that checking the suboptimality of
parent boxes is crucial: if we only checked boxes for their
own suboptimality |v∗ − v(zh)|, no box with the lower-right
corner on the main diagonal could be eliminated, leading to a
number of boxes growing with the depth and a large branching
factor: the difficulty of the problem would be misrepresented.

Note that such applications of tree search methods to
minimax optimization have been studied before, see e.g. [20],
although that paper uses a different theoretical framework. �

Example 5: Two-player games: branching factor. We will
illustrate the meaning of κ and the regret bounds for Example 2
with discount factor γ, in two representative special cases.

Consider first that all rewards are equal, say they are all
1. Then, v∗ = 1/(1 − γ) and any sequence has this value.
So no nodes can be eliminated with the condition in (7), T ∗

contains the whole tree, and OMS will in fact explore nodes
uniformly, in the order of their depth. As shown above, in this

case κ =
√

NUNW . Therefore, this uniform type of problem is
an interesting worst case, where κ is the largest possible. From

Theorem 9 with β = γ, near-optimality is O(n
− log 1/γ

log
√

NU NW).

Next, an example with κ = 1 is constructed, see Figure 4.
At each max node along the path on the left of the tree, one
child has reward 1 and all other children have reward 0, and
the same is true of their complete subtrees. The situation is
reversed at min nodes. Thus, the leftmost path is minimax-
optimal, with value v∗ = γ0 + γ2 + . . . = 1

1−γ2 .

...

...

...
1

1 1

1 1

0

0 00

00

1 0

.0 0
x

x

+

h

h g+

Fig. 4. A game tree with κ = 1. Rewards are shown along the transitions
and inside subtrees where they remain constant. The thick path is minimax-
optimal.

To study T ∗, consider an arbitrary node zh+g at depth h+g
that is not on the optimal path, but does belong to the subtree
of some max node zh which is on this path at an even depth
h. Two examples of such nodes are shown by ‘x’ symbols in
the figure. Then, the value of zh+g is v(zh+g) = γ0 + γ2 +

. . . + γh−2 = 1−γh

1−γ2 . Since δ(h + g) = γg+h

1−γ , see Example 2,

node zh+g can be excluded when:

|v∗ − v(zh+g)| >
γg+h

1− γ
, i.e.

γh

1− γ2
>

γg+h

1− γ

which boils down to g > log (1−γ2)/(1−γ)
log 1/γ , a positive constant

which we call G. Similarly, take now a node at depth h+g on a
non-optimal subtree of a min node at an odd h, as exemplified
by a ‘+’ in the figure. The value of such a node is γ0 + γ2 +
. . . + γh−1 + γh + γh+1 + γh+2 + . . . = γ0 + γ2 + . . . +

γh−1 + γh+1 + γh+3 + . . . + γh + γh+2 + . . . = 1+γh

1−γ2 where

the intermediate step separated the odd and even powers of γ
at depth h and larger. Solving the exclusion condition results
in the same lower bound G on g as for max nodes.

Defining N = max(NU , NW), at some arbitrary depth h′

the set T ∗
h′ contains at most the following amount of children

coming from optimal nodes at various depths h < h′, which
cannot be excluded via the conditions above:

1 + N + N2 + . . . + NG =: C

so that T ∗
h′ ≤ C and the branching factor κ = 1. So this is an

easy problem for OMS, and suboptimality is O(γn/C). �

V. EXPERIMENTAL STUDY

First, in the optimization problem of Examples 1 and 4, we
experimentally illustrate the practical effects of the theoretical
properties studied above. Then, we show that OMS also works

well in a challenging problem different from the games where
it (and other minimax search algorithms) are usually applied:
controlling infection with the human immunodeficiency virus
(HIV), under uncertainty on the effectiveness of the drugs. This
problem is in the class of Example 3.

A. Adversarial optimization

In addition to illustrating the properties of OMS, in this
example we also compare it with two classical minimax search
algorithms: alpha-beta pruning [8] and adaptive-depth best-
first minimax search (BFMS) [11]. Alpha-beta pruning is well-
known so we do not review it here. BFMS is less widely used
but it is an anytime algorithm similar to OMS. It develops
the tree of Figure 2, but instead of maintaining an interval at
each node it uses just one value, which is initialized using a
heuristic function at the leaves and then propagated upwards
as in (5). At each iteration, BFMS expands the leaf of the
principal variation, a path along which the root inherited its
value. After expanding a given amount of nodes it returns the
principal variation. For both alpha-beta pruning and BFMS, we
use l and b as a heuristic at respectively max and min leaves.

The computational requirements of alpha-beta pruning are
not directly controlled, instead it searches until a given depth
in the tree. It also expands a varying amount of children per
node. Thus, to keep the comparison fair, we vary the depths h
in the range 3, 4, . . . , 15 and measure for each h the required
computation, in the form of the number of nodes nt created
on the tree. Figure 5, top shows the resulting values of nt.
Then, we allow OMS and BFMS to create as many nodes.
This is different from the number n of expanded nodes that
we used in the theory above, but only up to a constant factor
so there are no changes in the asymptotic behavior. We only
show OMS and BFMS results corresponding h ≤ 9, since for
the other budgets upper and lower bounds can become equal
in double precision, and the results are not meaningful.

4 6 8 10 12 14
0

1000

2000

3000

4000

h

n
t

4 6 8 10 12 14

10
−10

10
0

h

re
g

re
t

Fig. 5. Results of alpha-beta pruning for adversarial optimization.

Figure 6, top shows the depths reached by OMS and
BFMS. Clearly, expanding nodes in the order of their im-
portance is better than up to a fixed depth like in alpha-
beta: the depths reached by OMS and BFMS, as well as
the corresponding confidence in the solution, are much better.
Finally, Figures 5 and 6, bottom show the near-optimality of

the returned solutions. This is measured here by the regret,
defined for alpha-beta and BFMS as the distance between
v∗ = 1 and the value returned by the algorithm, and for OMS
as half the size of the interval [L(z0), B(z0)] at the root (equal
to the average distance of L and B to v∗).

As expected from the analysis and the branching factor
κ = 1 obtained in Example 4, OMS depths grow linearly with
the computation budget and its regret shrinks exponentially
with this depth. BFMS behaves surprisingly good: it often finds
the optimal solution, and its depth also grows linearly with
a larger slope than for OMS (in contrast, in alpha-beta nt

grows fast with h due to the exhaustive nature of the search,
see again Figure 5, top). Unfortunately, unlike for OMS, a
good behavior of BFMS cannot be guaranteed, and indeed
BFMS is inconsistent over the class of problems satisfying
Assumption 1, which means that for some problems it may
entirely fail to converge to the optimal solution. The following
counterexample illustrates this property.

0 50 100 150 200 250 300
0

20

40

60

80

100

n
t

tr
e
e
 d

e
p
th

OMS, tree depth

BFMS, tree depth

0 50 100 150 200 250 300

10
−10

10
0

n
t

re
g

re
t

 OMS, regret

Fig. 6. Results of OMS and BFMS. BFMS regrets because they are 0 for
all nt > 12in this problem, so they are not shown.

Example 6: BFMS is inconsistent. Consider again adver-
sarial optimization, Example 1, but with a different function
f(x, y), equal to 0.8 when x ≤ 0.5, and x + y otherwise.
Take l(z) = b(z) = 0.8 for any box z in the left half of
the domain, and use the bounds from Example 1 elsewhere.
These l and b functions satisfy Assumption 1. BFMS develops
the right (optimal) branch of the tree only until iteration 2, see
Figure 7, and at any subsequent iteration it only expands nodes
in the left branch of the root. Thus for any budget n ≥ 2 it
returns value 0.8, a constant away from the optimum v∗ = 1.

�

(1)

(1,0) (1,1)

0.8

2 0.8

2 0.5

10.5

(0)

()

0.8

Fig. 7. BFMS tree in the counterexample. Struck-through values are those
changed after iteration 1.

B. HIV infection control

We consider the HIV infection dynamics described by [1],
with six state variables: T1 and T2 [cells/ml], the counts of
healthy type 1 and type 2 target cells, T t

1 and T t
2 [cells/ml]

the counts of infected type 1 and type 2 target cells, V the
number of free virus copies [copies/ml], and E [cells/ml] the
number of immune response cells. The system is controlled in
discrete time with a sampling time of 5 days. In the strategy of
structured treatment interruptions, two drugs are independently
either fully administered (they are ‘on’), or not at all (they
are ‘off’); thus there are two binary control variables u1

and u2, leading to NU = 4. In other authors’ work a one-
to-one mapping was assumed between drug application and
effectiveness. Here we use a variant we introduced in [6],
where the effectiveness values ǫ1 and ǫ2 of the two drugs
are, more realistically, uncertain by depending randomly on
the inputs:

ǫ1 =

0 w.p. 1, if u1 = 0

0.77 w.p. 0.5, if u1 = 1

0.63 w.p. 0.5, if u1 = 1

ǫ2 =

0 w.p. 1, if u2 = 0

0.33 w.p. 0.5, if u2 = 1

0.27 w.p. 0.5, if u2 = 1

where “w.p.” stands for “with probability”. So depending on
action u, there can be up to NW = 4 possible outcomes. OMS
is easy to modify for this varying-NW case.

The system is initialized to the unhealthy equilibrium xu =
[163573, 5, 11945, 46, 63919, 24]

⊤
, which represents a patient

with dangerous infection levels and low immune response. STI
is used to control the drugs such that the immune response
of the patient is maximized and the number of virus copies
is minimized, while penalizing the drugs administered due to
their side-effects. We use the reward function of [1] and nor-
malize it to [0, 1]. An ideal solution would drive the state to the

healthy equilibrium xh = [967839, 621, 76, 6, 415, 353108]
⊤

,
which represents a patient whose immune system controls the
infection without the need of drugs.

OMS is applied to plan a solution in receding horizon,
as explained at the end of Section III, treating the uncertain-
ties as an opponent that aims to minimize the return like
in Example 3. The budget is nt = 9000, specified again
as the number of created nodes, since the amount NW of
children of min nodes varies and using n would not result
in a consistent computational load. The resulting trajectory is
shown in Figure 8.2 As hoped, the algorithm eventually stops
administering drugs (u1 = u2 = 0), and the state reaches the
healthy equilibrium xh (although this particular solution has
a ‘lucky’ disturbance realization for which the equilibrium is
reached quickly).

2This experiment was run with a variant of OMS where the node to expand
was directly selected to satisfy the interval inclusion property in Lemma 4,
rather than by selecting bound extrema as in Section III.

0 500 1000
10

4

10
5

10
6

t [days]
T

1
 [
c
e
lls

/m
l]

0 500 1000
10

−5

10
0

10
5

t [days]

T
2
 [
c
e
lls

/m
l]

0 500 1000
10

0

10
5

10
10

t [days]

T
1t
 [
c
e
lls

/m
l]

0 500 1000
10

0

10
2

10
4

t [days]

T
2t
 [
c
e
lls

/m
l]

0 500 1000
10

2

10
4

10
6

t [days]

V
 [
c
o
p
ie

s
/m

l]

0 500 1000
10

0

10
5

10
10

t [days]

E
 [
c
e
lls

/m
l]

0 500 1000
0

0.5

1

t [days]

u
1
 [
−

]

0 500 1000
0

0.5

1

t [days]
u

2
 [
−

]

0 500 1000
10

−4

10
−3

10
−2

t [days]

r
[−

]

Fig. 8. HIV system controlled online with OMS. The trajectories of the six system states are shown on the top and middle rows, while the two applied actions
and the (normalized) rewards obtained are shown on the bottom row.

VI. CONCLUSIONS

We have showed analytically that, under appropriate condi-
tions, optimistic minimax search (also known as the best-first
search variant of B*) converges in a well-characterized way
towards the optimal minimax value, and illustrated the analysis
in an empirical evaluation.

By requiring the upper and lower bounds, we have implic-
itly assumed knowledge about the smoothness of the value
function. This can easily be obtained e.g. for discounted
returns, but in general it may be too strong. Thus, the next
big step is to check if it is possible to derive an algorithm that
does not require knowing these bounds, only that they exist
and get closer together as depth increases. This is similar to
the idea behind simultaneous optimistic optimization in [15].
It would also be interesting to analyze other variants of B*,
which performed better e.g. in the experiments of [17].

REFERENCES

[1] B. Adams, H. Banks, H.-D. Kwon, and H. Tran, “Dynamic multidrug
therapies for HIV: Optimal and STI control approaches,” Mathematical

Biosciences and Engineering, vol. 1, no. 2, pp. 223–241, 2004.

[2] H. Berliner, “The B* search algorithm: A best first proof procedure,”
Artificial Intelligence, vol. 12, 1979.

[3] S. Bubeck and R. Munos, “Open loop optimistic planning,” in Proceed-

ings 23rd Annual Conference on Learning Theory (COLT-10), Haifa,
Israel, 27–29 June 2010, pp. 477–489.

[4] L. Buşoniu, A. Daniels, R. Munos, and R. Babuška, “Optimistic
planning for continuous–action deterministic systems,” in 2013 IEEE

International Symposium on Adaptive Dynamic Programming and Re-

inforcement Learning (ADPRL-13), Singapore, 16–19 April 2013.

[5] L. Buşoniu and R. Munos, “Optimistic planning for Markov decision
processes,” in Proceedings 15th International Conference on Artificial

Intelligence and Statistics (AISTATS-12), ser. JMLR Workshop and
Conference Proceedings, vol. 22, La Palma, Canary Islands, Spain, 21–
23 April 2012, pp. 182–189.

[6] L. Buşoniu, R. Munos, B. De Schutter, and R. Babuška, “Optimistic
planning for sparsely stochastic systems,” in Proceedings 2011 IEEE

International Symposium on Adaptive Dynamic Programming and Re-

inforcement Learning (ADPRL-11), Paris, France, 11–15 April 2011,
pp. 48–55.

[7] J.-F. Hren and R. Munos, “Optimistic planning of deterministic sys-
tems,” in Proceedings 8th European Workshop on Reinforcement Learn-

ing (EWRL-08), Villeneuve d’Ascq, France, 30 June – 3 July 2008, pp.
151–164.

[8] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,”
Artificial Intelligence, vol. 6, no. 4, pp. 293–326, 1975.

[9] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” in
Proceedings 17th European Conference on Machine Learning (ECML-

06), Berlin, Germany, 18–22 September 2006, pp. 282–293.

[10] R. E. Korf, “Artificial intelligence search algorithms,” in Algorithms

and Theory of Computation Handbook, M. Atallah, Ed. CRC Press,
1998, pp. 1–20.

[11] R. E. Korf and D. M. Chickering, “Best-first minimax search,” Artificial

Intelligence, vol. 84, no. 1–2, pp. 299–337, 1996.

[12] S. M. La Valle, Planning Algorithms. Cambridge University Press,
2006.

[13] J. M. Maciejowski, Predictive Control with Constraints. Prentice Hall,
2002.

[14] C. Mansley, A. Weinstein, and M. L. Littman, “Sample-based planning
for continuous action Markov decision processes,” in Proceedings

21st International Conference on Automated Planning and Scheduling,
Freiburg, Germany, 11–16 June 2011, pp. 335–338.

[15] R. Munos, “Optimistic optimization of a deterministic function without
the knowledge of its smoothness,” in Advances in Neural Information

Processing Systems 24, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. C. N. Pereira, and K. Q. Weinberger, Eds., 2011, pp. 783–791.

[16] ——, “The optimistic principle applied to games, optimization and plan-
ning: Towards foundations of Monte-Carlo tree search,” Foundations

and Trends in Machine Learning, vol. 7, no. 1, pp. 1–130, 2014.

[17] A. J. Palay, “The B* tree search algorithm – new results,” Artificial

Intelligence, vol. 19, pp. 145–163, 1982.

[18] J. Pearl, “The solution for the branching factor of the alpha-beta pruning
algorithm and its optimality,” Communications of the ACM, vol. 25,
no. 8, pp. 559–564, 1982.

[19] A. Plaat, J. Schaeffer, W. Pijls, and A. de Bruin, “Best-first fixed-depth
minimax algorithms,” Artificial Intelligence, vol. 87, no. 1–2, pp. 255–
293, 1996.

[20] S. Ratschan, “Search heuristics for box decomposition methods,” Jour-

nal of Global Optimization, vol. 24, pp. 35–49, 2002.

[21] T. J. Walsh, S. Goschin, and M. L. Littman, “Integrating sample-based
planning and model-based reinforcement learning,” in Proceedings 24th

AAAI Conference on Artificial Intelligence (AAAI-10), Atlanta, US, 11–
15 July 2010.

