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Abstract—Global positioning systems can provide sufficient
positioning accuracy for large scale robotic tasks in open envi-
ronments. However, in underwater environments, these systems
cannot be directly used, and measuring the position of underwa-
ter robots becomes more difficult. In this paper we first evaluate
the performance of existing pose estimation techniques for an
underwater robot equipped with commonly used sensors for
underwater control and pose estimation, in a simulated environ-
ment. In our case these sensors are inertial measurement units,
Doppler velocity log sensors, and ultra-short baseline sensors.
Secondly, for situations in which underwater estimation suffers
from drift, we investigate the benefit of intermittently correcting
the position using a high-precision surface-based sensor, such as
regular GPS or an assisting unmanned aerial vehicle that tracks
the underwater robot from above using a camera.

Index Terms—Pose estimation, Extended Kalman Filter, un-
derwater robotics, Robot Operating System

I. INTRODUCTION

Underwater vehicles, whether they are remotely operated or
autonomous, are widely used to execute industrial, research
or military operations. Remotely operating such a vehicle
can be difficult due to poor feedback. The operator has only
restricted views of the scene and can also be faced with
the low visibility often found in underwater environments.
Also, operating multiple vehicles simultaneously in order to
cooperate in executing a more complex task requires multi-
ple operators. Consequently, Unmanned Underwater Vehicles
(UUVs) are becoming more and more popular. However, in
order to properly function and achieve any level of autonomy,
they rely heavily on pose estimation, which is the process of
estimating the position and orientation of the UUV in order
to use the information as feedback for control algorithms.
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In the SeaClear project1 the task we aim to fulfill is search
and collection of marine litter from the bottom of water bodies
using a heterogeneous multi-robot system. This requires good
pose estimation for navigation purposes and litter mapping.
Moreover, geo-referenced localization is required in order to
enable litter items positions to be saved for later collection.

Current approaches for the underwater pose estimation
problem use vision systems, acoustic systems, inertial naviga-
tion systems, or any combination of these. Conventional GPS
systems cannot be directly used in underwater applications due
to the water blocking the radio frequencies used.

Vision systems can use either markers as is the case in [1],
[2] or existing natural features [2]. These techniques require
certain conditions, such as visibility and, in the case of using
natural features, their presence in the observed scene, which
may not always be the case. Also, the use of markers requires
preparation of the area, which is not possible in exploration
operations.

Reference [3] uses a forward-looking sonar to compute a
correction for the pose based on corresponding features from
two consecutive sonar frames. Thus, they combine machine
vision techniques with acoustic measurements.

Acoustic systems rely on the propagation of sound waves
through water. These tend to function better than visual
systems in high turbidity scenarios, where there is a higher
level of light scattering and absorption. Two commonly used
technologies are Doppler Velocity Logging (DVL), which
measures speed relative to the bottom surface through Doppler
shift, and Ultra Short Base-Line (USBL), which performs
acoustic triangulation of a transceiver placed on the UUV.
These are both used in [4] to obtain a position estimate.

The acoustic devices also manifest weaknesses in certain
situations. For example, DVL devices are used for velocity
estimation under the assumption of a fixed, rigid bottom
surface, which might not always be the case due to vegetation,
loose sand, etc. USBL has the great advantage that it can
directly provide geo-referenced coordinates which is important
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to our application, but in practice the device used in our
experiments has proven to not be very robust or precise, often
generating outliers or sparse measurements.

In this paper, we aim to analyze the efficiency of established
pose estimation techniques based on extended Kalman filters
in UUVs for a litter-search and collection scenario. Our
objective is to find a minimal set of sensors that can produce
a satisfying pose-estimate, due to the high cost of the sensors.

We focus first on acoustic methods introduced above
coupled with Inertial Measurement Units (IMUs). Secondly,
we consider scenarios where underwater-only estimation
suffers from large drift, e.g. due to the poor precision of
either USBL or DVL. In this scenario, we investigate the
idea of intermittent position measurements at the surface:
the UUV periodically resurfaces and its precise position
is reacquired using e.g. GPS mounted on the UUV, or a
surveying Unmanned Aerial Vehicle (UAV) that locates
itself using GPS and uses a camera to measure the relative
displacement of the UUV.

Following, we will provide a description of the system
including the sensors used in Section II and a quick intro-
duction into Kalman filtering in Section III. After this, the
results obtained through fusion of the UUV on-board sensors
are given in Section IV. Results with intermittent surface
measurements are given in Section V and conclusion and
future prospects are presented in Section VI.

II. SYSTEM DESCRIPTION

The SeaClear system is comprised of an autonomous sur-
face vehicle that serves as a floating base, transporting the
other robots over long distances, and two UUVs and a UAV
deployed from the surface vehicle. One of the UUVs is tasked
with the search of the litter while the other one collects it and
deposits it in a basket attached to the surface vehicle. Fig. 1
conceptually illustrates the four-robot team.

We will now discuss the sensors mounted on the different
robots, which are relevant to pose estimation.

On the UAV the key sensors are a high-precision GPS
positioning system, an IMU for orientation, and a camera.

On the UUVs we have a 9 degree of freedom IMU con-
sisting of 3 axis accelerometer, gyroscope and magnetometer,
a depth-pressure sensor, a DVL which measures velocity
relative to the bottom surface, and a USBL transceiver. The
complementary USBL transceiver is mounted to the surface
vehicle together with a GPS beacon. The GPS measurement
coupled with the displacement between the two transceivers
produces an absolute position of the UUV within the precision
of the instruments. Data is sent from the UUV through a wired
connection to a computer on the surface vehicle.

For the simulation environment, Gazebo [5] together with
the Robot Operating System (ROS) [6] were used. For the
UUVs, the uuv simulator [7] package for ROS was used.
The specific UUV model used is the SubseaTech Tortuga. In
simulation the IMU and DVL sensors used are implemented
in the uuv simulator package.

Fig. 1. Robot team performing tasks.

The IMU is modeled with zero-mean Gaussian noise and a
random-walk bias. The DVL is simulated by adding a zero-
mean Gaussian noise to the true velocity. The parameters for
the sensors used in simulation from the package are shown in
Table I. For their significance, please see [7].

The USBL measurement was simulated by adding to the
ground truth zero-mean Gaussian distribution with standard
deviation σ = 0.5. In practice, we have found our USBL to
not be very reliable, often becoming stuck and providing the
same value even when the UUV is moving. We have simulated
this by giving each measurement a 5% chance of getting stuck
and sending the same value for 10 s.

IMU:
Gyroscope noise density 3.394e−4
Gyroscope random walk 3.8785e−5
Gyroscope bias correlation time 1000.0
Gyroscope turn on bias sigma 0.0087
Accelerometer noise density 0.004
Accelerometer random walk 0.006
Accelerometer bias correlation time 300.0
Accelerometer turn on bias sigma 0.1960
DVL:
Noise sigma 0.05
Noise amplitude 2
Pressure:
Noise sigma 3.0
Noise amplitude 0.0
Standard pressure 101.325
kPaPerM 9.80638

TABLE I
PARAMETER VALUES

III. KALMAN FILTERS

A. Basic Kalman Filter

A Kalman filter is a linear estimator described for the
first time by R.E. Kalman in 1960 [8]. It is well-known and



widely used in estimation problems in the area of autonomous
vehicles, under various forms [9].

It aims to estimate the state of a discrete system described
by the following equation:

xk = A · xk−1 +B · uk−1 + wk

yk = H · xk + vk
(1)

where:
xk State vector at step k

A,B,H State-space matrices
yk Measurement at step k
wk Process noise
vk Measurement noise

The noise, wk and vk are considered to be normally
distributed with zero mean and covariance matrices Q and
R respectively.

The estimation works in two steps: prediction and cor-
rection. For the prediction step, the state at step k + 1 is
computed using the model as shown in (2). Also an estimate
error covariance P is computed.

x̂k = A · x̂k−1 +B · uk−1

Pk = APk−1A
⊤ +Q

(2)

After the prediction step, a correction is applied based using
the measurement.

Kk = PkH
⊤
k (HkPkH

⊤
k +R)−1

x̂k = x̂k +Kk(yk −H x̂k)

Pk = (I −KkH)Pk

(3)

When using the filter, the covariance matrices Q and R
play a big role in the accuracy of the estimate, so they must
represent the process and measurement noise as accurately as
possible. Often they are empirically tuned.

B. Extended Kalman Filter

The Extended Kalman Filter aims to solve the estimation
problem when the system whose states are being estimated is
non-linear. It does this by linearizing the system at each step
in order to compute the correction. In the nonlinear case the
system is defined by the following equations

xk = f(xk−1, uk−1, wk)

yk = h(xk, vk)
(4)

where f and h are non-linear functions that characterize
the evolution of the states and the measurement respectively.
When predicting, the noise will be assumed zero. After lin-
earization, the equations become:

xk ≈ f(x̂k−1, uk−1, 0) +Ak · (xk−1 − x̂k−1) +Wk · wk

yk ≈ h(x̂k, 0) +Hk · (xk−1 − f(x̂k−1, uk−1, 0)) + Vk · vk
(5)

where Ak, Hk, Wk and Vk are Jacobian derivative matrices
of functions f and h with respect to xk, wk and vk

Fig. 2. UUV in simulation environment

In this case, the prediction and correction equations become:

x̂k+1 = f(x̂k−1, uk−1, 0)

Pk = Ak−1Pk−1A
⊤
k−1 +Wk−1Qk−1W

⊤
k−1

Kk = PkH
⊤
k (HkPkH

⊤
k + VkRkV

⊤
k )−1

x̂k = x̂k +Hk(yk − h(x̂k, 0))

Pk = (I −KkHk)Pk

(6)

For our purposes, the robot localization package, described
in [10], was used for the implementation of the Extended
Kalman Filter algorithm. It is a software package for ROS that
includes, among others, an implementation of the Extended
Kalman Filter ready to be used for pose estimation using
various sensor types.

For the f function from (4), the robot localization uses a
standard Newtonian 3D rigid-body kinematic model [10]. As
for the measurement function h, it is assumed that each sensor
measures the states directly, with additive Gaussian noise [10].

In our experiments below, the filter was run with a sampling
rate of 20Hz. The process noise covariance matrix used is
given in the following equation.

Q = diag(
[
1e−3 1e−3 1e−3 0.3 0.3 0.3 0.5

0.5 0.1 0.3 0.3 0.3 0.3 0.3 0.3
]
)

(7)

The noise covariance for the sensor measurements is equal
to the covariances of the sensors configured in the simulator
and given in Table I.

IV. UNDERWATER-ONLY ESTIMATION PERFORMANCE

In the first batch of experiments, we have performed simu-
lations using only the sensors available underwater in different
configurations. In all cases, a pressure based depth sensor
was used for the vertical axis position. Here are the different
configurations which will be discussed individually:

• IMU only
• IMU+USBL
• IMU+DVL
• IMU+DVL+USBL



TABLE II
MSE FOR UNDERWATER-ONLY POSE ESTIMATION

Table Axes
Sensor Configuration X(m) Y(m) Z(m) Roll(rad) Pitch(rad) Yaw(rad)

IMU 18.384 15.963 0.031155 9.72e-09 9.1397e-09 0.0090529
IMU+USBL 2.4513 1.1686 0.031155 9.9215e-09 9.2075e-09 0.014226
IMU+DVL 0.041847 0.14544 0.03108 9.9407e-09 9.202e-09 0.0090492

IMU+DVL+USBL 0.93606 0.28376 0.03108 9.888e-09 9.3111e-09 0.01228
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Fig. 3. Pose estimate (orange) and ground truth (blue) for IMU only sensor
configuration

Table II compares the mean squared error (MSE) for the
estimated pose with all these configurations.

The UUV was manually driven on a rectangular trajectory
once during the experiments returning close to the starting
point at the end. Fig. 2 shows a capture from the simulation
environment.

A. IMU only

Fig. 3 shows the pose-estimate compared to the ground
truth. As expected, the values drift making the use of such an
estimate reliable only for short periods of time. Even though
the other devices might produce more accurate measurements,
the IMU is essential for orientation estimation.

B. IMU+DVL

The estimation results are shown in Fig. 4. Due to the single
integration step, less drift is expected when using velocity
measurements. This is confirmed by the results obtained
where a smaller amount of drift is present by the end of the
experiment.

C. IMU+USBL

Fig. 5 shows the pose-estimate when using IMU and USBL
together. We can observe that the measurements do not drift,
even though they are noisy. Also, the USBL satisfies the need
of a geo-referenced estimate. If high accuracy position is not
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Fig. 4. Pose estimate (orange) and ground truth (blue) for IMU and DVL
sensor configuration
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Fig. 5. Pose estimate (orange) and ground truth (blue) for IMU and USBL
sensor configuration

required, an IMU-USBL pair can be sufficient in order to
obtain a 6-DOF estimate.

D. IMU+DVL+USBL

The error for this sensor configuration shows that the DVL
improves the accuracy of the estimate. Another important
aspect, although not visible in this instance due to the short



length of the experiment, is that the USBL will prevent the
drift caused by integrating noisy DVL measurements.
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Fig. 6. Pose estimate (orange) and ground truth (blue) for IMU, DVL and
USBL sensor configuration

V. SURFACE-BASED INTERMITTENT POSITIONING

In the following experiments we remove the DVL from the
UUV due to its high cost. In this USBL+IMU configuration
with a poor USBL, the UUV suffers from significant position
drift.

One alternative to mitigate this drift is to resurface the UUV
periodically to reacquire a high-precision position estimate
with an additional sensor. This could be a waterproofed GPS
sensor mounted on the UUV. A more interesting alternative
is given by the observation that in sufficiently clear waters or
shallow depths, the UUV is visible through the UAV’s camera.
In such moments, knowing the GPS coordinates of the UAV,
the position of the UUV in the camera image and its depth can
be used to compute a more precise estimate for the position
of the UUV.

Our experiment generically simulates any such surface
sensor by corrupting the ground truth with Gaussian noise
with σ = 0.05 (corresponding to the data-sheet accuracy of
the GPS device used on the UAV).

The experiments were performed with three different feed-
back (“resurfacing”) periods. Although these periods are quite
small and practically correspond to the situation in which the
UUV is constantly visible, choosing higher periods would not
make sense due to the short experiment duration. Fig. 7 shows
results. Here, the UUV’s position on one of the axes for the 1
sec feedback period is shown alongside the scenario with only
USBL and no feedback. We can see that the surface feedback
brings the estimate closer to the ground truth.

Table III shows the MSE obtained in 4 different scenarios
using the IMU, USBL and feedback from the surface. The
angles have been omitted since the surface sensors do not give
any information on the orientation of the UUV. As expected, a
lower update period gives lower errors, however these periods
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Fig. 7. Ground truth (blue), pose estimate without surface feedback (orange)
and pose estimate with surface feedback (black).

0 20 40 60 80 100 120 140

Time

-6

-4

-2

0

2

4

6

8

10

12

x

Fig. 8. Ground truth (blue), pose estimate without surface feedback (orange)
and pose estimate with surface feedback (black).

have to be kept quite low due to the noisiness of the USBL
data. This scenario corresponds to the UUV only spending
time at the surface.

Seeing that, in IMU only experiments, the IMU only
estimate is stable for periods longer than the surface mea-
surement period, we also tried the scenario in which the
UUV is equipped only with an IMU and receives surface
measurements every 30 s.

The results are shown in Fig. 8 again, only for one axis, for
clarity. The MSE for the position is shown in Table IV. In this
scenario, we obtain better estimates and 30 s is a more realistic
update period, but we eill still have larger drifts sometimes as
seen around 100 s.

VI. CONCLUSION

We performed simulations in order to asses the accuracy of
Extended Kalman filtering for pose estimate of unmanned un-



TABLE III
ESTIMATE MSE FOR USBL WITH SURFACE POSITION MEASUREMENTS

Table Axes
Surface feedback period X(m) Y(m) Z(m)

no feedback 3.5328 2.3847 0.0311469
1 sec 0.01391 0.018928 0.031146
5 sec 3.0389 2.466 0.031146

10 sec 3.3012 2.5037 0.031146

TABLE IV
ESTIMATE MSE FOR IMU WITH SURFACE POSITION MEASUREMENTS

Table Axes
Surface feedback period X(m) Y(m) Z(m)

IMU only 13.236 18.773 0.031273
30 sec 2.5694 0.96057 0.031273

derwater robots, using different sensor configurations. Acous-
tic and inertial sensors have been used for the intrinsic pose
estimation of the UUV. For the situation in which underwater-
only estimation does not work well, periodic position cor-
rections using a surface-based sensor were proposed and
evaluated.

Further experiments using the mentioned sensor configu-
rations are planned both in simulated environments and using
real hardware. Also, various extensions brought to the Kalman
filter such as the unscented Kalman filter, could be tested
in the future along additional analysis of the estimate under

intermittent feedback.
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