
Optimistic minimax search for noncooperative switched control with

or without dwell time ⋆

Lucian Busoniu a, Jihene Ben Rejeb b, Ioana Lal a, Irinel-Constantin Morarescu b,

Jamal Daafouz b

aAutomation Department, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania
bUniversité de Lorraine, CRAN, UMR 7039 and CNRS, CRAN, UMR 7039, 2 av. Forêt de Haye, Vandœuvre-lès-Nancy, France

Abstract

We consider adversarial problems in which two agents control two switching signals, the first agent aiming to maximize a discounted
sum of rewards, and the second aiming to minimize it. Both signals may be subject to constraints on the dwell time after a switch. We
search the tree of possible mode sequences with an algorithm called optimistic minimax search with dwell time (OMSd), showing that it
obtains a solution close to the minimax-optimal one, and we characterize the rate at which the suboptimality goes to zero. The analysis
is driven by a novel measure of problem complexity, and it is first given in the general dwell-time case, after which it is specialized to
the unconstrained case. We exemplify the framework for networked control systems where the minimizer signal is a discrete time delay
on the control channel, and we provide extensive simulations and a real-time experiment for nonlinear systems of this type.

Key words: Switched systems; optimistic search; noncooperative optimal control; nonlinear systems.

1 Introduction

Switched systems toggle their dynamics among those in a
set of dynamical modes [17,18,30]. They model real-world
systems subject to known or unknown abrupt parameter
changes, e.g. in the automotive, aerospace, and energy man-
agement industries. This paper considers systems with two
different switching signals, which occur in e.g. smart grids
[25], networks [29] or networked control systems, and have
started to be considered in the literature e.g. by [3] where
they were called dual switched systems. In our framework,
the two signals are controlled by two adversarial agents that
choose modes in turn, one of them aiming to maximize an
infinite-horizon cumulative reward, and the other to mini-
mize it. Such an infinite horizon is appropriate whenever
decisions must be made repeatedly without a definite end of
the control task. Either signal (or both) may be subject to
dwell time constraints, so that after a switch it must be kept
constant for at least an imposed number of steps. Mode dy-
namics are autonomous, general nonlinear, and the rewards
must be bounded.

To find (an approximation of) a minimax-optimal solution,
we will use optimistic methods, which combine ideas from
global optimization, bandit theory for exploration in rein-

⋆ We are grateful to Rémi Munos for his contribution to the initial
unconstrained method [8], and to Alexandru Codrean for his help
with the experiments. This work was supported by a grant of
the Romanian National Authority for Scientific Research, CNCS-
UEFISCDI, project number PN-III-P1-1.1-TE-2016-0670, grant
agreement no. 9/2018.

Email address: lucian@busoniu.net (Lucian Busoniu).

forcement learning, classical graph search and planning, and
optimal control [20]. It turns out that applying optimism in
the adversarial setting naturally leads to a best-first variant
[21] of B*, a classical minimax algorithm proposed for game
tree search by [1]. Since many other methods have been
called “best-first search”, and as we adapt the algorithm to
handle infinite horizons and dwell times, we call it optimistic
minimax search with dwell time (OMSd), keeping in mind
its relation to B*. OMSd iteratively explores a tree repre-
sentation of the possible sequences of max and min agent
modes, by computing lower and upper bounds on the values
of mode sequences passing through each node. At each it-
eration an optimistic leaf is expanded, by starting from the
root and recursively traveling to an optimistic child, which
maximizes the upper bound at max nodes or minimizes the
lower bound at min nodes. OMSd is anytime: it can stop af-
ter any number of expansions, and returns the sequence of
modes corresponding to a deepest expanded node. Thus it
provides an adaptive-horizon solution. For closed-loop con-
trol, OMSd may be used in receding horizon.

By exploiting the optimistic framework, we develop near-
optimality and convergence rate guarantees for OMSd –
which to our best knowledge were missing from the liter-
ature on B* search, even in the unconstrained case. The
analysis is done in the general case with dwell time con-
straints, and then specialized to the unconstrained case. The
sequence returned by OMSd is near-optimal to the extent of
the gap between the upper and lower bounds at the deep-
est expanded node, which can be computed a posteriori,
once the algorithm stops. A priori, we characterize the rate
at which the gap decreases with the computation invested

Preprint submitted to Automatica 19 September 2019

(number of node expansions); the rate depends on the dwell
time limits of the two signals and on a measure of prob-
lem complexity. The measure is quite challenging to define
when dwell time constraints are imposed, because the struc-
ture of the tree obtained after eliminating nodes that violate
the dwell time conditions is quite intricate. It specializes to
an intuitive meaning in the unconstrained case: the average
branching factor of the subtree explored. Interestingly, in a
worst-case sense the constrained algorithm converges faster
than the unconstrained one.

Because the min agent chooses its mode using knowledge of
the max mode, OMSd solves a Stackelberg problem [4,29],
with the max agent as the leader. In fact, the unconstrained
framework can be applied to any such problem where the
actions of the two agents are discrete or discretized, not
just when they are mode switches. Stackelberg adversarial
problems appear in network security [31], pursuit-evasion
[9], and advertising [10], in addition to game playing [27].

When the two mode choices are applied simultaneously,
without the min agent knowing the max mode, a different
type of problem ensues where the solution is a Nash equi-
librium. In this case, we show that if the same algorithm is
used, which still solves the problem as if it were a Stackel-
berg one, a relationship can nevertheless be established be-
tween the value of the sequence returned and the optimal
Nash value, see also [16].

In our experiments, the min mode is a discrete time delay
on the control communication channel used to send the max
mode, see [26,11]. We study cases when an attacker hides
behind the delay and controls it in a Stackelberg setting,
with or without dwell time, and in a Nash setting solved
as Stackelberg. Real-time results are provided for random
delays, conservatively treated as an opponent.

In switched systems, OMSd is to our knowledge the first
algorithm for optimal control under two switching signals;
earlier work by [3] focused on stability, and applied to linear
modes only. OMSd instead handles general nonlinear modes,
and focuses on near-optimality guarantees – stability is a
separate, difficult problem for the discounted costs that we
use [23]. In [5], we studied max-only switched problems;
the minimax case here is more challenging, and specializes
to the max-only case when the min agent is removed.

In planning, besides B* [1,21] OMSd is related to other clas-
sical tree search methods such as alpha-beta pruning [14] or
best-first search [15]. OMSd belongs to the optimistic class,
which provides algorithms for e.g. optimization [19], opti-
mal control of discrete-action deterministic [12] or stochas-
tic systems [6]. A crucial feature of the analysis is the com-
plexity measure, which is related to other measures in op-
timistic methods, such as the branching factor in [12], or
the near-optimality dimension in [19]. Different from these
however, our measure works in minimax problems. In the
unconstrained case, it specializes to a branching factor also
related to the branching factor of alpha-beta pruning [14,22].
However, OMSd is adaptive-depth (horizon) while alpha-
beta is fixed-depth. OMSd is closer to the adaptive-depth

best-first method of [15], which does not have an analysis
and in fact may converge to suboptimal solutions [8].

This paper integrates and extends the earlier work [8] on
unconstrained OMS, and [24] for dwell time constraints.
Notable novel elements here include: (i) handling different
dwell times for the two agents (in [24] they had to be the
same, which is unrealistic); (ii) the study of the solution
properties in the Nash case, which is important since often
an agent does not have access to its opponent’s action at
the current step, (iii) a different and extensive experimental
study, including a real-time illustration of the technique,
and (iv) an integrated presentation of the framework that
we show encompasses not just the unconstrained and dwell-
time minimax cases, but also the single-agent case with or
without dwell time [5].

Next, Sec. 2 formally states the problem, Sec. 3 gives the
algorithm and Sec. 4 analyzes it. Experimental results are
given in Sec. 5; Sec. 6 concludes.

2 Problem definition

2.1 Unconstrained case

Consider a switched system where a maximizer (max) agent
and a minimizer (min) agent control, in turn, two different
switching signals. The setting is noncooperative, i.e. the min
agent acts against the max agent: while the max agent aims
to maximize a cumulative reward signal, the min agent acts
so as to minimize it. The max and min signals are respec-
tively denoted u and w; there are Nu and Nw modes for
these signals, and the sets of modes are denoted U and W .
In our algorithm and analysis, it will often be useful to treat
max and min decisions uniformly. For that purpose, denote
a generic (either max or min) mode by z ∈ Z := U ∪W ;
and define also index h that counts all decision steps, max
or min. Thus, h advances twice as fast as k, which only
increases with pairs of max-min decisions. For example,
we have: z0 = u0, z1 = w0, z2 = u1, z3 = w1, . . . , z2k =
uk, z2k+1 = wk, Denote an infinite sequence of
modes by z∞ = (z0, z1, z2, z3, . . . , z2k, z2k+1, . . .) =
(u0, w0, u1, w1, . . . , uk, wk, . . .) ∈ Z∞. A finite sequence
of h modes is denoted zh = (z0, z1, . . . , zh−1), with z0 the
empty sequence by convention.

At each step h ∈ N, the system evolves according to:

xh+1 = f(xh, zh) (1)

where xh ∈ X is the state, zh ∈ Z is the (max or min) mode,
and f : X ×Z → X are the (autonomous) mode dynamics.
We prefer the notation f(x, z) instead of the more standard
fz(x) as it avoids double subscripts. A reward (negative
cost) ρ(xh, zh) is assigned, where ρ : X × Z → R. Given
an initial state x0, the infinite-horizon discounted value of
sequence z∞ is:

v(z∞) :=

∞∑

h=0

γhρ(xh, zh) (2)

2

where γ ∈ (0, 1) is the discount factor. The goal is to achieve
the minimax-optimal value, defined as:

v∗ := lim
k→∞

[
max

u0

min
w0

· · ·max
uk

min
wk

2k−1∑

h=0

γhρ(xh, zh)

]

(3)
Intuitively, this value is the best achievable by the max agent
under the worst-case assumption that the min agent always
chooses the mode that is the most detrimental for perfor-
mance. Very general technical conditions under which the
solution exists can be found in [4]. Note that the method we
propose later will not reach this minimax value exactly or
find a complete, infinite-horizon sequence; it will only get
closer to the infinite-horizon value and sequence as the com-
putation budget increases, by examining increasingly longer
(but still finite) mode sequences.

Assumption 1 The rewards ρ(x, z) are in [0, 1] for all x ∈
X, z ∈ Z.

The main role of discounting and cost boundedness is
to ensure that the value (2) is in [0, 1

1−γ] for any se-

quence. This implies that for any finite sequence zh,

l(zh) :=
∑h−1

j=0 γjρ(xj , zj) is a lower bound on the values

of all sequences z∞ starting with zh (with the convention

that an empty sum is 0), and b(zh) := l(zh)+ γh

1−γ is an up-

per bound. Thus, v(z∞) ∈ [l(zh), b(zh)]. Let δ(h) = γh

1−γ

denote the gap between the two bounds, an uncertainty on
the values of sequences z∞ starting with zh. These value
bounds are essential to the derivation of our algorithm be-
low. Thus, at the cost of some restrictiveness induced by the
bounded rewards and by the subunitary discount factor, we
obtain a method that works for general nonlinear dynamics
and nonquadratic rewards.

Note moreover that many other works in control use dis-
counting, e.g. [13]. Bounded rewards are typical in AI meth-
ods for optimal control, such as reinforcement learning [28].
One way to achieve boundedness is by saturating a possibly
unbounded original function. This changes the optimal so-
lution, but is often sufficient in practice. On the other hand,
the system may have physical limitations that naturally lead
to saturation limits and a corresponding bound.

Often, the max and min mode decisions are applied simul-
taneously, so the dynamics and rewards are:

yk+1 = g(yk, uk, wk), rk+1 = r(yk, uk, wk) (4)

where yk ∈ Y is the state signal of the simultaneous-
decision problem, while g and r denote the dynamics and
reward function of this problem (and rk is a particular re-
ward at step k). The infinite-horizon value to optimize is∑∞

k=0 βkr(yk, uk, wk), with β ∈ (0, 1) a new discount fac-
tor. Since the system can be in any combination of modes u
and w, the total number of modes is Nu ·Nw.

We will represent this problem in the turn-based form
(1)-(3). To this end, we define the turn-based state vector

x ∈ Y × {U ∪ {s}} so that in addition to the state of the
simultaneous-decision problem, it also contains an extra
state variable. This variable takes special value s /∈ U
at max steps, and at min steps remembers the latest max
mode. Recalling that index h advances twice as fast as
k, we have formally that at (even, max) steps h = 2k,
xh = x2k = [y⊤

k , s]⊤, while at (odd, min) steps h = 2k+1,

xh = x2k+1 = [y⊤
k , uk]⊤. Using turn-based state x, g is

represented by the following turn-based dynamics f in (1):

f(xh, zh) =

{
[y⊤

k , uk]⊤ if h = 2k

[g(yk, uk, wk)⊤, s]⊤ if h = 2k + 1

Rewards are similarly represented:

ρ(xh, zh) =

{
0 if h = 2k

r(yk, uk, wk) if h = 2k + 1

Note that f and r are time-invariant, so they cannot di-
rectly check whether h is even; however, this can be deter-
mined by examining the last, special state variable, which
equals s at even steps. We have

∑∞

h=0 γhρ(xh, zh) =
γ

∑∞

k=0 γ2kr(yk, uk, wk), so to optimize the intended ob-

jective function (2) with discount factor β, we take γ =
√

β.

While here we focus on switched systems, the framework
can in fact be applied to any adversarial decision-making
problem where the actions of the two agents are discrete or
discretized. One reason for which we prefer the turn-based
formalism (1)-(3) is that in this general context, it covers
additional problems like two-player games.

2.2 Dwell time constraints

In switched systems, modes must often be kept constant over
a minimum dwell time, in order to guarantee fundamental
stability or performance properties, to obey actuation con-
straints, etc. In particular, switching signals u and w have
minimum dwell-time limits du and dw. For the max agent the
dwell-time is defined as the number of max decision steps
during which the mode u remains constant after a change,
and the condition requires that all dwell times along the se-
quence are at least as large as du, see Fig. 1 for an example.
The situation is similar for the min signal w. Dwell times
therefore only increase once every two steps h (correspond-
ing to one step k). Taking a limit equal to 1 is equivalent to
not imposing a dwell-time condition for that signal, so the
unconstrained problem is recovered when du = dw = 1.

The objective (3) changes to reflect the constrained nature
of the switching sequences. Denote by U(zh) and W (zh)
respectively the set of all max and min modes at step h that
satisfy the dwell-time constraints given prior modes zh. E.g.,
U(zh) = U when zh already satisfies the max dwell time
condition at h, and otherwise U(zh) is equal to the last max
mode along sequence zh. Then, the constrained minimax

3

h

Max mode

Min mode

0 2 4 6 8

Fig. 1. Illustration of a constrained minimax sequence for
d

u
= d

w
= 2. The max and min modes applied are shown by

a blue continuous line and a red dashed line, respectively. De-
note e.g. the max (blue) modes by 1, 2, 3 from bottom to top. At
k = 1 (h = 2k = 2), the max agent has switched from mode 1 to
mode 2; since its dwell time limit is 2, it must wait until at least
k = 1 + 2 = 3 (equivalently, until h = 6) before it is allowed
to select a new mode, different from 2. Here, it selects mode 3.
In contrast, had the problem been unconstrained, the max mode
could have already been changed at k = 2.

value to be achieved is:

v∗ := lim
k→∞

[
max

u0∈U(z0)
min

w0∈W (z1)
· · · · · ·

max
uk∈U(z2k)

min
wk∈W (z2k+1)

2k∑

h=0

γhρ(xh, zh)

]
(5)

2.3 Nash problem

In both the unconstrained and constrained problems above,
when it chooses wk the min agent knows and can react to
the max action uk. This is a Stackelberg, leader-follower
setting with the max agent as the leader, and it useful in many
practical problems such as network security [31,29], pursuit-
evasion problems [9], or advertising [10]. This setting was
implicitly assumed throughout [8,24]. However, if the two
agents act simultaneously (4) and the min agent does not
have access to uk at step k, then the Stackelberg solution
concept is no longer appropriate, and the Nash equilibrium
is usually employed (also called a saddle-point solution in
the adversarial setting here). Nevertheless, as we show next,
the problem can still be solved as if it were a Stackelberg
one, which under certain conditions provides a bound on the
Nash value – see also [16]. This bound will later be coupled
with the near-optimality guarantees of our algorithm to relate
the sequence it returns with the Nash value. For simplicity,
we stick to unconstrained sequences in the Nash setting.

First, it will help to make the infinite-horizon Stackelberg
solution more explicit. For t ≥ 0 define the sequence of
value functions vt : Y → R, ṽt : Y × U ×W → R:

ṽt(y, u, w) = r(y, u, w) + βvt−1(g(y, u, w))

vt(y) = ṽt(y, ut(y), wt(y, ut(y)))
(6)

starting from the initial function v0(y) = 0. Func-
tion equalities and inequalities hold elementwise. Here,
wt(y, u) ∈ arg minw ṽt(y, u, w) is a reaction func-
tion of the min agent to max decisions u; if there

are multiple minimizer actions, a selection rule among
them must be imposed. Moreover, ut(y) ∈ arg maxw
ṽt(y, u, wt(y, u)) is a Stackelberg-optimal decision of
the max agent given the reaction function wt. Then, the
infinite-horizon Stackelberg value from initial state y is
v∗(y) = limt→∞ vt(y), and is the same as (3).

In contrast, a pure (deterministic) Nash solution is defined
as follows, using vN

t : Y → R, ṽN
t : Y × U ×W → R:

ṽN
t (y, u, w) = r(y, u, w) + βvN

t−1(g(y, u, w))

vN
t (y) = ṽN

t (y, uN
t (y), wN

t (y))
(7)

where vN
0 (y) = 0 and uN

t (y), wN
t (y) is a Nash equi-

librium at stage t in state y, i.e. a pair of decisions
such that ṽN

t (y, u, wN
t (y)) ≥ ṽN

t (y, uN
t (y), wN

t (y)) ≥
ṽN

t (y, uN
t (y), w), ∀u,w. The infinite-horizon Nash value is

then v∗N(y) = limt→∞ vN
t (y). Note that this definition re-

quires the existence of a deterministic Nash equilibrium at
each t, y, and if there are several such equilibria, a selection
rule must be imposed to have a well-defined sequence.

Proposition 2 The infinite-horizon Stackelberg value is

larger than the Nash one: v∗ ≥ v∗N.

Proof: We prove the statement by induction, starting from
v0 = vN

0 = 0. Take t ≥ 1 and assume vt−1 ≥ vN
t−1. Then,

for any y:

vt(y) = ṽt(y, ut(y), wt(y, ut(y)))

≥ ṽt(y, uN
t (y), wt(y, uN

t (y)))

≥ ṽN
t (y, uN

t (y), wt(y, uN
t (y)))

≥ ṽN
t (y, uN

t (y), wN
t (y)) = vN

t (y)

where the first inequality is true because the Stackelberg
max decision ut(y) maximizes ṽt(y, u, wt(y, u)) over u;
the second because ṽt−1(y, x, u) ≥ ṽN

t−1(y, u, w),∀y, u, w,

which immediately follows from vt−1(y) ≥ vN
t−1(y); and

the third inequality holds because the Nash min decision
wN

t (y) minimizes ṽN
t (y, uN

t (y), w) over w. �

3 Algorithm

We will present the optimistic minimax search (OMSd) al-
gorithm in the dwell-time case from Sec. 2.2, which will
reduce naturally to the unconstrained problem of Sec. 2.1
when du = dw = 1.

OMSd explores a tree representation of the possible se-
quences of max and min modes. It starts with a root node
corresponding to the empty sequence, and iteratively ex-
pands n nodes taking into account dwell-time conditions.
Fig. 2 illustrates, with squares representing max decision
nodes, and disks min decision nodes. Each node is labeled
by two dwell times, for max and min switches, separated by
a slash in the figure. Note that by convention both dwell time
conditions are taken satisfied at h = 0, so the root node in
the figure has dwell times du/dw, namely 2/2. A max de-
cision node is expanded by adding children corresponding

4

a b

c d c d

a b

2/42/11/45/4

5/1 1/1

1/41/1
4/44/1

1/34/3

3/2

2/2h=0

1

2

3

4

5

6

3/3

Fig. 2. Example of a minimax tree developed by the algorithm
from a max root. The max agent has modes ‘a’ and ‘b’, while the
min agent has modes ‘c’ and ‘d’, so that Nu = Nw = 2. The
dwell time limits are taken d

u
= d

w
= 2.

to max modes, and similarly for min decision nodes. Each
arc is labeled by the mode taken at the parent node to reach
the child. Specifically, at max nodes, if the max dwell-time
is at least du then Nu children nodes are created, one for
every max mode; otherwise, i.e. if the max dwell-time con-
dition is not satisfied, only the child that keeps the mode
constant is added. Similarly, Nw children nodes are added at
a min node if its min dwell-time is at least dw, and only the
constant-mode child is added otherwise. For example, the
node labeled 1/3 in the figure has max dwell time 1 because
the max mode taken to reach it, ‘b’, is different from the
previous max mode ‘a’ taken two levels higher (at the root),
so a max switch just occurred. These two different modes
are highlighted by gray arcs. Note that this particular node is
not immediately affected by the non-satisfaction of the max
dwell time, since it is a min decision node; indeed, both its
children are created since the min dwell time is still 3, and
the constraint only has an effect at the next depth, where the
only allowed max mode is ‘b’. Fig. 2 also illustrates some
constrained min node expansions, from depth 5 to 6.

Each node at some depth h is reached via a unique path
through the tree, and so is uniquely associated to the se-
quence of modes zh on this path. We denote by du(zh) and
dw(zh) the current max and min dwell-times of zh. We will
work interchangeably with sequences and nodes.

Let T denote the current tree, L(T) the leaf nodes of this
tree, and C(z) the children of node z, all satisfying the dwell-
time constraints (so C(z) is sometimes a singleton). The
algorithm computes lower and upper bounds L(z) and B(z)
for each node. The bounds are initialized with l and b at the
leaves and propagated upwards in the tree:

L(z) =

l(z), if z ∈ L(T)

max
z
′∈C(z) L(z′), if z max node, z /∈ L(T)

min
z
′∈C(z) L(z′), if z min node, z /∈ L(T)

B(z) =

b(z), if z ∈ L(T)

max
z
′∈C(z) B(z′), if z max node, z /∈ L(T)

min
z
′∈C(z) B(z′), if z min node, z /∈ L(T)

(8)
To better understand, consider a subtree developed by the
algorithm after 4 node expansions, shown in Fig. 3 (a subtree
of the tree in Fig. 2). This figure shows the bounds associated
with each node, initialized to illustrative values at the leaves

h 0=

3

1

2
[.5,1.5][0,1]

[0,1]

[.75,1.5]

[.75,1.5]

[1,2]

[.5,1.25]

[.75,1.5]

[.75,1.5]

a b

c d c d

a b

Fig. 3. Snapshot of the tree after 4 expansions. Nodes are now
labeled by the interval [L, B], and dwell time labels are skipped
for clarity. The thick path leads to the node that the algorithm
would expand next.

Algorithm 1 OMSd

Input: budget n
1: initialize: T ← {z0}, the root
2: for iteration t = 1 to n do
3: z← z0

4: while z /∈ L(T) do

5: z←
{

arg max
z
′∈C(z) B(z′), if z max node

arg min
z
′∈C(z) L(z′), if z min node

6: z(t)← z

7: expand z(t), by adding its children to T :
8: if z(t) max node then
9: if du(z(t)) ≥ du, add (z(t), u)∀u ∈ U

10: else, add one child keeping u constant
11: else
12: if dw(z(t)) ≥ dw, add (z(t), w)∀w ∈W
13: else, add one child keeping w constant

14: compute bounds for all z ∈ T with (8)

Output: ẑ := arg max
z(t),t=1,...,n h(z), l(ẑ), b(ẑ)

and propagated with (8). For example, since the root z0 is
a max node, its lower bound L(z0) = 0.75 is found as the
maximum of the two children’s bounds, 0 and 0.75; and
similarly for the upper bound B(z0).

To choose the leaf to expand at each iteration, OMSd starts
from the root and constructs a path by iteratively selecting
an optimistic child of the current node, where optimistic
means that the child is one with the largest upper bound at
max nodes, and one with the smallest lower bound at min
nodes. For instance, in Fig. 3, starting from the root first the
right child is selected, because the root is a max node and
the right child has the largest upper bound, namely 1.5; then
at this next (min) node, its left child is selected, since it has
the smallest lower bound, 0.75, and so on along the thick
path until a leaf is reached, which is then expanded.

After n node expansions, the algorithm stops and returns
the sequence ẑ and the bounds of a deepest expanded node.
Alg. 1 summarizes OMSd, where (·, ·) denotes sequence
concatenation and h(·) yields the depth of a sequence.

When du = dw = 1, since any mode is kept for at least
one step, the dwell time of any node is at least 1, so the
inner “else” branches never get activated, children for all
modes are always created, and the algorithm solves the un-
constrained problem of Sec. 2.1. The algorithm is then an
infinite-horizon extension of B* search [1].

5

OMSd will often be used to find max modes to apply. The
algorithm should then typically applied in receding horizon,
calling it with the current state at max decision steps where
the dwell time condition is satisfied. If the condition is not
satisfied, then the max mode must be kept constant anyway
so it is not useful to run OMSd. To exemplify, assume that
the minimax switching sequence in Figure 1 is obtained by
such a closed-loop application of OMSd. The algorithm is
first called at h = k = 0, resulting in the first max mode,
which is applied, and the min agent generates its own mode.
OMSd is next called at h = 2, corresponding to k = 1,
at which time it generates a different mode, and again the
min agent responds. Now, since a max switch has occurred,
the max mode must be kept constant for the next step, and
OMSd is only called again at h = 6, or k = 3; and so on. Of
course, when there is no dwell time constraint the algorithm
must be called at each step. Min switches must also obey
their own dwell time, and OMSd takes advantage of this
information by skipping sequences that do not satisfy the
min constraint. Note that the min agent can in general use
any algorithm, including OMSd.

4 Analysis

4.1 Constrained case

Like the algorithm itself, the analysis will first be given in
the case with dwell time constraints, and then specialized
to the unconstrained case. We begin by establishing an a
posteriori near-optimality bound with respect to the minimax
value. Then, a complexity measure of the problem and a
corresponding convergence rate of OMSd are established.
In [24] the two dwell times du, dw had to be equal for
the analysis to work. Since this is unrealistic in most cases,
here we extend the analysis to different dwell times, which
impacts everything from the complexity measure onward.

Define for any node zh of finite depth h the minimax value
v(zh) among infinite sequences starting with zh and obeying
the dwell time constraints. Specifically:

v(zh) =

h−1∑

j=0

γjρ(xj , zj)+

max
zh∈U(zh)

min
zh+1∈W (zh+1)

· · ·
∞∑

j=h

γjρ(xh, zh) if zh max node

min
zh∈W (zh)

max
zh+1∈U(zh+1)

· · ·
∞∑

j=h

γjρ(xh, zh) if zh min node

(9)

The next Lemma characterizes the subset of nodes expanded
by the algorithm, which is in general not the full tree.

Lemma 3 (Lemma 3 of [24]) At depth h in the tree, OMSd
only expands nodes in the set:

T ∗
h :=

{
zh

∣∣ |v∗ − v(zp)| ≤ δ(h),

∀zp on path from root to zh

} (10)

An important feature of T ∗ is the nonlocal character of the
inequality in (10), which must hold for any parent and not
just the expanded node.

We give now an a posteriori near-optimality bound, which
can be computed after the algorithm stops.

Theorem 4 (Theorem 4 of [24]) Let h∗ be the largest
depth of any expanded node. Then, |v∗ − v(ẑ)| ≤ δ(h∗)
and v∗ ∈ [L(z0), B(z0)].

The analysis given so far was known from [24]. However,
since unlike in [24], here du may be different from dw, the
upcoming analysis must be updated to take this into account.
To that end, let d = min{du, dw} and N = max{Nu, Nw}.
To establish an a priori bound, we must first characterize
the size of the expanded subtree T ∗ =

⋃
h≥0 T ∗

h via a com-

plexity measure κ that evaluates the difficulty of the search
problem. In the sequel, |·| denotes set cardinality.

Definition 5 Let κ be a number so that ∃C > 0, |T ∗
h | ≤

Cκh/d,∀h ≥ 0.

Note that κ is similar with other complexity measures used
in optimistic optimization and planning [20], such as the
branching factor in [12], the near-optimality dimension in
[19], and the near-optimality exponent in [6]. Before the
final bound, we study the range of κ, starting with the largest
value (the most difficult problem).

Proposition 6 A finite κ always exists, and κ ≤ dN .

Proof: It suffices to consider the case when the full tree
T is expanded, since then T ∗ = T , which leads to the
largest number of nodes in T ∗

h and hence the largest κ. This
occurs in a problem where all the rewards are identical.
Any sequence is optimal in this case and the algorithm must
explore the entire tree uniformly.

First, denote by T the tree of sequences with equal dwell
times for both max and min, d′u = d′w = d. We have T ⊆ T .
To prove this, consider any node z ∈ T . Since z satisfies
the original dwell time constraint, du(z) ≥ du ≥ d = d′u,

and z also satisfies the looser constraint from T . A similar
reasoning holds for the min agent, so z ∈ T .

Next, define the matrix Mh ∈ R
d×d, the elements of which

count nodes with various max and min dwell times at depth
h in T :

Mh,ii′ =

#(du = i, dw = i′), if i < d, i′ < d

#(du ≥ i, dw = i′), if i = d, i′ < d

#(du = i, dw ≥ i′), if i < d, i′ = d

#(du ≥ i, dw ≥ i′), if i = d, i′ = d

where #(·) is shorthand for “the number of nodes at h sat-
isfying condition ·”. So, the non-terminal rows i < d count
the number of nodes with a max dwell-time of exactly i,
while the last row is special: it counts the nodes with a max
dwell-time of d or larger. The situation is similar for the

6

columns, which correspond to the min dwell time. Then:

|T h| =
d∑

i=1

d∑

i′=1

Mh,ii′

Matrix Mh satisfies at all depths of the form 2jd, j ∈ N:

M2jd ≤

(dN)2j(N−1) ... (dN)2j(N−1) (dN)2j(N−1)

...
...

...

...
... (dN)2j(N−1)

(dN)2j(N−1) ... (dN)2j(N−1) (dN)2j

=: M2jd

(11)
with matrix inequalities holding elementwise. The proof of
this property is very technical and we do not include it
here, instead referring the reader to the supplementary ma-
terial at: busoniu.net/files/papers/swminmax_
suppl.pdf. Take j =

⌈
h
2d

⌉
. We have

∑
i,i′ Mh,ii′ ≤∑

i,i′ M2jd,ii′ , as the number of explored nodes increases

with the depth, and on the other hand M2jd,ii′ ≤ M2jd,ii′

from (11). Then:

|T h| ≤
d∑

i=1

d∑

i′=1

(dN)2j(N − 1)

≤ d3N(dN)h/d(N − 1) = C(dN)
h
d

with C = d3N(N − 1), and since T ∗
h = Th ⊆ T h, finally

κ ≤ dN . �

Regarding the smallest value of κ, it is trivially 1, since there
must be at least one node in T ∗

h : the one belonging to an
optimal sequence.

Example 7 A problem with κ = 1. Consider the problem
represented by the tree in Fig. 4. For each max node along
the path on the left of the tree, one child has reward 1 and all
other children have reward 0, and the same is true of their
complete subtrees. The situation is reversed at min nodes.
Thus, the leftmost path is minimax-optimal, with value v∗ =
γ0 + γ2 + . . . = 1

1−γ2 . This path is constructed such that it

obeys the dwell time constraints.

...

...

...
1

1 1

1 1

0

0 00

00

1 0

.
0 0
x

x

+

h

h g+

Fig. 4. A tree with κ = 1. Rewards are shown along the transitions
and inside subtrees where they remain constant. The thick path is
minimax-optimal and never switches.

To study T ∗, consider an arbitrary node zh+g at depth
h + g that is not on the optimal path, but does belong to
the subtree of some max node zh which is on this path at
an even depth h. Two examples of such nodes are shown
by ‘x’ symbols in the figure. Then, the value of zh+g is

v(zh+g) = γ0 +γ2 + . . .+γh−2 = 1−γh

1−γ2 . Since δ(h+g) =
γg+h

1−γ , node zh+g can be excluded when: |v∗ − v(zh+g)| >
γg+h

1−γ , i.e. when γh

1−γ2 > γg+h

1−γ , for which it suffices if

g >
⌈

log (1−γ2)/(1−γ)
log 1/γ

⌉
, a positive constant which we call

G. Similarly, take now a node at depth h + g on a non-
optimal subtree of a min node at an odd h, as exempli-
fied by a ‘+’ in the figure. The value of such a node is
γ0 +γ2 + . . .+γh−1 +γh +γh+1 +γh+2 + . . . = γ0 +γ2 +

. . .+γh−1 +γh+1 +γh+3 + . . .+γh +γh+2 + . . . = 1+γh

1−γ2

where the intermediate step separated odd and even powers
of γ at depth h and larger. Solving the exclusion condition
results in the same lower bound G on g as for max nodes.

At some arbitrary depth h′ the set T ∗
h′ contains at most

1+N +N2+ . . .+NG =: C children coming from optimal
nodes at various depths h < h′, which cannot be excluded
via the conditions above. Thus, T ∗

h′ ≤ C and κ = 1. �

Finally, we give the a priori near-optimality result, in which
the rates have the same mathematical form as in Theorem 7
of [24] (so that the proof there can be applied), but due to
the generalized Definition 5 now also work for the case of
different dwell times.

Theorem 8 Given budget n, we have:

|v∗ − v(ẑ)| ≤ δ(h∗) ≤
{

O(n−d
log 1/γ
log κ) if κ > 1

O(γn/C) if κ = 1
(12)

where C is the constant from Definition 5.

Therefore, when κ is smaller (i.e. the problem is simpler),
the algorithm converges faster with n, since the negative
exponent of n is larger in magnitude. In particular, κ = 1
leads to exponential convergence in n. Furthermore, stronger
dwell time conditions, represented by larger d, also increase
the exponent, so the algorithm is also faster when the dwell
time limits are larger, which makes sense since there are
fewer solutions to consider. In the worst case, κ = dN and

near-optimality is O(nd
log 1/γ
log dN).

4.2 Unconstrained and single-agent cases

We show here that the analysis above specializes to the un-
constrained setting, recovering (with minor conservatism)
all the results from [8]. The analysis further encompasses
the single-agent case with [5] or without dwell time [12],
showing that the algorithm we provide here is a general tool
for decision-making in single-agent or adversarial problems.

Consider first the unconstrained case, i.e. when du = dw =
d = 1. The entire analysis above holds as stated, however
it simplifies in interesting ways starting from Definition 5.

7

This formula now only requires |T ∗
h | ≤ Cκh, so κ has an

intuitive meaning in this case: it is the asymptotic branching
factor of the near-optimal tree, i.e. the average number of
children of each node on this tree, for large depths h. The a
priori bound in the case κ = 1 remains the same, whereas it

becomes O(n−
log 1/γ
log κ) for κ > 1. The analysis from [8] has

been recovered. The range of κ is however [1, N], as opposed

to [1,
√

NuNw] in [8], so some conservatism is introduced.

Introducing dwell-time constraints may either reduce or in-
crease problem complexity, depending on whether they re-
move near-optimal solutions that would be difficult for the
algorithm to find, leaving it with simpler ones, or the other
way around. An explicit relation can be found for the case
when the full trees are explored. Then, the convergence

rates are O(n−
log 1/γ
log N) for the unconstrained problem, and

O(n−d
log 1/γ
log dN) for the constrained one. We have d log 1/γ

log dN ≥
log 1/γ
log N for d ≥ 2, so the constrained algorithm is faster.

In addition to generalizing the unconstrained minimax analy-
sis to the dwell-time case, the analysis above also generalizes
the single-agent (max-only) analysis with dwell time from
[5] to the minimax setting. In particular, by taking a singleton
set of min modes to effectively remove the min agent, we get

the bound O(n−du
log 1/γ
log κ) from [5]. Furthermore, by remov-

ing the dwell-time constraint from this single-agent problem
(or equivalently, the min agent from the unconstrained min-
imax problem), we obtain the algorithm and guarantees for
optimistic planning for deterministic systems in [12], which
we also applied in [5] to max-only unconstrained switches.
These relationships are graphically represented in Fig. 5.

2 agents, dwell time
(this paper)

1 agent, dwell time2 agents, no dwell time

1 agent, no dwell time

[8] [5]

[12]

Fig. 5. Relationships between different planning settings and their
analysis. The arrows point from the more general result to the
specialized one.

Remark 1 Let us consider what happens when OMSd is
applied to the Nash problem from Sec. 2.3. We study the
return l(ẑ) of the finite-length sequence found by OMSd.
The proof of Theorem 4 of [24] implies that v∗ − l(ẑ) ≤
δ(h(ẑ)) = δ(h∗). Coupling this with v∗ ≥ v∗N from Propo-

sition 2, we have finally that l(ẑ) ≥ v∗N − δ(h∗), i.e. if the
sequence returned were applied by the two agents, the return
obtained would not be far from the Nash value.

5 Experimental evaluation

Our framework can address a wide range of noncooperative
switched problems. Here, we consider networked control
systems where the controller sends the chosen max modes

to the system over a communication network affected by
delays that are multiples of the sampling time. The delay
is either controlled by an attacker who changes it so as to
hinder performance, or otherwise it is random. In both cases
we model the delay as a min switching signal, inspired by
[11] and [26].

The attack setting is close to network security games [31,29],
and in particular to [31] where the attacker can interfere
with values sent along the control and measurement chan-
nels; here, the attacker attempts instead to mask its presence
behind an innocuous delay signal. We give three examples
in this setting. In the first example (Sec. 5.1), the max and
min switching signals are unconstrained, leading to a prob-
lem of the type in Sec. 2.1. In the second example (Sec. 5.2),
the delay signal must obey a minimum dwell time, as in
Sec. 2.2. In the third example (Sec. 5.3), the min agent does
not see the max mode before choosing the delay, illustrat-
ing the Nash problem of Sec. 2.3. Note that throughout Sec.
5.1-5.3, the delay agent explicitly acts to as to hinder the
control agent, so the problem is truly noncooperative. Fi-
nally, Sec. 5.4 illustrates the method in real-time control, for
a random delay signal that is still conservatively modeled as
a noncooperative agent.

Before showing the results, we explain how the delay is
modeled. Consider the system:

ỹk+1 = g̃(ỹk, uk−wk
), ∀k > 0 (13)

where ỹk ∈ R
p represents the system state at time k ∈ Z

+,
uk−wk

is the controlled mode, and wk is the delay (number
of steps by which u is delayed) at k, which takes integer
values in {0, 1, . . . ,m},m ≥ 0, so Nw = m + 1. A reward
function r̃(ỹk, uk−wk

) is used that takes values in [0, 1]; note
that the reward uses the delayed input, which means that it is
generated at the system side. We will transform the problem
in the minimax form (4), by defining dynamics g(y, u, w)
and rewards r(y, u, w) that work with augmented state y.
This state is, at step k:

yk = [y0
k
⊤

, y1
k, y2

k, . . . , ym
k]⊤ := [ỹ⊤

k , uk−1, uk−2, . . . , uk−m]⊤

Then, the augmented dynamics g that represent (13) are:

yk+1 = g(yk, uk, wk) :=[ỹ⊤
k+1, uk, uk−1, . . . , uk−m+1]

⊤

= [ỹ⊤
k+1, uk, y1

k, . . . , ym−1
k]⊤

where the underlying state ỹk+1 is computed as follows:

ỹk+1 =

{
g̃(ỹk, uk) = g̃(y0

k, uk) if wk = 0

g̃(ỹk, uk−wk
) = g̃(y0

k, ywk

k) if wk > 0

The augmented reward function r that represents r̃ is:

r(yk, uk, wk) :=

{
r̃(ỹk, uk) = r̃(y0

k, uk) if wk = 0

r̃(ỹk, uk−wk
) = r̃(y0

k, ywk

k) if wk > 0

8

This framework is general enough to allow any nonlinear
dynamics g̃. In all the simulations (Sec. 5.1–5.3), we apply
it to an inverted pendulum driven by a DC motor, with two
states: angle α and angular velocity α̇, and a voltage input
ũ. The continuous-time dynamics are given e.g. in [7], and
are discretized via numerical integration with Ts = 0.05 s to
obtain g̃. The goal is to stabilize the mass pointing upwards
(corresponding to α = 0), and the maximum voltage (3 V)
is insufficient from some initial states to bring the mass up
in one go; instead it must first be swung back and forth to
accumulate energy. To perform these swing-ups, the control
therefore requires large planning horizons, and adding time
delays further increases the difficulty.

The reward is taken quadratic, −(5α2 + 0.1α̇2 + ũ2),
and normalized to [0, 1] using the knowledge that ũ ∈
[−3, 3] V, as well as the state bounds α ∈ [−π, π] rad,
α̇ ∈ [−15π, 15π] rad/s enforced by saturation. The reward
can be written as a function r or r̃. We take discount fac-
tor β = 0.97, corresponding to γ =

√
0.97. 1 There are

Nu = 3 controlled modes: modes 1 and 3 correspond to
the maximum-magnitude voltage levels, namely −3 and
3 V, while mode 2 is a stabilizing, linear state feedback
ũ = K · [α, α]⊤ saturated to ±1.5 V. The gains K are
designed with discounted LQR on the linearized dynamics
around zero, see Ch. 3 of [2]. Note that this lower-level
feedback is on the system side, so it is not affected by de-
lays. It only stabilizes the system from the neighborhood of
the target equilibrium, and cannot perform the (nonlinear)
swingup. The delay is either 0 or 1 steps, leading to Nw = 2.
It should also be noted that the implementation of OMSd
exploits the knowledge that rewards are 0 at max steps
to compute tighter bounds than the general formulas after
Assumption 1; the analysis remains conservatively valid.

5.1 Results in the unconstrained case

In the first experiment, the control and delay signals do not
have dwell time constraints (du = dw = 1). The max agent
applies OMSd in receding horizon as explained at the end of
Sec. 3. The min agent could apply any algorithm, but here
it uses OMSd, also in receding horizon. For each agent, a
small, medium, and large budget are tested; the min agent
values are smaller overall as it is intuitively easier to hin-
der via delays than to solve the task. Specifically, the budget
n of the max agent takes values 3000, 6000, 9000, and for
the min agent nw = 100, 500, 1000. For each combination
a 100-step long controlled trajectory is executed, and Fig. 6
reports the discounted returns obtained. Performance gen-
erally decreases for larger nw, as expected, since the min
agent becomes better at hindering the control. Performance
is better for n = 6000 than for 9000; this sometimes occurs
for planning algorithms, since small budgets (short horizons)
can lead by luck to good long-term solutions.

1 A numerical study in the unconstrained case of Sec. 5.1 shows
that taking β (or equivalently γ) much smaller or larger than
these values leads to lower performance in terms of the total,
undiscounted rewards.

3000 4000 5000 6000 7000 8000 9000
27

27.5

28

28.5

29

29.5

30

n

re
tu

rn

n
w

=100, return

n
w

=500, return

n
w

=1000, return

Fig. 6. Returns in the unconstrained case. Each curve shows the
evolution as n varies, for a given nw.

0 1 2 3 4 5
−5

0

5

α
 [

ra
d

]

0 1 2 3 4 5
−20

−10

0

10

α
’
[r

a
d

/s
]

0 1 2 3 4 5
1

2

3

u
 [

−
]

0 1 2 3 4 5

0.7
0.8
0.9

r
[−

]

t [s]

Fig. 7. A controlled trajectory. The modes 1, 2, or 3 chosen at
each step are shown by ‘x’ markers.

Fig. 7 shows a representative trajectory, for n = 9000 and
nw = 500, selected to have medium performance. The
swingup and stabilization are achieved, although the ini-
tial part with negative angles can be shortened to improve
performance, by applying a more the maximum-magnitude
mode 3 instead of the lower-magnitude mode 2 (which the
algorithm identifies e.g. for n = 6000).

5.2 Results with dwell-time constraints

Next, the delay is restricted to satisfy a minimum dwell-time
dw. Such a condition arises e.g. when the attacker wishes
to imitate a delay signal with a bounded rate of change.
Fig. 8 shows the dependence of the return on dw for n =
3000, nw = 500. Performance generally increases as the
delay signal must obey stricter constraints, although there is
a small decrease from 2 to 3, which may be due e.g. to a
lucky solution of the min agent.

5.3 Results in the Nash problem

So far the attacker (min agent) could observe the max mode
before it decided on the delay. In this section, we assume
that it cannot, which leads to a Nash setting as in Sec. 2.3.
The max agent can simply continue applying the Stackelberg
algorithm, in which case Proposition 2 and the Remark of
Sec. 4 hold. To allow a symmetrical reasoning to hold for
the min agent, it can still apply OMSd but it has to solve a
“reversed” Stackelberg problem where it is the leader and

9

1 1.5 2 2.5 3 3.5 4
27

27.5

28

28.5

29

29.5

30

d
w

re
tu

rn

Fig. 8. Returns as the min agent dwell-time limit varies. Note that
the vertical axis is kept constant in return plots to ensure they are
comparable.

3000 4000 5000 6000 7000 8000 9000
27

27.5

28

28.5

29

29.5

30

n

re
tu

rn

n
w

=100, return

n
w

=500, return

n
w

=1000, return

Fig. 9. Returns in the Nash case.

the max agent can react to its mode choice. The easiest
way to understand this problem is to swap the two agents
in problem (4), making the min agent the max one, with
swapped signals u′ = w and w′ = u, the same dynamics
g′(x, u′, w′) = g(x, u, w), and a reversed reward function
r′(x, u′, w′) = 1 − r(x, u, w). Then, (4) can be solved as
usual, with OMSd from the perspective of the new max agent
u′. Once both u and w = u′ have been decided, they are
applied and the procedure is iterated in receding horizon.

Fig. 9 shows the returns obtained for the same budgets as in
Fig. 6. The same trend of good performance with n = 6000
is observed, although now n = 9000 also works well; the
effect of nw is less clear than before.

Note that in [24], we provided simulation results for the
case when the delay is an uncontrolled random signal. This
illustrates that our method can be applied for robust control,
where the disturbance (here, the delay) is conservatively
handled as a smart min agent. We not repeat these results
here, moving on instead to a real-time example where the
delay is also random.

5.4 Real-time results for the rotational pendulum

We finally report a real-time control experiment, on a differ-
ent, rotational pendulum, in which the pendulum link is indi-
rectly driven via a horizontal link actuated by the motor. The
states are the pendulum and horizontal joint angles, α and
θ, and their angular velocities. The controlled modes u are,
in order: the minimum voltage −6 V, a stabilizing controller
saturated to±3 V, computed with discounted LQR as for the
simple pendulum above, and the maximum voltage 6 V. The
sampling time is 0.04 s, and the unnormalized, quadratic re-

ward function is ρ̃(x, u) = −15α2−0.05(α̇2+θ2+θ̇2+ũ2),

0 1 2 3 4 5 6 7 8
−20

−10

0

10

α
,

α
’

α [rad]

α’[rad/s]

0 1 2 3 4 5 6 7 8
−10

0

10

θ
,

θ
’

θ [rad]

θ’[rad/s]

0 1 2 3 4 5 6 7 8
1

2

3

u
 [
−

]

0 1 2 3 4 5 6 7 8
0.9

0.95

1

r

k T
s

Fig. 10. Real-time trajectory of the rotational pendulum.

with ũ the voltage. The delay is still 0 or 1 steps, and the
discount factor β = 0.95.

The pendulum is initially in the stable downwards position,
and the first control is computed as usual. Afterwards, the
procedure must be changed for real-time control. We cannot
wait until sampling instant k +1 to run the planner at xk+1,
since the execution time would be too long. Instead, planning
is run for step k + 1 already during sampling interval k.
However, the delay wk only becomes known at sampling
instant k + 1, once we get information about it along the
feedback path. Thus during sampling interval k we must
develop minimax trees from the predicted outcome states of
all possible delays. Instead of using a prespecified budget,
the sampling interval is divided equally among the trees
developed, with a safety margin to ensure the algorithm
finishes in time, and OMSd is run for each outcome state
until it exhausts the allocated time. Then, at k+1, we select
a control (in negligible computation time) from the tree that
corresponds to the actual measured delay. The control is
sent to the system, and depending on the delay, the system
will receive the latest computed control or a previous one.
In our experiment the network is simulated by artificially
generating delays that are uniform random.

The computer uses an Intel Xeon E5-1620 CPU at 3.6GHz
and has 16GB RAM. A C++ OMSd implementation is used.
As shown in Fig. 10, the pendulum is swung up and sta-
bilized despite the delay. A video illustrating the results
can be found at http://rocon.utcluj.ro/files/
rotpend_oms.mp4.

6 Conclusions and future work

We have studied optimistic minimax search for adversarial
switched problems, handling both the cases when the two
switching signals are unconstrained, and when they must
obey minimum dwell times. We have shown convergence in
a well-characterized way towards the optimal (constrained)
minimax value, and illustrated the algorithm numerically
and in real-time control.

When the uncontrolled signal evolves along a known Markov

10

chain, it will pay off to develop a tailored algorithm and anal-
ysis rather than conservatively assume the worst-case sig-
nal as above. Our optimistic method for stochastic Markov
decision processes in [6] is suited to this problem, while
the analysis will require significant changes to handle dwell
time constraints.

References

[1] H. Berliner, “The B* search algorithm: A best first proof procedure,”

Artificial Intelligence, vol. 12, 1979.

[2] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.

Athena Scientific, 2007, vol. 2.

[3] P. Bolzern, P. Colaneri, and G. D. Nicolao, “Design of

stabilizing strategies for discrete-time dual switching linear systems,”

Automatica, vol. 69, pp. 93–100, 2016.

[4] M. Breton, A. Alj, and A. Haurie, “Sequential stackelberg

equilibria in two-person games,” Journal of Optimization Theory and

Applications, vol. 59, no. 1, pp. 71–97, 1988.

[5] L. Buşoniu, J. Daafouz, M. C. Bragagnolo, and I.-C. Morarescu,

“Planning for optimal control and performance certification in

nonlinear systems with controlled or uncontrolled switches,”

Automatica, vol. 78, pp. 297–308, 2017.

[6] L. Buşoniu and R. Munos, “Optimistic planning for Markov decision

processes,” in Proceedings 15th International Conference on Artificial

Intelligence and Statistics (AISTATS-12), ser. JMLR Workshop and

Conference Proceedings, vol. 22, La Palma, Canary Islands, Spain,

21–23 April 2012, pp. 182–189.

[7] L. Buşoniu, R. Munos, and R. Babuška, “A review of optimistic

planning in Markov decision processes,” in Reinforcement Learning

and Adaptive Dynamic Programming for Feedback Control, F. Lewis

and D. Liu, Eds. Wiley, 2012.

[8] L. Buşoniu, E. Páll, and R. Munos, “An analysis of optimistic,

best-first search for minimax sequential decision making,” in 2014

IEEE International Symposium on Adaptive Dynamic Programming

and Reinforcement Learning (ADPRL-14), Orlando, 10–12 December

2014.

[9] H. Ehtamo and T. Raivio, “On applied nonlinear and bilevel

programming for pursuit-evasion games,” Journal of Optimization

Theory and Applications, vol. 108, no. 1, pp. 65–96, 2001.

[10] X. He, A. Prasad, and S. P. Sethi, “Cooperative advertising and

pricing in a dynamic stochastic supply chain: Feedback stackelberg

strategies,” Production and Operations Management, vol. 18, no. 1,

pp. 78–94, 2009.

[11] L. Hetel, J. Daafouz, and C. Iung, “Equivalence between the

lyapunov-krasovskii functional approach for discrete delay systems

and the stability conditions for switched systems,” Nonlinear

Analysis: Hybrid Systems, vol. 2, no. 3, pp. 697–705, 2008.

[12] J.-F. Hren and R. Munos, “Optimistic planning of deterministic

systems,” in Proceedings 8th European Workshop on Reinforcement

Learning (EWRL-08), Villeneuve d’Ascq, France, 30 June – 3 July

2008, pp. 151–164.

[13] K. Katsikopoulos and S. Engelbrecht, “Markov decision processes

with delays and asynchronous cost collection,” IEEE Transactions

on Automatic Control, vol. 48, no. 4, pp. 568–574, 2003.

[14] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,”

Artificial Intelligence, vol. 6, no. 4, pp. 293–326, 1975.

[15] R. E. Korf and D. M. Chickering, “Best-first minimax search,”

Artificial Intelligence, vol. 84, no. 1–2, pp. 299–337, 1996.

[16] G. Leitmann, “On generalized stackelberg strategies,” Journal of

Optimization Theory and Applications, vol. 26, no. 4, pp. 637–643,

1978.

[17] D. Liberzon, Switching in Systems and Control., ser. Systems and

Control: Foundations and Applications. Birkhauser, 2003.

[18] H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched

linear systems: A survey of recent results,” IEEE Transactions on

Automatic Control, vol. 54, no. 2, pp. 308–322, 2009.

[19] R. Munos, “Optimistic optimization of a deterministic function

without the knowledge of its smoothness,” in Advances in Neural

Information Processing Systems 24, J. Shawe-Taylor, R. S. Zemel,

P. L. Bartlett, F. C. N. Pereira, and K. Q. Weinberger, Eds., 2011,

pp. 783–791.

[20] ——, “From bandits to Monte Carlo tree search: The optimistic

principle applied to optimization and planning,” Foundations and

Trends in Machine Learning, vol. 7, no. 1, pp. 1–130, 2014.

[21] A. J. Palay, “The B* tree search algorithm – new results,” Artificial

Intelligence, vol. 19, pp. 145–163, 1982.

[22] J. Pearl, “The solution for the branching factor of the alpha-beta

pruning algorithm and its optimality,” Communications of the ACM,

vol. 25, no. 8, pp. 559–564, 1982.

[23] R. Postoyan, L. Buşoniu, D. Nešić, and J. Daafouz, “Stability analysis

of discrete-time infinite-horizon optimal control with discounted

cost,” IEEE Transactions on Automatic Control, vol. 62, no. 6, pp.

2736–2749, 2017.

[24] J. B. Rejeb, L. Buşoniu, I.-C. Morarescu, and J. Daafouz, “Near-

optimal control of nonlinear switched systems with non-cooperative

switching rules,” in Proceedings IEEE American Control Conference

(ACC-17), Seattle, US, 24–26 May 2017.

[25] W. Saad, Z. Han, H. V. Poor, and T. Basar, “Game-theoretic methods

for the smart grid: An overview of microgrid systems, demand-

side management, and smart grid communications,” IEEE Signal

Processing Magazine, vol. 29, no. 5, pp. 86–105, 2012.

[26] A. Tzes, G. Nikolakopoulos, and I. Koutroulis, “Development

and experimental verification of a mobile client-centric networked

controlled system,” European Journal of Control, vol. 11, no. 3, pp.

229–241, 2005.

[27] Y. Wang and S. Gelly, “Modifications of UCT and sequence-

like simulations for Monte-Carlo Go,” in Proceedings 2007 IEEE

Symposium on Computational Intelligence and Games (CIG-07) USA,

1-5 April, 2007, Honolulu, Hawaii, 1–5 April 2007, pp. 175–182.

[28] M. Wiering and M. van Otterlo, Eds., Reinforcement Learning: State

of the Art. Springer, 2012, vol. 12.

[29] J. Zheng and D. A. Castañon, “Stochastic dynamic network

interdiction games,” in Proceedings 2012 IEEE American Control

Conference (ACC-12), Montreal, Canada, 27–29 June 2012, pp.

1838–1844.

[30] F. Zhu and P. J. Antsaklis, “Optimal control of switched hybrid

systems: A brief survey,” Discrete Event Dynamic Systems, vol. 25,

no. 3, pp. 345–364, 2015.

[31] M. Zhu and S. Martinez, “Stackelberg-game analysis of correlated

attacks in cyber-physical systems,” in Proceedings 2011 IEEE

American Control Conference (ACC-11), San Francisco, US, 29 June

– 1 July 2011, pp. 4063–4068.

11

