Optimistic planning for control of hybrid-input
nonlinear systems !

Toana Lal ® Irinel-Constantin Morarescu ” Jamal Daafouz ® Lucian Bugoniu ®

& Technical University of Cluj-Napoca, Romania

b Université de Lorraine, CRAN, UMR 7039 and CNRS, CRAN, UMR 7039, Nancy, France

Abstract

We propose two branch-and-bound, optimistic planning algorithms for discrete-time nonlinear optimal control problems in
which there is a continuous and a discrete action (input). The dynamics and rewards (negative costs) must be Lipschitz
but can otherwise be general, as long as certain boundedness conditions are satisfied by the continuous action, reward, and
Lipschitz constant of the dynamics. We start by investigating the structure of the space of hybrid-input sequences. Based
on this structure, we propose for the first algorithm an optimistic selection rule that picks for refinement (branching) the
subset with the largest upper bound on the value. At the price of a higher budget, the second method reduces the reliance on
the Lipschitz constant, by refining all sets that are potentially optimistic. This effectively means that the Lipschitz constant
is automatically optimized. The way to select the largest-impact action along which to refine the sets is the same for both
algorithms, and still depends on the Lipschitz constant. We provide convergence rate guarantees for both methods, which
link the computational budget to the near-optimality of the action sequences returned, in a way that depends on a problem
complexity measure. We also give empirical results for a nonlinear problem, where the algorithms are applied in receding

horizon, and depending on the budget either one or the other algorithm works better.
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1 Introduction

We consider optimal control of nonlinear systems in
which the inputs (control actions) consist of a contin-
uous component and a discrete one; we refer to such
systems as hybrid-input. These systems can be encoun-
tered in several fields, such as robotics [2], [9], industrial
multiple-tanks systems [12], [14], [15], hydraulic sys-
tems [11], the automotive industry, for joint control of
engine power and the transmission gear [17], [8], etc. A
number of techniques were used for solving this type
of problems, such as branch-and-bound approaches [2],
switching control [9], or model-predictive control (MPC)
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[15], [11], [12], [14]. Compared to these methods, our ap-
proach can handle problems with more general dynam-
ics and cost functions, while focusing on infinite-horizon
optimal control, rather than finite-horizon. In addi-
tion, near-optimality bounds are provided, along with
two fully-specified, directly implementable algorithms
(which is not always the case with other approaches).
These bounds are then used for proving convergence
rates for both algorithms.

Specifically, we consider hybrid-input systems for which
the dynamics can be generally nonlinear and the cost
functions arbitrary, as long as both are Lipschitz with
respect to the state and continuous action. This is not
a greatly restrictive property, since usual dynamics and
cost functions satisfy the constraint. The continuous ac-
tion must be scalar, a restriction that can be relaxed
at extra computational cost. For such systems, we pro-
pose two methods, called OPHIS and SOPHIS: Opti-
mistic Planning for Hybrid-Input Systems, and Simulta-
neous OPHIS. Both algorithms are a nonstandard flavor
of MPC, produce at each given state an open-loop se-
quence, and are meant to be applied in receding horizon.
The two algorithms also belong to the optimistic plan-
ning (OP) class of algorithms. OP approaches explore
the space of infinitely long sequences of actions, and re-
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fine regions in which optimal solutions may be located.

OPHIS creates a partition of the set of hybrid-input se-
quences iteratively, by choosing for refinement at each
iteration an optimistic set, i.e. one that maximizes an
upper bound on the value. For any set that is chosen
for refinement, a dimension (time step) is also chosen,
together with the type of split (continuous or discrete).

OPHIS depends on the Lipschitz constant in two places:
set selection and dimension selection. In practice, the
Lipschitz constant is difficult to estimate: a too large
value makes the algorithm slow, and a too small value
invalidates it. Therefore, we introduce our second algo-
rithm, SOPHIS, which removes the dependence on the
Lipschitz constant in set selection, by refining several
sets per iteration: any that may be optimistic regardless
of the value of the Lipschitz constant. Although dimen-
sion selection still has to depend on the constant, we ex-
pect that set selection has a larger impact, and this intu-
ition is confirmed by experiments in Section 6: SOPHIS
is less sensitive to the value of the Lipschitz constant.

Regarding experimental performance, both algorithms
have their use: SOPHIS works better for larger budgets,
whereas for smaller ones, the OPHIS approach of focus-
ing this limited budget on one value of the Lipschitz con-
stant still pays off. Analytically, the convergence rate of
SOPHIS (when properly tuned) is almost as good as that
of OPHIS. However, this is not the full story: the fact
that SOPHIS expands sets for all possible Lipschitz con-
stant values means in effect that the rates are those for
the best possible value of the constant; in effect, SOPHIS
automatically optimizes the Lipschitz constant for the
set selection component.

The first method, OPHIS, has already been described
in our preliminary conference paper [7], where the fo-
cus was on deriving the method and empirically vali-
dating it in two separate problems. In addition, only an
a-posteriori guarantee was given for OPHIS. In this pa-
per we introduce an extension to this algorithm, namely
SOPHIS. Furthermore, we provide proof of convergence
rates to the global infinite-horizon discounted optimum
for both methods. We define a complexity measure of any
problem to which (S)OPHIS is applied, and prove that
the algorithms converge faster for smaller complexity
measures. In particular, in the simplest type of problem,
convergence is according to an exponential in a power of
the computational budget. This is significant because it
gives strong guarantees of near-optimality, which
to our knowledge, are not given for other hybrid-
input methods in the literature [2], [9], [14].

We exemplify OPHIS and SOPHIS in simulations. Both
methods succeed in controlling a robot arm where one
link is continuously controlled and the other can have a
brake either applied or not. OPHIS wins for small bud-
gets, but SOPHIS is better for large budgets and less
sensitive to the Lipschitz constant value.

OPHIS essentially combines optimistic planning for de-
terministic, discrete-input systems (OPD) [6], [13] and
OP for continuous-input systems (OPC) [1]. The new
algorithm SOPHIS, which does not need the Lipschitz
value in the set selection, is similar to the extension of
OPC to SOPC in [1]. The key novel technical challenge
here is that the structure of the hybrid space of solu-
tions is significantly more complicated than for either
OPC or OPD, and consequently so are the refinement
rules that we must come up with to explore this space.
OPHIS in fact specializes to OPD when the continuous
action is removed, and to OPC when the discrete action
is removed; and SOPHIS specializes to SOPC.

A branch and bound approach related to optimistic plan-
ning is used in [2], in combination with sparse direct
collocation. However, no near-optimality analysis is pro-
vided there. A key difference between usual hybrid-input
control approaches and (S)OPHIS is that the former
primarily concentrate on stability, such as in [9], where
a switching control strategy is employed, whereas here
we aim for near-optimality. In effect, by using discount-
ing and imposing a joint condition on the discount fac-
tor and Lipschitz constant of the dynamics, the system
dynamics are instead required to satisfy a certain con-
tractiveness property. Promising guarantees of stability
have been obtained both for the exactly optimal solu-
tion of general discounted optimal control [13] and for
discrete-input optimistic planning [5]. However, the be-
havior of (S)OPHIS when refining continuous actions is
much more intricate, and analyzing its stability is left
for future work.

In the landscape of tree search methods [3], OP is a best-
first method, since it aims to refine the optimistic set.
Compared to Monte-Carlo tree search [10], which uses
random sampling to make the search more efficient, the
OP flavor that we use has the advantage of providing
deterministic guarantees.

Next, Section 2 formalizes the problem and Section 3
discusses the background on OPC, SOPC, and OPD.
OPHIS and SOPHIS are described in Section 4, while
Section 5 provides the convergence rate analysis. Finally,
Section 6 gives simulation results for a two-link robot
arm, and Section 7 gives the conclusions of this paper.

2 Problem statement

We consider an optimal control problem for a hybrid-
input, nonlinear system xx11 = f(2g, ux), witha € X C
R™ and u € U consisting of a continuous action and a
discrete one:

up = [ex di]” (1)

where ¢, € R and di, € {0,1,...,p}, p € N. We define
a reward function p : X x U — R, that takes as in-
put a state-action pair (zg, ug): 141 = p(@, ug). Start-
ing from an initial state xy, we define an infinitely-long



sequence of actions us = (ug, U1, -
horizon discounted value:

v(Us) = nykp(mk,uk) (2)
k=0

.) and its infinite-

where v € (0, 1) is the discount factor (note that v = 1is
excluded). We aim in principle to find the optimal value

*

v* := sup,_ v(us) and a sequence that achieves it.

Assumption 1. We have (i) v, € [0,1] and (i) ¢ €
[0,1].

Together with discounting, the bounded rewards ensure
boundedness of the sequence values. Bounded costs are
typical in e.g. reinforcement learning for control [16] and
they could follow either from physical limitations in the
system, or from saturating an a priori unbounded reward
function, which changes the optimal solution but may
be sufficient. Note that now U = ([0,1] x {0,1,...,p}).
The restriction to scalar continuous actions can be re-
laxed, but at significant extra computational cost for the
extended algorithm; see [1], supplementary material for
such an extension in OPC. The growth would be expo-
nential in the number of inputs.

Assumption 2. (i) Both the dynamics and the rewards
are Lipschitz with respect to the state and the continuous
action, i.e., ALy, L, s.t. Yz,2' € X and ¢,c’ € [0,1]:

£ (@, e, d]™) = (', [, dIT)| < Ly (|l = 2] + [e = ¢'])

p(x, e, d)") = p(', [¢/,d)T)| < Ly([le —2'|| + e — C('\))
3
(ii) The following inequality is satisfied:

’ny <1 (4)

It should be noted that Lipschitz continuity (i) is only
imposed w.r.t. the continuous component c of the action;
whereas the variation w.r.t. d can be arbitrary. This is
a useful feature because switches often induce disconti-
nuities in the system. Note also that condition (i) allows
the dynamics and rewards to be nondifferentiable as long
as they are still Lipschitz. This helps to model effects
like saturations, actuator dead-zones, etc. Condition (ii)
means that the dynamics need not be strictly contrac-
tive on their own, but should become so when combined
with a shrink rate equal to the discount factor ~.

Lemma 3. For any two sequences Uy, ul, € U™, we
have: b1
— 1—(Ly)P™* 4P
k f
o) 0] < Ly 3 lex—ech =~ bt
k=0 f

()
where D is equal to the first step k at which dy, # dj,.

The proof of Lemma 3 can be found in [7]. The prop-
erty in Lemma 3 drives our entire algorithm: actions will
be prioritized for refinement according to their impor-
tance in (5). The two terms on the right-hand side of

the inequality correspond to continuous and discrete ac-
tions, respectively, and are fundamentally different from
each other. When there is no continuous action, the sum-

D
mation disappears and the formula simplifies to ﬁ—v,

the OPD metric [6]. Conversely, eliminating the dis-
crete action is equivalent to taking D — oo, so we get

J%Lf Y no lek — ci|7*, the OPC metric [1].

3 Previous optimistic planning algorithms

OPHIS specializes to OPD when there is no continuous
action, and to OPC when there is no discrete action. Un-
der some conditions, SOPHIS also specializes to SOPC
when there is no discrete action. Therefore, understand-
ing these basic algorithms is important.

Optimistic planning for continuous actions (OPC) aims
to find an infinitely-long sequence of continuous actions
cx that maximize the objective function v, without dis-
crete component d. The full explanation is given in [1];
here we will provide a short description of the algorithm.
OPC refines a collection of infinitely-dimensional (hy-
per)boxes of the form (ug X - -+ X pg—1 % [0,1] x [0,1] - -)
where puy is the interval of actions at step k, and K is
the first unrefined dimension; from there on, all the in-
tervals are full, [0, 1]. OPC starts with the full set of se-
quences for K = 0, and iteratively refines it by selecting
at each iteration an optimistic set with the largest upper
bound on the value, and splitting it into M equal pieces
along a well-chosen dimension. For each box, OPC needs
to simulate the system with the sequence at the center
of the set, up until step K — 1, and store the resulting
state and reward trajectories. Finally, OPC returns such
a center sequence that maximizes the discounted value
along these K steps.

SOPC [1] is an extension of OPC, where all the sets
that may have the largest upper bound for any Lips-
chitz value are expanded. Both the selection and split-
ting rules, through modifications, become independent
from the Lipschitz constant.

Optimistic planning for discrete actions (OPD) [6] is
an algorithm used for systems with discrete inputs. It
works by building a tree, starting from a root node corre-
sponding to the entire set of possible actions {0, ..., p}°°.
Then, at each step, an optimistic leaf node is chosen for
expansion, by maximizing an upper bound. Each node
is expanded by making its next discrete action definite.
For instance the root node will have p + 1 children, one
for each value of dy, and the remaining actions remain
free. Expanding any level-1 node makes the action d;
definite with p 4+ 1 children at level 2, and so on. OPD
returns a sequence on the tree with maximal sum of dis-
counted rewards for the definite actions.



4 Hybrid-input algorithms

In the sequel we derive two novel algorithms that can
search for sequences of hybrid inputs. The main idea is
to iteratively split an optimistic set of inputs like in OPC
and OPD, but unlike those algorithms, by refining either
the discrete or the continuous action. For this, we look
at the uncertainty on the value of the set, and choose
the action with the largest impact on the uncertainty.
The key technical novelty compared to OPC and OPD
is that continuous- and discrete-action refinements must
be alternated, in a way that is dictated by the intricate
geometry of the space of hybrid-input sequences.

A set is represented by an interval p for each continuous

action and a discrete action set o for each refined step k:
o0

Si = [T (i i) (6)

k=0

where by the product of sets we mean the repeated appli-
cation of the cross-product x, and notation (4, o) means
a set in which ¢ € p and d € o. For clarity, from now on
we will refer to the set per step k, (1ik, 04k), as a pair,
and the infinite-horizon S; as a set.

A set also has two characteristics: D; and C;, represent-
ing the number of refined discrete and continuous di-
mensions, respectively. For all &k > C;, p; 1 = [0, 1]. For
all k < Dj, 0; , = d; i, asingle, definite value, and for all
k> D;, 0,5 ={0,1,...,p}. A sequence of actions corre-
sponding to each set is then (u; 0, u; 1, Ui 2, ...), where:

Ui | = [Ci,k; di,k}T (7)

and ¢, € fik, dix € 0ik. A continuous split can be
done along any dimension k < C;, by dividing the in-
terval p; ) into M equal pieces and thus generating M
new sets. A discrete split is always done for dimension
k = D;, by adding p + 1 new sets that make discrete ac-
tion dy, definite, one set for each discrete possibility. Note
that the ways of splitting continuously and discretely,
respectively, are fundamentally different. We provide ex-
ample splits of each type below.

4.1 OPHIS
In this subsection, we focus on the OPHIS algorithm.

In order to decide which set to split, let us first consider
reward 7; g+1 = p(®i g, Ui k), where with a slight abuse
of notation we now refer by ¢; j to the specific action that
is at the center of interval p; ;. Define then the sample
value of a set i:

Difl
)= Yri (8)
k=0

Each continuous interval p; , has a certain length a; .
For k > C}, a; 1, = 1. For each set, we define its diameter
in the semimetric of (5):

sup  |v(us) — v(ul,)| < 4(d)
. uOo,ufx,GSDz‘.il 1= (7L )Di—k D; (9)
(5(7,) = Lp Zk;O a; k7Y # + I/,,Y

Given the sample value of a set ¢ and its diameter, we
have the upper bound:

B(i) = v(i) + 8(i) (10)

so that v(us) < B(i),Vus € S;. This inequality is
shown as follows. By the definition of set S;, for all k <
D; we have d, = o, and ¢ € p; g, 80 |c
a; . All the quantities without subscript ¢ refer to the
sequence Uq,. Thus:

ZW Th+1 = Z Y Tkl t Z Vorit

= (i) +0(i ) = (i)
(11)

where the bound on the first summation (in square
brackets) follows as in [7], and the bound on the second
summation holds because all rewards are at most 1.

Denoting A as the collection of all sets, OPHIS itera-
tively selects for refinement at each iteration an opti-
mistic set that maximizes the upper bound:

il = arg max;¢, B(i) (12)

In order to decide whether we have a continuous or dis-

crete split of S;;, and along which dimension, we look at

the contribution of each dimension k up to D;+ — 1 to
D.

the diameter (9), as well as at the contribution % of

the first unrefined dimension. Whichever contribution is
the greatest dictates where we split. Thus:

k]' — (’VLf)Dﬁik}
1-— ’ny

(13)

kT = arg maXge o1, 0, } {Lplit kY

R 1=GLpPit T P

1—~Ly — 1—
crete split, at dimension D;+. Otherwise, we have a con-
tinuous split, along dimension min(kf, Cﬂ). Recall that
for dimensions k between C;+ and D,: — 1 the size a of
the interval is 1. Further, note that by this rule, we al-
ways have D > C' for any set.

and if Lya;+ v

For compactness reasons, we shall denote the contribu-
tion of a dimension k in the continuous part of the di-

k1=(yL)P"
1—’YLf

ameter with A\, = L,ax7y
An example is given in Figures 1 and 2, for a con-
tinuous refinement and a discrete one, respectively.
In both cases, we start from a set ¢, which al-
ready had 6 discrete refined dimensions (D; = 6),
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Fig. 1. Example of continuous split: top - states or rewards
trajectories, middle - discrete actions, bottom - continuous
intervals

and 5 continuous discretized dimensions (C; = 5).
The set is S; = {([4/9,5/9],1) x ([1/3,2/3],0) x
(12/3,11,0) x (10,1/3], 1) x ([1/3,2/3],1) x (10,1],0) x
([0,1],{0,1, ...,p})*>}. We take the center of the interval
as the continuous action, and thus we will have the fol-
lowing sequence of actions ((1/2,1), (1/2,0), (5/6,0),
(1/6,1), (1/2,1), (1/2,0)). Then, f and p are called at
each step, for this sequence of actions from xzg, to deter-
mine both the sequence of states and rewards for set S;.
In this example, there are 2 possible discrete actions, 0
and 1, and M = 3.

Figure 1 shows a continuous split, along dimension 1. In
the figure, one can observe in black the parent set, from
which M = 3 new sets are formed, having the same con-
tinuous intervals for all dimensions other than k = 1, and
the same discrete actions. The number of refined con-
tinuous dimensions C' remains 5 for all children sets and
D remains 6. The resulting intervals at k£ = 1 are shown
with different colors and styles. At the top of the fig-
ure, we have added, symbolically, a trajectory that rep-
resents the states and the rewards. These are the same
until step k = 1 (the refined dimension), and differ af-
terwards,since the continuous actions at step 1 will be
7/18, 1/2 and 11/18, respectively. The middle set will
have the same continuous action and trajectories as the
parent, so these trajectories can be reused.

Figure 2 shows what a discrete split looks like, starting
from the same parent set. A discrete split implies always
refining dimension D;, in this case 6. One can see the
newly added children with colors and different line styles.
They inherit the continuous intervals from the parent, as
well as the previous discrete actions. The sample values
are the same for the children sets, until dimension k& = 6,
and then they differ, based on the new discrete action.

Overall, we create a tree structure, where each set is a
node in the tree. Whenever a discrete split is done for
set i, p 4+ 1 children are added to the node representing
set ¢ in the tree. In the case of a continuous split, M
children are added instead. An example of such a tree
can be seen in Figure 3. Discrete splits are represented
by blue, continuous lines and continuous splits by red
dotted lines. As we can observe, for the root node, all
continuous intervals are [0, 1] and all discrete actions are
undefined. Then, by a discrete split, we get two new sets,

0 1 2 3 4 Ci D; k

Fig. 2. Example of discrete split: top - states or rewards
trajectories, middle - discrete actions, bottom - continuous
intervals

w={[0,1],[0,1],...

u={[0,1],[0,1],...}

d={0,0,0,...}

Sy ooeeees T Sy S5
u={[0,1/3],[0,1],...} ={[1/3,2/3],[0,1],...} w={[2/3,1],[0,1],...}
d={1,0,0,...} d={1,0,0,...} d={1,0,0,...}
Se Sy

w={[1/3,2/3],[0,1],...}
d={1,0,0,...}

w={[1/3,2/3],[0,1],...}
d={1,1,0,...}

Fig. 3. Example of tree

where the first discrete action is defined as 0 for set Sy,
and 1 for set Sy, respectively. In the same way, 2 new sets
are formed in Figure 2, by defining the discrete action at
step D; = 6. Then, set S5 is chosen for refinement, and a
continuous refinement on dimension 0 is done. This adds
sets S3,S4, S5, each with a third of interval for the first
dimension. Again, this is similar with the continuous
split done in Figure 1, where 3 new sets are added, each
with the interval for the second dimension being a third
of the interval of their parent set.

Note that even though the interval refinements are dis-
crete at each step, asymptotically, after a large number
of expansions, the algorithm can reach arbitrarily close
to any continuous value; in other words, the set of ap-
plicable actions is dense in the unit interval.

We have mentioned before that OPHIS specializes to
OPC when there is no discrete action, and to OPD when
there is no continuous action. OPC chooses a set to ex-
pand based on an upper bound given by b(i) = v(i) +

0(i) = EkC’:El ’ykri,k-H + maX(l_L#”Lf, 1) ZI?;O fykai7k.
The maximum is there to cover with a unified formula
the contribution of discretized and undiscretized (unsim-
ulated) dimensions [1]. A dimension to refine is chosen
in OPC as kf = arg maxkzoy___’cifykaitk, without com-
paring to the discrete-action contribution because there
is none. Note that the OPC diameter is differently struc-
tured only for convenience reasons, and in fact a tighter
diameter can be written:

' 1— (yLy)“ i
=L, a;, kvk —|— 14
Z L—~Ly L—n 1)




This follows in the same way as the diameter (9) of
OPHIS, except that now instead of stopping at D;, we
stop at C; because we have not discretized actions fur-
ther so their rewards are unknown.

For OPD, the optimistic set is chosen for expansion

D;
based on an upper bound given as b(i) = v(i) + ?—77? we
do not need to take into account any continuous-action
deviations from the center sequence.

So that we are able to reuse the center sequence at a
continuous split, we impose for the remainder of the
paper that M is odd (this will also help in the analy-
sis). Next, a pseudocode of the method is given in Al-
gorithm 4.1. We must pass the model of the system, as
well as the initial state. The initial set Sg represents the
root of the tree, with all the continuous intervals be-
ing © = {[0,1],[0,1],[0,1], ...} and the discrete actions
not yet defined as certain values, but allowing the sets
of all possible values {0, 1, ..., p}. This is because no re-
finement has been done yet; as such, we also have that
Dy = Cyp = 0. An important parameter is the budget
n , which represents the number of simulations of the
system dynamics that we are allowed to perform. The
algorithm outputs a near-optimal sequence of actions.

Algorithm 1 OPHIS

1: input state xg, model f, p, split factor M, discrete
set {0,1, ..., p}, budget n, Lipschitz constants L and
L,, discount factor

2: initialize collection of sets A with Sg, Dy = 0, Cy = 0;

3: while budget still available do

4: select set if = arg max;c, B(i);

5 select dimension with max contribution for con-

tinuous actions kT = arg MaXke{0,1,...,D,1 } Ak

D
6: if Apr < % then /*split discrete™/
7 create p + 1 children sets from if;
8: children sets inherit continuous intervals and
discrete actions up to dimension D, — 1;
9: create one child set for each d - this action is
added for dimension D ;
10: all children will have D = D;+ + 1 and
C = Ci;
11: else/*split continuous*/
12: expand set if along kT by creating its M
children sets;
13: children sets inherit continuous intervals and
discrete actions up to dimension D, — 1;
14: interval at step k' is refined by splitting into
M equal parts;
15: all children will have D = D,y and C' = Cjt

lfkjJf 75 C,L‘T, or C' = Cif +1 lfk]L = C,ﬁ;
16: end if
17: end while
18: output sequence @ of set i* = arg max;ep v(i)

4.2 SOPHIS

In this section, we discuss an extension of the OPHIS al-
gorithm, in which we have a different set selection rule.
To avoid assuming knowledge of the Lipschitz constant
for this rule, we will expand all the sets that may be opti-
mistic for any value of this constant. Note however that
the Lipschitz constant must still satisfy Assumption 2.
Recall that both methods create a tree of sets, and de-
note by H the depth in this tree. Quantity H represents
the sum of continuous and discrete expansions done in
order to reach a certain set. Since all sets have the same
shape, diameters (i) are the same at a given depth, so
the maximum-upper-bound set at that depth can only
be a set with the largest value v(7). Thus, at each depth
H that still has nodes unexpanded, we expand the set
with the greatest v value among all sets at that depth.

To prevent expansions from continuing indefinitely we
also configure a maximum depth Hy,ax(n) up to which
the expansions are allowed to continue when the budget
spent so far is n. If Hy.x grows fast with budget n, the
algorithm will favour deep searches. On the contrary, a
slower growth with n allows us to do a search focused on
breadth. More insight into choosing Hy,ax will be pro-
vided in the analysis. Of course, expanding several sets
per iteration comes at an extra cost. However, as we will
show in the analysis, this does not have a great impact
on the guarantees and in simulations performance is of-
ten improved.

The dimension selection rule for SOPHIS will remain the
same as for OPHIS. This means that it will unfortunately
still depend on the Lipschitz constant, and there is no
way to avoid this.

As previously mentioned, the extension from OPHIS to
SOPHIS is similar to the one from OPC to SOPC [1].
Both SOPHIS and SOPC refine several sets per itera-
tion, based on the best value at each depth. Moreover,
SOPHIS would specialize to SOPC if there was no dis-
crete action and if SOPC were to use the tighter diame-
ter (14) of Section 4.1. A pseudocode of SOPHIS is given
in Algorithm 4.2.

4.8 Discussion of OPHIS and SOPHIS

The following remarks apply for both OPHIS and
SOPHIS. We first discuss the algorithms inputs that are
selected by the user. The budget should, of course, be
taken as large as computationally feasible to get as close
as possible to the optimal solution. Moreover, as previ-
ously mentioned, we set M to be odd, such that we can
reuse the middle sequence when we have a continuous
split. This works because we always consider the middle
of the interval p;  as the continuous action. We suggest
taking M to be 3, the smallest feasible odd value.

Regarding now the Lipschitz constants Ly and L, while
in principle they are given by the problem, in practice



Algorithm 2 SOPHIS
1: input state xg, model f, p, split factor M, discrete
set {0,1, ..., p}, budget n, Lipschitz constants L and
L,, discount factor v, Hmax(n)

2: initialize collection of sets A with Sy, Dy = 0, Cy = 0;
3: while budget still available do
4: H = smallest depth with unexpanded nodes;
5 if H > Hpax(n) then
6: stop and exit the loop;
7 else
8 while H < Hpax(n) do
9 select set iT = arg max;c,v(4) ;
10: select dimension kT = arg max \;
ke{0,1,...,D,; }
D
11: if Ayt < 3= then
12: split discrete (see Algorithm 4.1);
13: else
14: split continuous (see Algorithm 4.1);
15: end if
16: H=H+1,
17: end while
18: end if

19: end while
20: output sequence 4 of set i* = arg max;ea v(7)

they may be difficult to compute (especially L), or com-
puting them might give overly conservative values that
work poorly across most of the state-action space. Thus
we suggest treating them as tuning parameters. Simi-
larly, v may be fixed by the problem objective; if it is
not, it can be treated as a tuning parameter that should
not be very far from 1. Larger « will promote looking for
longer-horizon solutions at the expense of refining less
the continuous actions, while smaller v will refine more
the continuous actions at the expense of the horizon.

Both algorithms should be applied in receding horizon,
by running them at each step, applying the first ac-
tion from the returned sequence, and then repeating the
procedure. Overall, a closed-loop control scheme is ob-
tained. Moreover, we assume a setting in which simulat-
ing the system dominates computation, so to obtain a
measure of the required computation, we need to look at
the number of calls made to the dynamics f and the re-
ward function p. For a discrete expansion, we make p+ 1
calls to simulate the new discrete step with each of the
p+ 1 discrete actions and continuous action 0.5. In case
of a continuous split of set if at dimension k', we need
(M —1)(D;+ — k') calls to simulate the M — 1 sequences
(except the reused center one) from step kf to step D;t.

Recall that the continuous input ¢ is bounded and in
[0,1]. This unit interval can be obtained by rescaling a
different bounded interval, so bound constraints on c are
natively supported. Other constraints for the continu-
ous action can also be implemented in the algorithm, by
excluding subtrees of solutions that would violate the
constraint. However, the analysis that follows in Section
5 will not take such constraints into account.

k q C
Fig. 4. An example of the splitting function s(k)

5 Analysis

In this section, we prove that the sub-optimality of the
OPHIS and SOPHIS algorithms converges to 0 at cer-
tain rates with increasing budget n. Recall that the bud-
get represents the number of system dynamics simula-
tions that we are allowed to do. First, we will find an
upper bound for the diameter of an arbitrary set ¢ at
some depth H in the tree, in Section 5.1. For this, we
will look at the way the number of splits per dimension
evolves. Then, in Section 5.2, as preliminaries for get-
ting the convergence rates of the algorithms, we define a
near-optimal tree that the algorithms focus on expand-
ing, along with its branching factor. Afterwards, using
this branching factor, we will establish a relation be-
tween the depth H and the budget n for OPHIS and
SOPHIS, in Sections 5.3 and 5.4, respectively. Each of
these relations, by replacement in the diameter formula,
leads to convergence rates: for the OPHIS algorithm in
Theorem 11, and for SOPHIS in Theorem 13.

It is important to note that we follow similar steps as
[1], but we heavily adapted them to include the fact
that we also have discrete splits. The OPC and SOPC
algorithms in [1] only deal with continuous splits, and do
not have such an intricate space of expansions. We also
have fully new questions that did not arise before, such
as the difference between the number of discrete split
dimensions D and the number of continuous ones C'.

5.1 Splitting behavior and upper bound for diameter

First, we define the depth of a given set as being the sum
of continuous and discrete splits made in order to reach
the set. The number of discrete splits for a set will be D,
and the total number of continuous splits is denoted by
h. Therefore:

H=h+D (15)

First, we will derive an upper bound for the diameter.
We will focus in the beginning on the number of con-
tinuous splits, h. Let us define the continuous splitting
function s(k), which is the number of continuous splits
per dimension k. An example of this function is given
in Figure 4. This function is decreasing with at most 1
at each k, as we will see next. There will be ranges of
dimensions for which the splitting function is the same.
Quantity g represents the number of ranges at the end,
that have a smaller length than the rest.



Assumption 4. M~ > 2.

This assumption is easy to satisfy, since M is at least
3, so as to reuse the center sequence, and generally, we
would use values for v of at least 0.7. Smaller values for
determine a very short-horizon, almost myopic objective
that will likely not work in most problems.

In what follows, we take a better look at the s-ranges.

Lemma 5. a) The first k in a constant s-range is pre-
ferred for refinement to later dimensions in the same
range. b) s(k) decreases in steps of at most 1.

Apart from the proof of Lemma 10, which was already
given in [7], the proofs for all theorems and lemmas, in-
cluding that of Lemma 5, are given in the supplemen-
tary material at http://busoniu.net/files/papers/
sophis_suppl.pdf.

Next, we need a better understanding of how the s ranges
look. For this, we will denote the lengths of the ranges
with 79, 71, ..., 7n, with IV being the last range, which is
infinitely long and for which s = 0, meaning that there
has been no continuous split for those dimensions. We
will seek upper and lower bounds on these range lengths.

Lemma 6. For any set, we have:

To < T"

rje{rr =17}, 1<j<N-—g¢q (16)
;<7 =1, N-qg<j<N

TN = X

log(M)

where 7 =

Toa(i/5y and 77 = [7]. This means that other

than the first and last ¢ ranges, all s-ranges have either
the length 7* or 7% — 1.

Next, we look at the difference between C' and D, de-
noted G, which is nearly constant.

Lemma 7. Let G be the smallest positive integer j, for

which Lp% > % G increases from 0 to G in the

beginning, and then it always oscillates between G and
G—1.

This is important in our analysis, where we will use upper
and lower bounds on C, and since G is roughly constant,
bounds on C' will translate to bounds on D.

Overall, Lemmas 5, 6, and 7 are important in the fol-
lowing way for determining the upper bound on the
diameter. Since the contribution to the diameter of a
continuous dimension depends on the interval length
ap = M%) we need to find a lower bound on s(k)
for a fixed h. Knowing how the s-ranges look like from
Lemma 6, we can get a lower bound on s for a fixed C,
followed by both upper and lower bounds on C. This
will eventually give us an overall lower bound on s, as

a function of h and of the lower bound on C'. With the
help of Lemma 7, this translates to a function of h and
the lower bound on D, which can then be utilized in the
diameter formula. Detailed proofs are in the supplemen-
tary material mentioned above. Overall, this results in
the following upper bound for the diameter:

Lemma 8. For some positive constants cy,cs,c3 and
any set i at any depth H = h+ D, §(i) < ¢1 (CQ +

2h(T* — 1))7M + gy V21

To understand this result, note that the first term in

the summation dominates the second one. Also, due to

V2h(7* —1)7
the fact that v < 1, the term ~ = asymptotically

dominates \/2h(7* — 1), causing the convergence to 0 of
the diameter. Using the asymptotic notation O, we will
have:

m?) (17)

§(i) = O(’y -
The O notation is derived from the Bachmann-Landau
notation, O. When the order of complexity of some
algorithm is O(f(y))log(f(y), we say O(f(y) =
O(f(y))log(f(y)), ignoring the logarithmic term. Here,
f(y) is any function; in (17), f is the power of v and
generic argument y is replaced by h.

Overall, we can observe that we have an exponential
decrease in v/h, as in [1]. However, the analysis is much
more involved, as we must take into account the discrete
splits as well.

5.2 Near-optimal tree and branching factor

In this subsection, we discuss the tree of near-optimal
nodes and define its branching factor m.

Let us define the set of near-optimal nodes at depth H:
Th={iat H|v(i)+dyg >v*} (18)

This is a sub-tree of the full tree explained earlier, in Sec-
tion 4.1, with an example in Figure 3. Both OPHIS and
SOPHIS will refine nodes from the near-optimal tree.
Now, denote the branching factor as m, as defined below.

Definition 9. The asymptotic branching factor is the
smallest m such that 3C > 1 for which |75 < cmH,
VH, where | - | represents the cardinality of the set.

Branching factor m represents the complexity of the
problem. In case of a smaller branching factor, the prob-
lem is simpler. The least complex problems correspond
to m = 1, meaning that only the optimal path will be
explored. It is important to note that m is not necessar-
ily an integer. It is at least 1, but its maximum value
depends on both M, the number of newly formed sets
in case of a continuous split, and p + 1, the number
of possible discrete actions, representing the number of



newly formed sets in a discrete expansion. We define
the maximum possible branching factor at any node as
Z = max(M,p+1). Therefore m € [1, Z], different from
the branching factors defined in [1] and [6], where there
are either only continuous splits, or discrete ones.

5.8 Convergence rate of OPHIS

So far, we have discussed the way that the splits look, in
the end getting a relation between the diameter and the
sum of continuous splits. Now, we want to go further,
to get a connection between the depth H and budget
n, and link both to the near-optimality. It is important
to remember that the depth H is the sum of h and D.
Firstly, we provide a bound equal to a diameter on the
near-optimality of the sequence returned that is explic-
itly available for use a posteriori, once OPHIS has run,
in Lemma 10. Then, the relation between the depth and
the budget, together with G allows us to use (17), which
is stated in h. This, in turn, leads to a relation between
the diameter and the budget, given in Theorem 11. In the
end, taking into consideration also Lemma 10, we get a
connection between the sub-optimality and the budget.

The a posteriori bound on the near-optimality of OPHIS
is the following [7]:

Lemma 10. The sequence i* returned by the algorithm
satisfies:

v* = (") < dmin
where dmin 18 the smallest diameter among all the sets
expanded by the algorithm.

Such properties are standard for OP algorithms; both
OPD and OPC ensure similar bounds. However, the
proofs are different, as it can be seen in the supple-
mentary material. Notably, a required property of in-
creasing set values along continuous splits is not trivial
for OPHIS, since we need to handle discrete and con-
tinuous splits at the same time. Note that we can also
compute lower and upper bounds on the optimal value:
v* € [v(i*), B*], where B* is the smallest upper bound
of any set expanded. Such bounds are popular in hybrid
systems, where they are called certification bounds [4].

Next, we give the relation between the budget and sub-
optimality of the algorithm, an a-priori convergence rate
guarantee.

Theorem 11. For large budget n, we have:
a) Form > 1:v* —v(i*) = 0<7\/T)
b) Form = 1:v* —v(i*) = 6(7”1/4%\/@)

Note that both quantities reach 0 asymptotically. The
convergence rate depends on the complexity m. We have
a faster decrease for a less complex problem (smaller m)
and vice-versa. This is similar to OPC in [1]. For m = 1,
we have a convergence to 0 with n'/4, as in OPC [1].

5.4  Convergence rate of SOPHIS

In this section, we want to find a lower bound on the
depth H reached by SOPHIS given a budget n, which
ensures we expand a node containing an optimal solution
at that depth; and then combine the lower bound with
Equation (17) to get a convergence rate of this second
algorithm. Recall that H also takes into account the
discrete expansions, being the sum of all splits needed
for a certain set.

Lemma 12. Given the budget n, define H(n) to be the
smallest depth for which the following inequality holds:

H
CZHZu(n) Y m" >n (19)
H =0

Then, SOPHIS expands a node containing the optimal
solution at depth H = min{H (n), Hynax(h)}, and the
sequence returned is 6 g -optimal.

Recall that Z = max{M,p + 1}. Reference [1] proves
this in the supplementary material. Their proof applies
directly here, where instead of M, we have Z, and in-
stead of h, we have H. Next, we find the convergence
guarantees of the SOPHIS algorithm.

Theorem 13. Consider the sequence i and the corre-
sponding set i* returned by SOPHIS. For large n:

a) form > 1, we take Hpax = n°, with € € (0,0.5) and
we have:

Ve — (i) = O(y(; <—1>1(1g—£>1gn))

b) form =1, we take Hyax = n'/3, and we have:

vt —o(i*) = é(w“<n1/6;\/2(7* — 1) min{Z, 1}))
We can observe that for m > 1, the exponent is %
times smaller than the one of OPHIS. This means that
we lose a bit of convergence speed compared to the first
method, but not a lot if € is small. Again, we see that
the branching factor m is a key factor in the rate, with
a smaller m leading to a faster convergence to 0. For
m = 1, the rate decreases with n'/6, which is a bit of a
loss in comparison to OPHIS, but still good, as it is an
exponential of a power of the budget n.

One issue that we have to discuss for SOPHIS is the
choice of Hpax. As in practice we do not know the actual
branching factor m, we cannot set Hpax “optimally”,
i.e. per the rule that for m = 1, n'/3 should be used, and
for m > 1, n® with ¢ € (0,0.5) is needed. A practical
solution is to first take Hpax as n1/3, in the hope of a
simple problem. In case the problem turns out to be more
complicated, this leads to a slower convergence rate, but
the algorithm remains valid.

This concludes our a-priori convergence rate analysis for
the two algorithms. The upper bound for the diameter
was a key step in establishing a relation between the



budget n and the convergence rate. We were then able
to prove that the sub-optimality of both OPHIS and
SOPHIS converge to 0 at different rates. This proves
the performance of our algorithms. Next, we give some
simulation results for both of them.

6 Simulation results

This section discusses the results of applying the al-
gorithms for a hybrid-input problem. A two-link robot
arm example is presented, with simulation results given
for both OPHIS and SOPHIS. In a previous paper [7],
OPHIS was also applied to a simple, two-tanks problem,
where it succeeded in recovering existing results from
the literature.

The robot arm has 2 joints, one continuously controlled
and one which can either have a brake set or not [2].
The state vector is represented by the two angles and
the angular velocities x = [01, 01, 06,, 02] The continuous
control action is the torque 77, corresponding to the first
joint, and the discrete action is represented by the brak-
ing torque 7. The dynamics are derived using Euler-
Lagrange and are given in [9], together with the model,
and they are not presented here, due to lack of space.
The parameters used are the same as in [2]. In addition,
we take the following values for the parameters that are
not given in the cited papers: the angle a = —7/12, 73,
will either take the value 0 or 1, and the maximum value
of 7 will be 20, which will be rescaled to 1 for contin-
uous action c. The numerical integration is done using
the Euler method, with 5 integration steps per control
sampling time, which is A = 0.05s. The goal is to get the
state to a desired setpoint x¢. The reward function is:

p(Xk,ur) = (10— |21, —21,|—|23,,, —23,])/10 (20)

where x4 is the state at the next step. We use a non-
differentiable reward to show that the algorithm works
in this case.

The following values were used for both algorithms: M =
3, budget n = 5000, Ly = 0.8, L, = 1.2, v = 0.8. The
starting position is xo = [1.2,0, 0.8, 0]. The desired final
state is x¢ = /2,0, —7/2,0]. In addition, for SOPHIS,
we take Hyaye = n%35. Recall that both algorithms are
applied in receding horizon, and the simulation is done
over 12 seconds.

The results for OPHIS can be seen in Figure 5, which
shows the evolution of the states and actions in time.
The top subplot presents the angles, and the middle one
the angular velocities. With blue continuous lines we
can see the states corresponding to the first, actuated,
joint. The red, dashed lines represent the states of the
second joint, which can only be influenced by a holding
brake. The last subplot presents the evolution in time of
the 2 actions: with blue continuous line ¢ and with red
dashed line d. Both angles reach their desired setpoints,
which are represented in black dotted lines. Also, the
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Fig. 6. SOPHIS: Evolution in time of the states and actions

final velocities are oscillating around 0, and the brake is
not set in steady state.

Figure 6 presents the results using SOPHIS. with the
subplots structured as in Figure 5. As we can see, the
angles reach their reference values (in black dotted line)
much faster than with OPHIS. This is also the case
for the angular velocities, which can be seen stabilizing
around 0 much quicker. We notice fewer switches of dis-
crete input d than when using OPHIS. Overall, SOPHIS
gives better empirical results.

A comparison with [2] is unfortunately not possible,
since, as stated above, there are several missing param-
eters (a, 7, and the maximum of 71), which have a great
influence on the model, according to other simulations
that we have run. Still, as previously stated, for the two-
tanks system presented in [7], we obtain the same results
as in the literature [15].

We also compare OPHIS and SOPHIS in terms of dis-
counted return, for several L values and different bud-
gets. The comparison is presented in Figure 7. For small
budgets, OPHIS is better since a focused search on one
value of the Lipschitz constant likely makes more sense
when computation is limited. When the budgets are
larger, SOPHIS starts actually exploiting its potential
by spending the extra computation to expand sets for
many possible values of the Lipschitz constant, which in
effect is similar to automatically finding the best value of
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Fig. 7. Discounted returns of the two algorithms for several
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this constant (for set selection). So we see that it starts
dominating OPHIS. In addition, as presented before, for
a large budget, SOPHIS manages to bring the states to
the reference value much quicker. Furthermore, we ob-
serve flatter curves in Figure 7 for SOPHIS. This means
that we have a smaller sensitivity to the value of L.

In the supplementary material, a comparison is made be-
tween the two algorithms when a disturbance is present.

In terms of computational time, for a budget n = 1000,
the execution time of one open-loop run is approximately
0.4s. If we increase the budget to n = 2000, the execu-
tion time becomes approximately 2.2s, while a budget
n = 5000 implies 9.7s. The simulations have been run
in Matlab, which is therefore not yet ready for real-time
control; however, C would accelerate the algorithm, see
[1] for an example of real-time control using SOPC im-
plemented in C and for a larger discussion on the topic.

7 Conclusions

Two algorithms are proposed for systems with with both
continuous and discrete actions: Optimistic Planning
for Hybrid-Input Systems (OPHIS) and Simultaneous
OPHIS. While OPHIS refines one set per iteration, us-
ing computed upper bounds for the returned values,
SOPHIS simultaneously refines several sets per itera-
tion. This eliminates the dependency of the Lipschitz
constant in the set selection. Theoretical guarantees are
given for both methods, where convergence rates are
proven, depending on a measure of problem complexity.
In simulations, the algorithms are successful for a two-
link robot arm problem, with SOPHIS proving to be the
better choice when a larger budget is available.

In future work we aim to study stability properties [13,5]
and perhaps even exploit stability in order to achieve
tighter bounds.
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Supplementary material for “Optimistic planning for control of
hybrid-input nonlinear systems”

List of main notations

x, X,u,U state, state space, action, action space
c,d continuous action, discrete action
f,u dynamics, sequence of actions
YTy PV discount factor, reward, reward fcn., value
Ly, L, Lipschitz constants of respective fcns.
C,D no. of cont. and disc. refined dimensions
W continuous action interval
o unrefined discrete action set
i,k;it kT set and dimension indices; selected indices
S set
a continuous interval length
M number of subintervals for splitting
n computation budget
B(i),6(i) upper bound, diameter of set
AL contribution of dimension k
in the continuous part of the diameter
h, H total number of continuous splits, depth
Sk number of continuous splits per dimension k
Tj length of s-ranges
T T, cC constants
G difference between D and C'
il near-optimal tree
m branching factor of near-optimal tree
Z maximum between M and p + 1
Hpax(n)  maximum depth function

In what follows, we will first introduce the proofs of
the theorems and lemmas presented in the main paper.
Then, we show simulation results for the previously pre-
sented acrobot, when a disturbance is present.

Proofs
Proof of Lemma 3

Consider the two sequences u., and ul, and D defined
as above. Denote by up and u’, the subsequences of ac-
tions up until dimension D —1, including this dimension.
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Then:

D—1
[v(up) — v(up)| = | Z Wk(rkﬂ — g1
k=0
D—1
<> Ak = gl
k=0
D—1
<Ly Y Al — 2l + ek — cil)
k=0
(21)
Then, from the first part of equation (3), we get:
len = 2]l = | f (@1, [ex—1,dx]")
— [(@h—1s (o1, dua] ")
< Ly(llwe-1 — ol + er—1 — ci_1l)
< Ly(Ly([lop—2 — w)_all +ler—2 — ko)
+[er—1 = i)
<... (22)
k
<N Liler—i = chy| + w0 — x|
i=1

k
= Z L}|Ck—z‘ — Chil
i=1

For the last equality, we used the fact that the state
sequences start from the same initial state, and so, zg =

xy. Then, |z, — 2| + |k — ¢ | < Zf:o ch\ck_i — il
Replacing this in (21), we have:

D—-1 E
[o(up) —v(up)| <Ly, Y A (Z Ller—i — Ck_i|>
k=0 i=0

:Lp(\co — c’o|(’y0 + ’ylL}e 4+ ...+ fyD_lL?_l)
+le =+ Ly 4 P TILYT?)
+...+]ep_1— C’D_1|(7D*1L(}))

= — (yLy)P*

1
:LPZ ek — ekl 1—L;
k=0
(23)
Starting with dimension k = D, the discrete actions dif-
fer, but we still have a maximum difference of 1 between



the rewards at each dimension. Therefore:
[v(uso) — v(uéo)l

<L, Z|ck—ck|’y ,ny - +Zl Ak (24)

D 1

1- (va) vD
=L, Y lex — &y -
= 1—~Ly 1—vy

Proof of Lemma 5

In order to prove a), let us take dimensions k and k 4 1
in the same s range, s(k) = s(k + 1). Recall that the
length of the interval, a = M ~*. Thus ax = aj11.

Recall that the contribution of a dimension k in the con-
tinuous part of the diameter is A\, = Lpakfyk%.

We want to prove that A\ > Ap4q. Since 7Ly < 1 and
v < 1, we have:

(YLy)P~F < (yLy)P~+ 1

from where:

1= (Lp)P™F > 1= (yLp)P 7 > (1= (vLp) P~

1— (yLy)P* je1 L= (Y Lyp)P 7Rt

L B 22 S Loag R P N e A
L T 1—~L;

which concludes the first part of our proof, since it im-
plies that the values of s are decreasing, and so the first
dimension in a constant s-range will always be preferred
to a later one in the same range. Now, we want to prove
that b) s decreases with at most 1.

Take a dimension at the end of some range. We shall
denote this dimension k. Then k + 1 is at the beginning
of the next range, and s = si+1 + 1. We have to show
that A\p < Ag41, since A\p > Ag41 would mean that k
would get expanded, causing a difference of 2 between
s(k) and s(k + 1). This translates to:

1—(yLp)P7* L= (0 Lp) Pt

L k L +1- Ny
Pk < Loty L

M=o (1= (yLy)P7F) < M7ty (1= (vLyp)P =)

1—(vLp)P™% < My(1— (vLy)P~+ 1)
This is implied by:

1— (yLy)P—*

—_—— < 2
T— (L)t =

13

which is true because:

1—(yLp)PF
L — (yLy)P—k-1

1 —’}/Lf

=1+ (vLy )MAW

Therefore, the first inequality holds, and s(k) decreases
in steps of at most 1. O

Proof of Lemma 6

Take some arbitrary k at the start of any range 7, and
denote the previous range by 7_. If we choose dimension
k for expansion, we have:

1— (,ny>D—k+T,
1-— ’)/Lf

pl—(yLy)P*
1-— ’}/Lf

k—1_

Lyag—r_7y < Lyayy

This translates to:

L— (yLy)P=F7 < My™ (1 — (vLy)P~F)
1 (L) P—kFT— -
1(:/("/f£f)D_k < My™

yLy < 1, therefore 1 — (yLy)P=F+7 > 1 — (yLy)P—*
As such:
M~y >1

Since this inequality stands for any range, we have found
an upper bound for any 7:

log(M) o
log(1/y) = (25)

Further, if we split at dimension k, this also means that:

B

1—(~L)P—F F1-(vL D—k—7
Lpak’}/k% > Lpak+r’yk+ (Vl_ffy)Lf
1~ (vLy)P* > My (1—(yLy)PFT)
a— L) > V(1= (yLg)P7FT)

T T —k—T1 LgP—*
7= <7y PR - DR
S v < (L) Mt - W)

From 7 < 7, we get ﬁ W, meaning that:
v - i < (VLp)P MGt — )
- LDk _
S e e S U 7 )

_ (yLpPk
aLpm ) <

log 47 +log(1 — (yLy)P~F)

(Lp)”
BTGP ) >

log M +log =577 yp=7

7 log~y + log(1

Tlog% +log(1 — (
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Fig. 8. Example of upper and lower bounds on 7

(vL§)T—(yLp)P*

log M ——£——=F—
> —ORIREOTT e (26)
log =
B
We note that limp_jp 007 = 11%%((1]\/4»3) = 7. This

means that the bound is tight. We must also note
that the lengths of the s-ranges are integer numbers.
We therefore denote 7 = [7]. An example plot of
upper and lower bounds, together with the numerical

luti £ £ th : L k1=(yLp)P7F

solution for 7 of the equation L,apy L, —
kr 1=(y L) Pk . ; ;

Lyagqy TW, can be seen in Figure 8.

This equation is important because in order to get the
bounds, we used inequality signs instead of equal; solv-
ing it with equal gives an idea where 7 “should” be. As
we can observe, for the most part (up until the very end),
the two bounds coincide, and therefore 7; € {7*,7* -1}
for the majority of the ranges. However, towards the
end (when k approaches D), 7 is no longer equal to 7.
We then need the “cutoff” dimension P, from which
the 7 ranges will be smaller than 7* — 1. We denote ¢
as the number of such ranges. To get P, we will solve
7 > 7% — 1 and get a constant, whose actual value will
be irrelevant. Thus, we have finally proven (16). O

Proof of Lemma 7

First, let us consider the initial regime. Both C' and
D are 0 at the start, no continuous or discrete split
has been made. Therefore G = 0 as well. Let us re-
call the rule for expanding continuously or discretely:
we compare the max contribution of the continuous side

t1-(yLg)P—* .
k % to the one corresponding to

a2
1—~"
k' = 0 and the contribution A\;+ = 0. The contribution
of the discrete side is ﬁ Therefore, we have a discrete
expansion at first, and G grows to 1. Until we have a

continuous expansion, all s(k) are 0, and the contribu-

Akl‘ = Lpakvy

the discrete action Then, for the first expansion,

. 1—(yLp)P" ;
tions A\ become L,M U'yk%. The comparison

14

_(~L\PF D—Fk
(vLy) and X

1—~Ly 1—v °

then becomes between L, !

From the definition of G in Lemma 7, by replacing j with
D —F, we will have discrete expansions until D = G = G.
Then, a continuous expansion along dimension k = 0
follows, decreasing G to G — 1 and increasing C' to 1.
This concludes the initial regime.

Now, let us consider any set, at any moment. We sup-
pose that the gap between D and C is G. We want to
prove that the gap does not increase to G' + 1, and it in-
stead decreases to G — 1. For this, we must prove that a
continuous expansion along kf = C' is done before a dis-
crete split. We do this by proving that the opposite is not

possible. In order for a discrete split to happen, it would
,YlD_’yk - LpM,S(k) lf(l'y_LryfI)‘JIc) K

this is not true for k = C = D — G, from the way that
G is defined. We also used the fact that s(k) = 0, for
k = C (recall that C represents the first undiscretized
continuous dimension). Therefore, whenever the gap G
is G, a continuous expansion along C will come before a
discrete split, decreasing the gap to G — 1.

Now, we consider any set, at any moment, when the gap
G is G — 1. We need to prove that the gap will increase
to G. This is proven if a discrete expansion is made be-
fore a continuous one along C'. Again, using the fact that

s(k) = 0, for k = C, a continuous split along C' would

_ D—k D—k
mean that LpM_S(k) ! glLfL)f > X — In this case,

mean that

,Vk. However,

ol 1—v
D—k=D—-C =G -1, so the definition of G would
again be contradicted, for a continuous split along C' to
happen before a discrete split. Therefore, when the gap
is G = G — 1, it will increase to GG, not decrease. This
concludes our proof. O]

Proof of Lemma 8

We want to find a lower bound on s(k) for a fixed h.
This is because the contribution to the diameter of a
continuous dimension depends on the interval length
ap = M%) Therefore, in order to find an upper bound
on the diameter, we need a lower bound on s. Let us
recall that h is the sum of continuous splits over all ex-
panded dimensions. Considering the number of contin-
uously split dimensions C' to be fixed for now, to get a
lower bound s, we can fill s with ranges of 7*. Then,
since sc¢(k) decreases with C for any k, we want to find a
lower bound C' on C'. We do this by filling s with ranges
of 1 (for 79 and last ¢ ranges) and 7 elsewhere. The two
ways of filling in s can be seen in Figure 9 and come
from (16). Since we consider the last ranges as having
the length 1, ¢ will be equal to P. We then have:



Fig. 9. Getting upper and lower bounds on the splitting
function s(k)
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< (e -
This means that:
2
N > h -1 (27)
T —1

Now, writing the expression for C' and replacing (27) in
it, we get:

C=P+14+(N-P—-1)(r*-1)
> P41+ 1 —P-2)(t*-1)
:P+1+\/2h771 (P+2)(t*—1)
C—k C—k
sclk) = [=1>=5+ =
_ \/2h7(—7;*_1) _ k—(if’Jrg) —(P+2) :ilg
Replacing this in the diameter formula, we get:
N D— 1 k1—(vLy)P D
0(1) = Lpdpmg M™% %Jff?
<L, Zf:ol MG _ECE _(py))
L kI=(yLp)PTF 4P
1—~Ly 1—v
= L[, M- (P2)
D-1 o 1—(yLs)Pk D
P (MY )R IR
= oM T (T (28)
(A= ()P + 2
< ClDM_\/%(:*i) + %
= a(C+ G)M*i@ S
\/m

= c1(ca + /2h(T* — 1))
41 A PHIEV2RF =T - <P+2>(r*—1)+c

1=y
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where ¢; and ¢, are some positive constants.

Recall that 7 = % from which M = v~7. Replac-

ing this in (28), we get:

5(i) < e1(es + /2R(r — 1))y T
FegyV2h D) 5H
This concludes our proof. ]

Proof of Lemma 10

Consider any set i ™ expanded at some iteration. We have
B(iT) > v*, for the following two reasons. First, as the
sets currently considered by the algorithm form a par-
tition of the set of solutions, one of them (let us call it
iopt) contains the optimal solution with value v*. Thus,
Bliopt) > v*. Second, set it is optimistic, hence it has
the largest upper bound among all sets in the collection
at that iteration, and in particular B(i*) > B(iopt)-

Moreover, each split produces at least one child set i,
with v(i.) > v(iT): a discrete split adds new, positive
rewards to the end of the center sequence; and at a con-
tinuous split the center sequence is inherited by the mid-
dle child from the parent. This means that in the final
collection of sets, there is at least one set 7; that is a de-
scendant of i+ for which v(z’l) > v(iT). But 11( *) > v(4y)
by the selection rule of i*, so v(i*) > v(i™

Overall, v(i ) < (i ) <w* < B(iT), thus v* — v(i*) <
B(iT) —v(it) = §(iT7), and since this is true at any
iteration, the inequality is also satisfied with i, [

Proof of Theorem 11

Recall that the budget n represents the number of system
dynamics simulations that we are able to do. Having
m and n, we want to get the minimum depth that the
algorithm is sure to reach. It is important to remember
that, unlike for OPC [1], where the depth is represented
by the total number of continuous splits h, here we also
have discrete splits: H = h + D.

In order to get the minimum depth that the algorithm
reaches, we consider the tree of near-optimal sets and its
branching factor. By construction, since v* > v(i*) and
v(i*) + ¢ is maximized, OPHIS only expands sets from
this near-optimal tree. To reach a depth H, we must
expand therefore at most (14+m+m?+...+m*) nodes.
This sum is at most Cm+!, with C being the constant
from Definition 9. Each of these nodes require at most
ZH system dynamics simulations. Therefore, we take
the smallest depth H such that:

CmHTZH >n



By applying a derivation from [1], this means that:

B
Hoo > logn  log log(na)

~ logm

logm
with a;, 8 > 0 and large n.

We now want to determine hmin, so looking at (15), we
need an upper bound D on D. We recall that D = C+G,
with G being a gap between C' and D. Therefore, we
want C'. For this, we fill all s ranges with 7%, and we get:

C=1N (30)

In order to get N, we look at the sum of continuous splits:

- N(N +1) N?
h > k=r"——vwu-"t>7""—
> sh)=r 5 27
From this:
2h
N <\/— := 31
<\/= (31)
Now, replacing (31) in (30), we get:
C = V2hr*
from which:
D =V2ht* + G (32)
Replacing (32) in (15), and (29), we have:
1 log 1 p
b N 4G > ogn  loglog(na)
logm logm
which translates to:
(\/E-i- /2)2—1—61—7——* . logn  loglog(na)”
2 2 logm logm

Finally, this means that:

\/EZ\/logn _loglog(na)B_G+L*_ T

logm logm 2 2
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Replacing this in (17), we have:

Smin _0< ( 20 —1)-

log log log(na)? T
Vi - PR -G )
A (Evre )

= (’r( 2(r = 1)-

log log(na)?
logm

logn T*
.\/loggm_ _G+2))
~( 7 P 1 log log(na)?
vcﬂﬁvn¢ﬁ;g@;>w
logn
'y( V2(m* = 1) ,/logg )

1~ 7 . log log(na)?

A EV2A -1 glo.s;;m)>
=0 'yA(Ti* 2(r* —1) llggg")

1~ 7 % 1 log(n )‘3

Aty ogm )

N 27—2(7—*71)10571
= O(ny 7% logm (log(na))ﬁ >
272(r*—1)logn
_ O <’Y V %2 log m )

where the last two equalities follow the workflow from
the supplementary material of [1]. In addition, some

steps collate the constant terms into the O constant.

This completes the proof of the first part of Theorem
11. For the second part, consider the case where m = 1.
For each depth H, at most C nodes must be expanded,
which leads to at most CH nodes on the near-optimal
tree. Each node requires at least HZ expansions. Then,
we take the smallest H, for which:

CH?Z >n (33)
This means that:
H > Zlc—l
h+D > /45 —1 (34)
h>./4s—-1-D>./2-—-1-D

Replacing D from (32) in (34), we get:

h+V2ht +G > /& —1
2 N .
) +G-5 2 /E -1

(x/ﬁ+



In the end:

n T T
> 1 N
Vh > Ve 1-G+5 5 (35)
We replace (35) in (17), and we get:
Somin = O(y(; 3 = 1)
\/Vﬁ_1_0+7_ 2))) (36)

This concludes our proof for the convergence rate of
OPHIS. O

Proof of Theorem 13
First, let us consider the case m > 1. From (19), we have:
H—-1 H

/ —1
n>CZH? () Y ml" = CZHiaxn:n —
H'=0

This leads to:

H(n) <

(G

max

+ 1) < cylognt=2¢ (37)
logm

For this, we used Hpax = Hmax(n) = n¢. Equation (37)
means that the depth H is logarithmic in n. For large
budgets n, it will be smaller than H,.x(n) since the
latter is a power of n. This means that H = H(n) in
Lemma 12. Now, we want an upper bound on H(n), so
we use (19) again and we have:

H+1 _ 1
5 m
N P
which leads to:
H+1 n(m—1) n(m—1)
miT 2 ey, 12 ez,
H > i log() — 1
_ loB(tizg) logm (38)
- logm
- C
= loglm (1Og nl e log mZ—Wll)

We replace (38) in (17), and we get:

Sy = O (2 (g2 — 10 25

O ’YA(Ti* /(-r*_l)l(olg—ie)logn>)
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Note that the elimination of the second term only holds
for large n.
Now, for m = 1, we get from Equation (19):

CZH?

max

(H+1)>n

Using the fact that Hyax = n'/3, we get:

nl/3
H > oz 1 (40)
From Lemma 12, we have:
nl/3 . 1
— _ /3} S 13 s f } _
H mm{TZ 1,n >n mm{CZ71 1
(41)

Replacing (41) in (17), we have:

I
o}

)

7“(%\/2(7—* — 1)(n1/3 min{é, 1} — 1)))
7 (Z 2 = /B min (1))

0 'yA(nl/6Ti*\/2(T* —1)min {7, 1})

Il
(@]

This concludes our proof for the convergence rate of
SOPHIS. O

Comparison between OPHIS and SOPHIS with
a disturbance present

Here, we compare OPHIS and SOPHIS in the case of
a disturbance consisting of an impulse of magnitude 1
added to the continuous input, for one sampling period,
at time 6s. We can see in Figure 10 that both methods
succeed in rejecting the disturbance, and SOPHIS does
this faster.
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Fig. 10. States evolution in time, in case of a disturbance



