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Abstract— An important challenge in multiagent systems is
consensus, in which the agents must agree on certain controlled
variables of interest. So far, most consensus algorithms for
agents with nonlinear dynamics exploit the specific form of
the nonlinearity. Here, we propose an approach that only
requires a black-box simulation model of the dynamics, and
is therefore applicable to a wide class of nonlinearities. This
approach works for agents communicating on a fixed, connected
network. It designs a reference behavior with a classical
consensus protocol, and then finds control actions that drive
the nonlinear agents towards the reference states, using a
recent optimistic optimization algorithm. By exploiting the
guarantees of optimistic optimization, we prove that the agents
achieve practical consensus. A representative example is further
analyzed, and simulation results on nonlinear robotic arms are
provided.

I. INTRODUCTION

We consider the problem of consensus in multi-agent

systems, in which the agents must reach agreement on

controlled variables of interest, in a decentralized fashion

[1], [2]. This problem has important applications in the

control of networks, such as transport, communication, and

sensor networks. Classical consensus algorithms are designed

for simple linear agents, e.g. [1]–[8]. In this linear setting,

the behavior of the agents is well understood and useful

properties can be ensured. Consensus approaches have also

been proposed for nonlinear agent dynamics, such as second-

order systems with nonlinear acceleration dynamics [9], [10],

nonholonomic robots [11], and Euler-Lagrange dynamics

[12]. The Lyapunov design techniques used in these works

use the explicit forms of the agents’ dynamics, in order to

derive tailored control laws.

In this paper, we exploit a well-understood linear con-

sensus technique to design reference next states for the

nonlinear agents. Then, a predictive method is used to find

sequences of control actions (inputs) that drive each of the

nonlinear agents close to its reference state. New such states

are designed, and the whole cycle is repeated in closed

loop. Unlike the techniques reviewed above, our approach

does not exploit the particular structure of the dynamics.
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Instead, it only requires a black-box simulation model of

these dynamics, and it is therefore applicable to a wide class

of nonlinear agents.

The main ingredient lending this approach its generality is

the global optimization algorithm used at the control stage,

called sequential optimistic optimization [13]. This algorithm

is selected since it guarantees closeness to the reference states

for very general dynamics, and crucially, it only needs to

sample the black-box model instead of using the explicit

form of the dynamics. The distance to the optimal solution

diminishes with increasing computation, at a rate modulated

by a so-called near-optimality dimension [13]; few global

optimization algorithms have such guarantees. Combining

these properties with the nice convergence of the classical

reference behavior, our main result proves a practical form

of consensus.

The properties of the novel approach, including the near-

optimality dimension, are analyzed for a simple type of non-

linear agent dynamics. Simulation experiments are performed

for the consensus of robotic arms. It should be noted that

our approach is also related to distributed model-predictive

control, which has been applied for the consensus of linear

agents in e.g. [14], [15].

Next, in Section II we state the consensus problem and,

in Section III, introduce optimistic optimization. Section IV

describes the proposed nonlinear consensus approach and

gives the main result. Section V provides an analytical

example, and Section VI presents a numerical experiment.

Finally, Section VII concludes.

II. PROBLEM STATEMENT

We consider a set of M agents with decoupled nonlinear

dynamics xi,k+1 = f(xi,k, ui,k), i = 1, . . . ,M , with xi ∈
R

n and ui belonging to a compact set U . Define also the

collective state x = [x⊤
1 , · · · , x⊤

M ]
⊤ ∈ R

Mn, containing the

states of all the agents. The ideal goal is to achieve full-state

consensus:

lim
k→∞

‖xi,k − xj,k‖ = 0 ∀i, j = 1, . . . ,M

where ‖ · ‖ is the Euclidean 2-norm, here as well as in the

sequel. Note that our approach is not difficult to extend to

the partial-state consensus case.

To achieve consensus, the agents must exchange informa-

tion among themselves. An agent can receive information

only from its neighbors on an interconnection graph G =
(V, E). The set of nodes V = {1, . . . ,M} represents the

agents, and the edges E ⊆ V × V are the communication



links. Denote by Ni = {j | (i, j) ∈ E } the set of neighbors

of node i. A path through the graph is a sequence of nodes

i1, . . . , iL so that (il, il+1) ∈ E , 1 ≤ l < L. A graph is

connected if there is a path between any pair of nodes i, j. In

this paper, the communication graph is taken time-invariant

and connected.

We impose the following assumptions on f .

Let X0 ⊂ R
n be a user-defined set of interesting initial

agent states, from which consensus might be required. Let

B(xc, R) be the smallest Euclidean ball containing X0,

which has center xc and radius R. Then, define an enlarged

set X as a concentric ball that is larger by a constant amount:

X = B(xc, 3R + ∆+), where ∆+ > 0 is an arbitrarily

small constant. Finally, denote by ũk = [u⊤
k , . . . , u⊤

k+K−1]
⊤

a sequence of K actions (inputs) starting at step k, and by

f̃(xk, ũk) the resulting state after applying this sequence

(K steps later). Note that we state the assumptions on f
in generic terms, so no agent indices are used.

Assumption 1 (Controllability): There exists a finite K
such that, for any x, x∗ ∈ X , there exists a sequence ũ ∈ UK

so that:

f̃(x, ũ) = x∗

Define an invertibility property of the extended dynamics

f̃ , which requires that for every pair (x, x∗) ∈ X 2 the

sequence ũ achieving f̃(x, ũ) = x∗ is unique. The inverse

f̃−1 : X 2 → UK is defined as the mapping between state

pairs and their corresponding action sequences.

Assumption 2 (Continuity and invertibility): The dynam-

ics f are Lipschitz-continuous in X × U . Furthermore, the

K-step dynamics f̃ has a unique inverse f̃−1, which is also

Lipschitz continuous in its domain X 2.

Remarks: Controllability properties similar to those of

Assumption 1 are studied by [16], where Lie-algebraic con-

trollability conditions are provided and the size of reachable

sets is characterized. In our setting, the controllable set is

enlarged to X to deal with the errors made by the algorithm

in unfavorable initial conditions, such as when most agents

are close together at one edge of X0 and one agent is

diametrally opposite.

Since X and U are compact, the Lipschitz conditions of

Assumption 2 are not overly restrictive. Invertibility is also

an important topic in nonlinear system theory, and several

types of invertibility conditions are provided by [17]–[19].

�

A practical requirement of our method is that K must

be known and small. We will show that small values are

appropriate in some interesting examples.

III. PRELIMINARIES: SIMULTANEOUS OPTIMISTIC

OPTIMIZATION

Our method will use a predictive approach that finds the

control actions with a recent branch-and-bound, sample-

based optimization method called simultaneous optimistic

optimization (SOO). The main appeal of SOO is that it allows

a quantitative analysis of the convergence rate to the optimum

as computation increases, for very general functions and

without knowing the smoothness of the function [13]. This

has practical benefits in our consensus problem: the agents

can approach arbitrarily close to the reference states, while

their nonlinear dynamics can be treated as a black box.

The goal is to maximize the objective function r : U → R.

The optimization proceeds by hierarchically partitioning the

domain U . This partitioning is represented by a tree structure

T in which each node (d, j) is labeled by a point ud,j and

represents a subset of U denoted Ud,j ∋ ud,j . Here, d ≥ 0
is the depth in the three and j is the node index at a given

depth. The root of the tree represents the entire domain U ,

and the tree is defined so that the children of a node form a

partition of the set represented by their parent. The collection

of leaves of the currently explored tree is denoted by L, and

the leaves at depth d by Ld.

An essential element in SOO is a semimetric ℓ : U ×
U → [0,∞) defined over the domain U (a semimetric

satisfies all properties of a metric except possibly the triangle

inequality). We require the objective function to be Lipschitz

w.r.t. ℓ around an optimum, and the partitioning procedure

to ensure that the sets shrink with depth in the tree and are

well-shaped, again in the semimetric ℓ. Formally, define a

(pseudo-)diameter of each Ud,j : δd,j := supu∈Ud,j
ℓ(ud,j , u).

Assumption 3 (Optimization): The objective function and

the partitioning satisfy the following conditions:

3.i There exists an optimum u∗ so that:

r(u∗)− r(u) ≤ ℓ(u, u∗) ∀u ∈ U (1)

3.ii There exist c > 0 and γ ∈ (0, 1) such that for any d,

δd,j ≤ cγd for all nodes j at depth d.

3.iii There exists a constant ν such that any subset Ud,j

contains a ball with center ud,j and radius νcγd in the

semimetric ℓ.

Remark: In our application to consensus the objective

function will already be Lipschitz (due to Lipschitz dynamics

from Assumption 2), so Assumption 3.i reduces to the

rather mild existence of an optimum. Note also that for

convenience, ℓ incorporates the Lipschitz constant.

Denote δ(d) = cγd, the maximal diameter at depth d. The

guarantees can be generalized to the case where δ(d) is any

decreasing sequence [13], but only exponential partitions will

be used in the sequel. �

Figure 1 exemplifies a partitioning of a scalar U .

If the diameters δ(d) were known, an upper bound on the

values of all points in a set Ud,j could be defined: b(Ud,j) =
r(ud,j) + δ(d). An optimistic optimization procedure could

then be implemented by partitioning at every iteration a leaf

set that has the largest upper bound, and therefore the best

chance of containing the optimum. In fact, such an approach

exists and is called deterministic optimistic optimization [20],

but it assumes knowledge of ℓ by using δ(d). This knowledge

is difficult to obtain in general, and in particular in our

consensus setting it would require some information about

the structure of the agent dynamics fi.

We will therefore use the SOO algorithm, which does not

require to know ℓ. Instead, at each round, SOO simulta-

neously expands all potentially optimal leaf sets: those for

which the upper bound could be largest under any semimetric
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Fig. 1. Illustration of the tree structure that is used by optimistic
optimization. In this example, U is an interval and binary partitions are
used. Assuming a Euclidean metric, since samples are at the centers of
intervals, the pseudodiameter is half the length of the interval.

ℓ. With a little thought, a set can only contain a largest upper

bound if its sample value is at least as good as the values

of all sets with diameters larger than its own; we say that

the set is not dominated by larger sets. Since further, δ(d)
decreases with d, we only have to compare with leaves higher

up the tree. At each iteration t, the algorithm expands at

most one leaf set at each depth. If we define L≤d as the

set of leaf nodes having depths d′ ≤ d, then a leaf (d, j) is

only expanded if r(ud,j) = max(d′,j′)∈L≤d
r(ud′,j′); if there

are several such leaves at d, one is chosen arbitrarily. SOO

additionally limits the tree depth at each iteration t with a

function dmax(t), a parameter of the algorithm that controls

the tradeoff between deeper or more uniform exploration. A

typical schedule is dmax(t) = ta with a ∈ (0, 1). Algorithm

1 summarizes SOO.

Algorithm 1 Simultaneous Optimistic Optimization

Input: r, dmax, N , partitioning of U
1: initialize T ← U0,0; t← 1
2: loop

3: rmax ← −∞
4: for d = 0 to min(depth(T ), dmax(t)) do

5: j† ← arg maxj∈Ld
r(ud,j)

6: if r(ud,j†) ≥ rmax then

7: expand (d, j†), add children to T
8: rmax ← r(ud,j†)
9: t← t + 1

10: if t > N then stop the algorithm

11: end if

12: end if

13: end for

14: end loop

Output: û = arg max(d,j)∈T r(ud,j)

The convergence of SOO depends on how smooth the

function is in the semimetric ℓ. This is formalized as the near-

optimality dimension β. First, define the near-optimal sets

Uε = {u ∈ U | r(u∗)− r(u) ≤ ε}. For any ε, the packing

number of Uε is defined as the maximal number of disjoint

ℓ-balls with centers in Uε and equal radii νε (recall ν from

Assumption 3.iii). Then, the near-optimality dimension is the

smallest β so that there exists a positive constant C, such

that the packing number is smaller than Cε−β for any ε > 0.

Under Assumption 3, the following has been shown in

[13].

Proposition 1 (SOO near-optimality): SOO returns a so-

lution û satisfying:1

r(u∗)− r(û) =

{
O(N−(1−a)/β) if β > 0

O(γ
√

N/C′

) if β = 0

where C ′ ≥ 1 is a problem-specific constant, and we choose

dmax(t) = ta when β > 0 and dmax(t) =
√

t when β = 0.

The optimization problem is easier to solve when the

semimetric ℓ captures more closely the smoothness of the

objective function r around u∗, in which case fewer balls are

needed to pack Uε – or, more precisely, their number grows

more slowly with decreasing ε, meaning β is smaller. In

particular, the ideal case is when Uε shrinks at the same rate

as an ℓ-ball of radius ε, which means that β is 0, i.e. that ℓ
and r have the same smoothness; in this case near-optimality

decreases exponentially in
√

N . Note also a non-obvious

fact: since the guarantees hold for any semimetric satisfying

the assumptions, SOO converges at the fastest rate allowed

by any such semimetric.

IV. NONLINEAR CONSENSUS ALGORITHM AND ANALYSIS

Our nonlinear consensus approach works over iterations

consisting of the following two stages. Once every K steps,

each agent i computes a reference (desired) next state, which

is a weighted average of the current states of its neighbors

Ni. Then, the agent uses SOO to optimize a sequence of

actions so that after K steps, it approaches the reference

state as closely as possible. All agents apply their sequences

in open loop and, once the K steps have elapsed, close the

loop and repeat the process.

Formally, at step k – a multiple of K – each agent i
computes a reference state with:

x∗
i,k+K =

M∑

j=1

pi,jxj,k (2)

where:
pi,j ∈ [0, 1], pi,j = pj,i ∀i, j
pi,j 6= 0 iff i = j or (i, j) ∈ E
∑M

j=1
pi,j = 1 ∀i

(3)

Note that (2) can easily be implemented in a decentralized

way, since each agent’s reference state only uses the state

of its neighbors. Define also a matrix P ∈ R
M×M whose

components are pi,j – a symmetric stochastic matrix in which

any elements corresponding to disconnected agents are 0.

This reference state is inspired from classical consensus

algorithms [1], which are well studied and have useful

properties for some classes of linear agents.

1The so-called ‘big-O’ notation g = O(h) means that g asymptotically
grows at most as fast as h.



Then, each agent uses SOO to solve the optimal control

problem:

ũ∗
i,k = arg max

ũi,k

−‖f̃(xi,k, ũi,k)− x∗
i,k+K‖

(recall the definitions of the K-step actions and dynamics).

A near-optimal extended action ̂̃ui,k is found, which will

get close to the reference state. Algorithm 2 summarizes the

overall procedure, for the case where all the agents have the

same optimization parameters.

Algorithm 2 Nonlinear consensus at agent i

Input: row Pi of P , budget N , partitioning of U , dmax

1: k ← 0
2: loop

3: measure xi,k and send it to j ∈ Ni

4: receive xj,k from j ∈ Ni

5: set reference state x∗
i,k+K =

∑
j∈{{i}∪Ni} pi,jxj,k

6: ri,k(ũi,k) := −‖f̃(xi,k, ũi,k)− x∗
i,k+K‖

7: ̂̃ui,k ← SOO(ri,k, dmax, N, partitioning of U)
8: apply ̂̃ui,k in open loop

9: k ← k + K
10: end loop

Regarding parameter choices, P should be selected to

impose a desired consensus behavior – of course, while

still obeying the conditions explained above. A computa-

tionally simple strategy to select it is presented in [21].

In this method, the agents first agree on some value α ∈
(0, 1

maxi|Ni| ) where |·| denotes set cardinality. Each agent i

sets pi,i = 1− α |Ni| and pi,j = α, ∀j ∈ Ni. This strategy

will be used in the sequel. Other methods to select P in a

decentralized way are given by [22], [23].

The budget N should be chosen large enough – by default,

as large as the computational resources of the agents allow.

The partitioning of U will typically be defined as a collection

of hyperboxes in a Km-dimensional space, where m denotes

the number of action variables. A large hyperbox contains

the whole action space, and each node expansion corresponds

to splitting the parent hyperbox into 2Km subboxes, in half

along all dimensions. It should be clear now why K must be

small: with this type of exponentially shrinking partitioning,

the complexity of the algorithm is exponential in K.

A default choice for the maximum depth function dmax(t)
is
√

t, expecting that a semimetric that yields a near-

optimality dimension of 0 exists (like in the upcoming

example of Section V).

A final assumption is made on the finiteness of the near-

optimality dimension β (defined in Section III). The opti-

mization problem of an agent is parameterized by its index

i and the current collective state x. While the optimization

problem also depends on the reference state, this state is

computed from x using the fixed P , so it does not have

to be included in the dependence. Denote by β(i,x) the

optimization-problem dependent near-optimality dimension.

Assumption 4: For any i ∈ {1, . . . ,M} and x ∈ XM , a

finite β(i,x) exists.

This assumption is technical, and we expect most prob-

lems to satisfy it in practice.

In a straightforward fashion, the guarantees of SOO imply

the following result, which we will not prove here.

Lemma 2 (Uniformly small error): Let dmax(t) =
√

t.
Under Assumptions 1–4, for any desired error ε∗ > 0,

there exists a finite N using which all agents approach

their reference states closer than ε∗, for any collective state

x ∈ XM .

Our main result follows.

Theorem 3: Under Assumptions 1–4, for sufficiently large

N , Algorithm 2 achieves practical consensus. This means

there exist k0 and an inter-agent disagreement ∆a so that

for all k ≥ k0, the distance ‖xi,k − xj,k‖ ≤ ∆a for all i, j.

Proof: The proof will be developed in three parts.

In part (i), we will show that the agents achieve practical

average consensus at steps multiple of K, under the as-

sumption that they remain controllable at every such step.

This notion of consensus means that there exist l0 and

∆ so that for all l ≥ l0, ‖xi,lK − x̄‖ ≤ ∆ for all i,
where x̄ ∈ R

n is the average of the initial states of the

agents, x̄ = 1
M

∑M
i=1 xi,0. In part (ii), the agents are shown

to actually remain controllable. Part (iii) proves practical

consensus at steps in-between multiples of K.

(i) Matrix P is a symmetric stochastic matrix associated to

a connected graph. Therefore, by iterating the ideal protocol

x∗
i,(l+1)K =

∑M
j=1 pi,jx

∗
j,lK starting from xi,0, the states

would converge exponentially to x̄ – achieving average con-

sensus. While our algorithm in fact implements an approxi-

mate version of this protocol, since the approximation error

can be made arbitrarily small, practical average consensus is

still achieved.

Specifically, let λ be the largest eigenvalue of P that is

different from 1 (due to its structure, P will always have an

eigenvalue of 1). Then, 0 < λ < 1 and:

‖x∗
(l+1)K − x̄‖ = λ‖xlK − x̄‖ (4)

Further, Lemma 2 ensures that each agent reaches its refer-

ence state with at most ε∗ error, leading to:

‖xlK − x
∗
lK‖ ≤

√
Mε∗,∀l (5)

Choose a large enough budget N to have ε∗ ≤ (ρ−λ)∆√
M

,

for some ∆ > 0 and ρ ∈ (λ, 1) (we can choose any

values satisfying these conditions). Combining (5) and (4),

∆-practical consensus with a convergence rate ρ will be

ensured.

Define x̄ = [x̄, . . . , x̄]
⊤

, a collective average state. Assume

first that the initial disagreement is larger than ∆. Then, for

all xlK such that ‖xlK − x̄‖ > ∆ one has:

‖x(l+1)K − x̄‖ ≤ ‖x(l+1)K − x
∗
(l+1)K‖+ ‖x∗

(l+1)K − x̄‖
≤
√

Mε∗ + λ‖xlK − x̄‖
≤ (ρ− λ)∆ + λ‖xlK − x̄‖
< ρ‖xlK − x̄‖

This exponential decay ensures that after a finite l0 =⌈
logρ

∆
‖x0−x̄‖

⌉
, the distance to x̄ will drop below ∆.



Once this is true, i.e., if ‖xlK − x̄‖ < ∆, then:

‖x(l+1)K − x̄‖ ≤ ‖x(l+1)K − x
∗
(l+1)K‖+ ‖x∗

(l+1)K − x̄‖
≤
√

Mε∗ + λ‖xlK − x̄‖
≤ (ρ− λ)∆ + λ∆ = ρ∆ < ∆

so the state will remain at distance ∆ from x̄. If the initial

disagreement is already below ∆, then l0 = 0 and the

derivation of the exponential decay is no longer needed.

(ii) To ensure controllability, the states of all the agents

must remain inside the controllable set X at each step lK.

Recall first the definitions of X0 ⊆ B(xc, R) and X =
B(xc, 3R+∆+). Define ∆0 = ‖x0−x̄‖, the collective initial

disagreement, and ∆a
0 = maxi ‖xi,0 − x̄‖, the per-agent

initial disagreement. Take a desired collective disagreement

of ∆ ≤ 2R; part (i) allows imposing any ∆ > 0, and since

2R upper-bounds the diameter of X0, a larger value makes

little sense.

If ∆ ≥ ∆0, then already, for any l ≥ 0, ‖xi,lK − x̄‖ ≤
‖xlK − x̄‖ ≤ ∆. Thus the agents remain in B(x̄,∆) and

since x̄ ∈ B(xc, R), they remain in B(xc, 3R) ⊂ X .

Now if ∆ < ∆0, then for any l and i we have:

‖xi,(l+1)K − x̄‖ ≤ ‖xi,(l+1)K − x∗
i,(l+1)K‖+ ‖x∗

i,(l+1)K − x̄‖
≤ ε∗ + max

j
‖xj,lK − x̄‖

≤ (l + 1)ε∗ + ∆a
0 (6)

where the second inequality implies the third by induction.

Furthermore, by part (i), as long as the collective disagree-

ment is larger than ∆ it decreases exponentially:

‖xi,lK − x̄‖ ≤ ‖xlK − x̄‖ ≤ ρl∆0

This allows taking a finite l1 so that ρl1∆0 ≤ max{∆,∆a
0},

from which ‖xi,lK − x̄‖ ≤ max{∆,∆a
0} ∀i, l ≥ l1. Com-

bining this with (6), we have ‖xi,lK − x̄‖ ≤ max{∆, l1ε
∗ +

∆a
0},∀i, l ≥ 0. Therefore, finally imposing ε∗ ≤ ∆+/l1 and

noticing that ∆a
0 ≤ 2R, the states are guaranteed to remain

in X .

(iii) Take l ≥ l0. Then ∀i, j, ‖xi,lK − xj,lK‖ ≤ 2∆,

due to ‖xlK − x̄‖ ≤ ∆ and the triangle inequality. Due

to Assumption 2, we have ũi,lK = f̃−1(xi,lK , xi,(l+1)K),

ũj,lK = f̃−1(xj,lK , xj,(l+1)K) and denoting the Lipschitz

constant of f̃−1 by L−1:

‖ũi,lK − ũj,lK‖
≤ L−1(‖xi,lK − xj,lK‖+ ‖xi,(l+1)K − xj,(l+1)K‖)
≤ 4L−1∆ (7)

Then, at steps lK + k with k = 1, . . . ,K − 1, we have:

‖ui,lK+k − uj,lK+k‖ ≤
√

m ‖ũi,lK − ũj,lK‖∞
≤ 4
√

mL−1∆

Denote L′ = 4
√

mL−1, and L the Lipschitz constant of f .

Finally, by a straightforward derivation we get:

‖xi,lK+k − xj,lK+k‖ ≤ (Lk + L′ ∑k

k′=1
Lk′

)∆

Taking ∆a = max{2, Lk + L′ ∑k
k′=1 Lk′}∆, the desired

result has been obtained.

Remarks: From the proof, the agents exponentially

approach and then remain inside a region of size ∆ around

the average state x̄ – but only at steps multiple of K. In-

between these steps and above l0K, the agents are only

close to each other but not necessarily to x̄. Indeed, the

region containing the states can travel in the state space, with

the constraint that it must always return around x̄ at each

multiple of K. Note that the region may grow somewhat in-

between the multiples of K, but its size remains proportional

to ∆. Figure 2 illustrates these guarantees. �
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Fig. 2. Symbolic illustration of consensus guarantees. The agent states will
stay within the shaded area. The dotted contour indicates regions where the
analysis does not constrain the states.

V. ANALYSIS FOR A SIMPLE TYPE OF NONLINEAR

AGENTS

To gain more insight into the approach, we clarify the

meaning of the assumptions and find the near-optimality

dimension for a simple type of nonlinear agents. It must

be emphasized that this example is analyzed here in detail

for illustrative purposes, using the structure of the agent

dynamics. Indeed, the whole point of our algorithm is to

avoid the need to use this structure. In practice, the user

does not need to consider all these details.

Consider that the agents have the following dynamics:

yk+1 = yk + zk

zk+1 = z2
k + zk + uk

where again we do not include the agent index. Here the state

is x = [y, z]
⊤

. The set X0 of interesting initial states consid-

ered is the ball B(0, R). It follows that X = B(0, 3R+∆+)
for an arbitrary ∆+ > 0. Denote RX = 3R + ∆+.

Taking K = 2, the 2-step dynamics are:

yk+2 = yk + z2
k + 2zk + uk

zk+2 = (z2
k + zk + uk)2 + (z2

k + zk + uk) + uk+1

Denote uk by v and uk+1 by w; these are the optimized

variables. Actions to reach a desired state x∗
k+2 = [y∗, z∗]⊤

can be explicitly written:

v∗ = u∗
k = y∗ − yk − z2

k − 2zk

w∗ = u∗
k+1 = z∗ + zk + yk − y∗ + (y∗ − yk − zk)2

(8)



Since in X , |y| ≤ RX and |z| ≤ RX , to ensure Assumption 1

with K = 2 it is sufficient to take the set of actions Ũk ={
ũk = [v, w]

⊤ ∣∣ |v| ≤ R2
X + 4RX , |w| ≤ 9R2

X + 4RX
}

.

For simplicity, we use instead a larger set Ũk = [−RU , RU ]2

with RU ≥ 9R2
X + 4RX .

Note that in fact (8) gives the inverse of the 2-step dynam-

ics, which are clearly Lipschitz in their compact domain, as

are the direct dynamics; so Assumption 2 also holds.

The optimal control problem requires maximizing:

r(ũk) = −‖xk+2 − x∗
k+2‖

To find a semimetric ℓ satisfying Assumption 3.i, note that:

r(ũ∗
k)− r(ũk) = ‖xk+2 − x∗

k+2‖ ≤
∥∥xk+2 − x∗

k+2

∥∥
1

= |v − v∗|+ |v − v∗ + w − w∗

+ (z2
k + zk + v)2 − (z2

k + zk + v∗)2|
≤ |v − v∗|+ |v − v∗ + w − w∗

+ (2(z2
k + zk) + v + v∗)(v − v∗)|

≤ [2(R2
X + RX + RU ) + 2]|v − v∗|+ |w − w∗|

≤ [2(R2
X + RX + RU ) + 2] ‖ũk − ũ∗

k‖1

(9)

where we used the fact that r(ũ∗
k) = 0 and rewrote x∗

k+2

using the optimal actions from above. So, an appropriate

semimetric (in fact, a metric) is ℓ(ũk, ũ∗
k) = γ ‖ũk − ũ∗

k‖1
with some ‘Lipschitz constant’ γ greater than the multiplying

factor above.

If we create a natural, exponential partitioning of the two-

dimensional, square space Ũk, by recursively splitting it in

half along each of the two actions (resulting in 4 new, smaller

squares at each expansion), then Assumptions 3.ii and 3.iii

are satisfied with metric ℓ.

To find the near-optimality dimension β, the following sets

must be packed with ℓ-balls:

Ũε = {ũ | r(ũ∗)− r(ũ) ≤ ε}
The left hand side of the inequality is lower-bounded as

follows:

r(ũ∗
k)− r(ũk) = ‖xk+2 − x∗

k+2‖ ≥
1√
2

∥∥xk+2 − x∗
k+2

∥∥
1

=
1√
2

(
|v − v∗|+ |2(z2

k + zk)(v − v∗)

+ w − w∗ + v2 − v∗2|
)

≥ 1

2
√

2(z2
k + zk) +

√
2
(|v − v∗|+ |w − w∗ + v2 − v∗2|)

It can be shown that for v and w sufficiently close to their

optimal values, there exist c1 > 0, c2 > 0 so that:

|v − v∗|+ |w − w∗ + v2 − v∗2| ≥ c1|v − v∗|+ c2|w − w∗|
Then Ũε is included in:

Ũ ′
ε =

{
ũ

∣∣∣∣∣
min {c1, c2}

2
√

2(z2
k + zk) +

√
2
(|v − v∗|+ |w − w∗|) ≤ ε

}

Further, if v and w are not close to v∗ and w∗, then ε is large,

and any such nonasymptotic behavior which does not obey

the inequality can be taken care of by making the constant

C larger in the definition of β. It follows that Ũ ′
ε is packed

by a constant number of ℓ-balls, which means the same is

true of the smaller set Ũε. So, finally, the near-optimality

dimension is 0, meaning Assumption 4 is satisfied, and also

that the optimization problem is simple.

VI. APPLICATION TO NONLINEAR ROBOT ARMS

As a representative problem involving nonlinear dynamics,

the consensus of two-link robotic arms operating in a hori-

zontal plane is considered. This type of consensus problem

can appear in decentralized manipulation and teleoperation.

Three robots are connected on the graph shown at the

top of Figure 3. The state variables of a robot are the

angles and angular velocities of the two links, xi =

[θi,1, θ̇i,1, θi,2, θ̇i,2]
⊤

, and the actions are the two motor

torques ui = [τi,1, τi,2]
⊤

. The model is standard so we do

not provide the details here, instead referring the reader to

[24] where the equations and physical parameters are given.

The sampling time is Ts = 0.05 s, and time discretization

is performed with the fourth-order Runge-Kutta method (10

steps per sampling time). Full-state consensus is required,

from the initial states x1,0 = [−π, 0,−π/2, 0]
⊤

, x2,0 =

0, x3,0 = [π/2, 0, π, 0]
⊤

.

We choose K = 2 and the two-step action space Ũ =
[−50, 50]Nm×[−50, 50]Nm. The neighbor weight α = 0.45,

close to its upper limit 0.5, and the budget N = 300.

Figure 3, bottom shows the resulting trajectories of the

agents.

The algorithm easily deals with these nonlinear dynamics.

Since the desired agent state x∗
i,k+2 is designed using only

the current state xi,k, without exploiting the structure of the

dynamics, the resulting trajectory is not smooth. Further, in

this simulation the average consensus state has zero velocity

and is thus an equilibrium, which allows the states at all steps

to eventually reach a constant ball around it. If the consensus
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Fig. 3. Consensus of robotic arms. Top: communication graph. Bottom:
state trajectories.



state were not an equilibrium, the ball would travel in the

state space, returning to the average state at each multiple of

K = 2, as illustrated in Figure 2.

VII. CONCLUSIONS

We presented a consensus method for general nonlinear

agents, which guarantees practical consensus while treating

the agent dynamics as a black box. The main component

lending this method its generality is an optimistic optimiza-

tion algorithm used to find the control actions. An illustrative

example was analyzed, and the algorithm achieved practical

consensus for nonlinear robot arms.

The main limitation of the method is that it works in incre-

ments of a small number K of steps, and a natural extension

that avoids this limitation would be to apply long- or infinite-

horizon optimistic predictive methods, called optimistic plan-

ning [20], [25]. The idea of approximating proven consensus

methods with nonlinear optimization should extend to other

open problems in nonlinear consensus, such as maintaining

connectivity of time-varying communication graphs.
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