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Abstract— We consider problems in which a mobile robot
samples an unknown function defined over its operating space,
so as to find a global optimum of this function. The path
travelled by the robot matters, since it influences energy and
time requirements. We consider a branch-and-bound algorithm
called deterministic optimistic optimization, and extend it to the
path-aware setting, obtaining path-aware optimistic optimization
(OOPA). In this new algorithm, the robot decides how to move
next via an optimal control problem that maximizes the long-
term impact of the robot trajectory on lowering the upper
bound, weighted by bound and function values to focus the
search on the optima. An online version of value iteration is
used to solve an approximate version of this optimal control
problem. OOPA is evaluated in extensive experiments in two
dimensions, where it does better than path-unaware and local-
optimization baselines.

I. INTRODUCTION

We design and evaluate a method for a mobile robot to

sample an unknown function defined over its operating area

or volume, so as to find the global optimum of this function.

The key difference from classical optimization is that the path

taken by the robot is important, since it influences energy and

time costs; and the function is unknown and must be learned

from samples. We call this scenario “path-aware global

optimization”. It can be useful in many practical scenarios,

where the optimum sought could be e.g. of some physical

measurement such as pollutant concentration, temperature,

humidity etc. [7], [13], the maximal density of surface

or underwater ocean litter, the largest-bandwidth location

for radio transmission [8], the largest sand height on the

seabed for dredging, maximal or minimal forest density in

inaccessible areas [18], and so on. As a first approximation,

the length of the path serves as a proxy for the costs, although

of course more accurate models are possible that take into

account the dynamics of the robot, the terrain etc.

Local optimization methods like gradient descent, which

iteratively update a single point, can solve path-aware op-

timization after being modified to approximate derivatives

from samples, as done e.g. in zeroth-order optimization [15].

We do evaluate such an approximate-gradient alternative; of

course, the fundamental limitation is that these methods can

only find a local optimum.

Global optimization techniques [10] on the other hand, like

branch-and-bound, see [12], Chapter IV of [10] or Bayesian
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optimization [9], [19] usually make arbitrarily large “jumps”

in the space of solutions to sample a new point. Here, large

steps are unsuitable because they would overcommit: the

robot samples the unknown function as it travels, so during

a long path, new information becomes available, and the old

travel direction might become suboptimal. Figure 1 gives

some intuition. Based on the information available to the

robot when it is at the black cross, a classical algorithm

decides to check the point at the black arrow. However,

samples (dots) accumulated along the black trajectory give

more information about the optimum (blue disk), so it

becomes apparent that continuing along this trajectory would

waste energy and time. Thus the robot changes heading to

the magenta trajectory.
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Fig. 1: Illustration of overcommitment.

In this paper, to solve the path-aware optimization prob-

lem, we extend an algorithm from the branch-and-bound

class: deterministic optimistic optimization (DOO) [17], [16].

DOO organizes the search space as a tree containing at each

depth a partition of the space, where the size of the subsets

decreases with the depth. It makes a Lipschitz continuity

assumption on the function and refines at each iteration a tree

node with a maximal upper bound on the function value (i.e.

a node that is likely to contain an optimum). We pick DOO

because it guarantees a convergence rate towards the global

optimum, which in essence says that only a “subspace” of

a certain near-optimality dimension must be sampled to find

the optimum [17].

The main contribution of the paper is to make DOO path-

aware, by formulating the decision of which direction to go

at each time step as an optimal control problem. Due to the

danger of overcommitment, we do not immediately sample

the largest-upper bound location, as DOO would, but we still

exploit the underlying objective: to refine the upper bound

around the optima. Specifically, the reward in the control

problem is the volume by which each decision is expected to



refine the upper bound, i.e. the difference between the bound

before, and after measuring the new sample. This refinement

is weighted by the value of the bound and of the function

itself at the current point, to focus the refinement around

the optima. We run an online version of a value iteration

algorithm [2] to solve the control problem of maximizing

the cumulative rewards (weighted refinements) along the

trajectory.

Solving the optimal control problem exactly at each deci-

sion step is impossible, both due to computational reasons

and because finding the exact reward would require to know

the future function samples. Therefore, we must resort to

certain approximations, which we detail in the remainder of

the paper. We validate the algorithm in extensive simulations,

in which the key performance criterion is the path length

taken to reach (close to) the optimum. We study the impact

of the tuning parameters of the algorithm, its robustness to

errors in the Lipschitz constant used to compute the upper

bounds, and compare it to baselines adapted from classical

DOO and gradient ascent.

Related work can also be found in other fields than

optimization. For example, in artificial intelligence, bandit

algorithms are a class of sample-based optimization of

stochastic functions [11]. They also overcommit by sampling

at arbitrary distances, and must typically sample at least

once everywhere to start building their estimates. In robotics,

mapping requires building a map of the environment, and

leads to the famous SLAM problem [6] when the location of

the robot is also unknown. Informative path planning chooses

the path of a robot so as to find a map or other quantity

of interest in as few steps as possible [3], [4], [14]. Other

variants, like coverage [5], aim to find a shortest path that

examines the entire space using the robot sensors. Different

from all these robotics paradigms, the aim here is not to

build or sense the entire function, but rather just to find the

optimum as quickly as possible.

Next, Section II gives necessary background on DOO.

Section III states the problem and formulates it as optimal

control, while Section IV provides the new algorithm to solve

it. Section V presents the numerical results, and Section VI

concludes the paper.

II. BACKGROUND

DOO is an algorithm belonging to the branch-and-bound

class that aims to estimate the optimum of a function f :
X → R from a finite number of function evaluations. It

sequentially splits the search space X into smaller partitions

and samples to expand further only those partitions associ-

ated with the highest upper bound values. After the numerical

budget has been exhausted, the algorithm approximates the

maximum as the state with the highest f value evaluated so

far. An assumption made by DOO is that there exists a (semi)

metric over X , denoted by l, and f is Lipschitz continuous

w.r.t. this metric at least around its optima, in the sense:

f(x∗)− f(x) ≤ l(x∗, x), ∀x ∈ X (1)

where x∗ ∈ argmaxx∈Xf(x). Note that for convenience, we

will require here the inequality property to hold for any pair

(x, y) ∈ X2:

|f(x)− f(y)| ≤ l(x, y), ∀x, y ∈ X (2)

and the Euclidean norm weighted by the Lipschitz constant

will be chosen as the metric l over X:

l(x, y) = M ||x− y||, ∀x, y ∈ X (3)

where M represents the Lipschitz constant. The method can

be extended to any metric l obeying the assumptions present

in [16].

Here we will use an alternative approach to the partition

splitting in DOO: the construction of a so-called “saw-tooth”

upper bound [16], defined as B : X → R so that:

f(x) ≤ B(x) = min
(xs,f(xs))∈S

[f(xs)+l(x, xs)], ∀x ∈ X (4)

where xs is a sampled point and (xs, f(xs)) ∈ S, denoting

with S the set of samples (function evaluations) considered

while building B. At each iteration, the next state to sample

is given by the formula:

x+ ∈ argmaxx∈XB(x). (5)

The algorithm iteratively samples points selected with equa-

tion (5). Note that B is lowered (refined) with each new

sample gathered by the robot, implicitly via (4).

III. PROBLEM STATEMENT

Given an unknown function f : X → R, a global optimum

must be found in the least number of steps. Consider the

maxima locations:

x∗ ∈ argmaxx∈Xf(x) (6)

where x represents a physical location in the space X ⊂
R

p. No previous knowledge of the function is available to

the robot and thus the function must be learnt from the

samples taken across a single trajectory. The path travelled

is important due to energy and time considerations often

encountered in practical scenarios. Another constraint is that,

due to limited velocity, the robot cannot sample at arbitrarily

distant positions across the state space, being limited to

neighboring ones.

The motion dynamics are described by the p-dimensional

positions x ∈ X and system inputs u ∈ U ⊂ R
p. Most

of the times p ∈ {2, 3}. For simplicity, we consider simple

integrator dynamics with the possibility of extension to more

complex dynamics. Thus, the discrete-time dynamics are

given by g : X × U → X:

g(xk, uk) = xk + uk = xk+1 (7)

where k indexes the step of the considered trajectory.

The solution we propose is inspired by DOO as it builds

and refines with each sample gathered the saw-tooth upper

bound of the function. Unlike DOO, it cannot sample ar-

bitrarily far in the search space (recall the dynamics con-

straints) and thus the classical approach of always sampling



the point with the highest B-value is inappropriate. By

following it, the robot would not be using the samples

gathered until the target is reached, possibly overcommiting

to a trajectory that meanwhile became suboptimal. To address

this issue, we make the algorithm aware of its path by

defining an optimal control problem (OCP) with a different

goal.

We start with a high-level intuition of this OCP, followed

by the formal definitions. We do not sample directly the high-

est B-value points, but rather lower the upper bound around

the optima to implicitly find x∗. Thus, we aim to maximize

the refinements of the upper bound around points of interest

that either: a) have high upper bounds and optimistically

can “hide” maxima points, or b) have high function values

that can lead to a maximum. The classical learning dilemma

between the exploration and exploitation tradeoff arises here

too: encouraging a) will lead to excessive refinements in

untraveled regions, less focused around high-value function

points (too high exploration), while encouraging b), the robot

will overly refine areas where high function values were

sampled and visit less untraveled regions that can possibly

contain maxima (too high exploitation).

The OCP reward function defined next addresses this

tradeoff. We consider the volume between the function upper

bound and the horizontal plane (we use the term volume

generically for any p; for p = 1 it translates to area).

With each new sample the function upper bound is lowered

according to (4). The difference between the old and the

new volumes is called volume refinement. Note that future

samples are unknown and cannot be used to compute exactly

this refinement and instead we must rely on approximations

to predict it; refer to the example in Figure 2 for more

intuition.

Formally, we define the reward as the volume predicted

to be refined by taking action u in state x, weighted by

the average of the function value and its upper bound, both

evaluated at x:

ρ(x, u) =
f̂(x) +B(x)

2
r(x, u) (8)

where ρ(x, u) is the reward function, B is the upper bound

function defined in (4) and r(x, u) represents the volume

predicted to be refined by taking action u in state x. The

refinement is computed in the following way. First, denote

with S = {(x, f(x))|x ∈ X} the set of samples acquired

so far. Compute next the upper bounds B1 and B2 using

(4) and two slightly different sets of samples: B1 with

S ∪ {(x, f̂(x))} and B2 with S ∪ {(x, f̂(x)), (x+, f̂(x+))},
where x+ = g(x, u). The volume refined is determined

through trapezoidal numerical integration over the difference

B1 −B2 across the p dimensions of X .

The terms B(x) and r(x, u) direct the refinements to

locations with high upper bounds where optimistically a

maximum might be situated (via B(x)) and where the robot

has the potential to significantly lower B (via r(x, u)).
Factor f̂(x) in (8) tells the robot to visit states closer to

those having high function values. Due to a limited number

of samples acquired along the single-run trajectory, f̂(x) is

in most cases a prediction (especially at the beginning of

the run). We compute this prediction by taking the function

value of the closest point to x that was already sampled. We

do this for two reasons: taking a lower quantity than f̂(x)
would contradict the optimistic approach of our algorithm by

overly encouraging exploitation, and taking a higher value,

say closer to B(x), would translate into an overly optimistic

approach that encourages too much the exploration. If state

x was sampled before, its corresponding function value is

directly taken.

Figure 2 gives an example of the reward calculation for

a simple 1D case, where the evaluation point is denoted by

xk and the next point (corresponding to uk in ρ(xk, uk))
is xk+1. As xk was already sampled, its function value

f(xk) is used to approximate f̂(xk), f̂(xk+1) (as xk is

the closest sampled point to xk+1) and B(xk). The area

predicted to be refined is colored in green and is of course

an approximation, because one cannot guess in advance the

next function samples, but only rely on approximations to

predict them.
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Fig. 2: The sampled function is drawn with a blue line

and the saw-tooth envelope represents its upper bound. The

function sample f(xk) (black star) is used to approximate

f̂(xk), f̂(xk+1) (red star) and determine B(xk). The area

predicted to be refined is colored in green.

More generally, note that the ideal reward function would

use true function values and updated B-values at the next

steps. However, this is impossible in practice because doing

so would require in advance knowledge of the function

samples. This is why we must resort to approximations of f

and of the refinement.

Due to the online learning character, the OCP is a time-

varying problem in which ρ(x, u) changes with each new

sample gathered as more information is available. More

specifically, the volume refinements r, function shape esti-

mate f̂ and the upper bound function B change as the agent

describes its path. This leads to a reward definition in (8)

that is time-varying and we cannot derive the convergence

guarantees present in classical value iteration. However, we

expect the changes to be limited (since we only add one

sample per step) and thus the solution of one problem should



offer useful insight about the next. We exploit this feature in

the algorithm from the next section.

The OCP objective is to maximize the long-term value

function V : X → R. As the horizon is unknown to the

robot (there is no telling how many steps it will take to reach

the maxima), we define V in the infinite horizon setting:

V h(x) =

∞∑

k=0

ρ(x, u) (9)

where h : X → U represents the control law and u =
h(x). This objective aims to maximize the upper bound based

rewards, and we will experimentally investigate the resulting

travelled distance until the optimum.1 We are searching for

an optimal policy, denoted by h∗, such that:

V h∗

(x) ≥ V h(x), ∀x, h. (10)

Define also the optimal Q-function Q∗(x, u) = ρ(x, u) +
V h∗(x)(g(x, u)), which satisfies the Bellman equation:

Q∗(x, u) = ρ(x, u) + max
u′

Q∗(g(x, u), u′) (11)

Once this equation has been solved to find Q∗, the optimal

policy is given by h∗(x) = argmaxu Q
∗(x, u).

IV. ALGORITHM

Algorithm 1 applies value iteration (VI) in an online

scheme to solve the OCP defined above. To build the upper

bound and value function estimations, the robot needs to

gather informative samples during its exploration procedure.

Recall that samples can only be gathered in the current

positions of the robot and are further used to approximate the

function in unsampled points when computing the rewards

in (8).

At each step k, the robot takes a sample f(xk) and adds

it to the sample set S. Then, we update upon the current

value function estimation by running m value iteration (VI)

updates of the following form:

Q+(x, u) = ρ(x, u) + max
u′

Q(g(x, u), u′) (12)

based on the Bellman equation (11). For simplicity, the states

are discretized into a grid Xgrid, having ngrid equidistant

points along each of the X dimensions. We pick states on

Xgrid and actions so that the next state given the dynamics

always falls on the grid. Actions leading the robot to the

states up, down, left or right with one grid position with

respect to the current position are considered. Thus, the VI

updates (12) must be run only on states from Xgrid and

on the discretized actions. Many representation schemes,

including some for continuous actions, can be used to get rid

of this limitation, and they will be studied in future work.

To fully solve the OCP, the true rewards should exploit

how the B-values change (lower) with the new samples,

meaning that the refinement gains at later steps would

be smaller. Not knowing in advance the evolution of B

1We also tried to include an explicit travel cost term in the reward, but
this did not work better.

means that ρ will overestimate these gains at future steps.

This represents a key reason why m needs to be limited.

Moreover, the OCP changes slightly as it learns online and

fully converging to the solution of step-k would likely not

be useful, since at step-k+1 the OCP will be updated again.

The robot chooses next the action that maximizes the Q-

values:

uk = argmax
u

Q(xk, u), (13)

applies it and measures the new state. The procedure con-

tinues until the number of steps in the trajectory, denoted by

n, is exhausted.

Algorithm 1 describes the steps presented above.

Algorithm 1 Path-Aware Optimistic Optimization (OOPA).

Input: g, ngrid number of steps per X and B grid axes,

discretized actions U , m number of VI sweeps, n

trajectory steps, M Lipschitz constant

1: generate X and B grid, Xgrid, using ngrid

2: initialize samples set S ← ∅
3: initialize Q0(x, u)← 0, ∀x ∈ X,u ∈ U

4: measure initial state x0

5: for each step k = 0, . . . , n− 1 do

6: sample f(xk), add pair (xk, f(xk)) to S

7: for each VI sweep m′ = 0, . . . ,m− 1 do

8: for all states x ∈ Xgrid, actions u ∈ U do

9: x+ ← g(x, u)
10: find f̂(x), f̂(x+) and B(x) using S and (4)

11: S1 ← [S, (x, f̂(x))], S2 ← [S1, (x+, f̂(x+))]
12: compute B1(x), ∀x ∈ Xgrid using S1 and (4)

13: compute B2(x), ∀x ∈ Xgrid using S2 and (4)

14: compute r(x, u) using trapezoidal integration

15: over (B1 −B2) across Xgrid

16: compute ρ(x, u) using (8)

17: Qm′+1(x, u) = ρ(x, u) +maxu′Qm′(x+, u
′)

18: end for

19: end for

20: Q0 = Qm

21: uk = argmaxu∈UQm(xk, u)
22: apply action uk, measure next state xk+1

23: end for

We call the algorithm Path-Aware Optimistic Optimization

(OOPA). It has the following parameters that need to be

tuned: m representing the number of VI updates, the Lips-

chitz constant M (used to compute B in lines 12 − 13 via

(4) and (3)), and the discretization factor ngrid that dictates

the number of points taken across each dimension of X . The

first parameter, m, impacts the propagation of the rewards

across the state grid considered. Taking a too high m will

not only lead to high computation times that are not viable

in practice, but also overly extrapolate the rewards that are

mostly overestimations of their true quantities. Therefore,

we recommend taking m ≤ 5. The Lipschitz constant is

generally unknown and needs to be tuned empirically. Taking

M much lower than its true value will create an upper

bound that no longer satisfies the inequality f(x) < B(x),



and thus the algorithm could break. A good approach is

to take a rather high M and lower it sequentially based

on the feedback provided by the experiments. Finally, the

grid should a priori be taken as large as feasible given the

computational resources; we investigate the effect of the grid

size in the next section.

V. EXPERIMENTS AND DISCUSSION

At first, we define a standard setup in which we aim to

study the new method and compare the OOPA algorithm

against two baselines: Classical DOO (CDOO) that uses the

saw-tooth approach to build the upper bound and commits to

sample always the highest B-value point; and Gradient As-

cent that creates an approximation plane using Local Linear

Regression [1] on the neighboring samples and follows the

plane’s gradient to quickly converge to a local maximum.

A 21x21 interpolation grid is taken across a state space

of length 4x4m. The function to optimize is composed

of a sum of three radial-basis (RBF) functions with dif-

ferent coefficients: width bi ∈ {[1.3; 1.3], [0.6; 0.6], [1; 1]]},
height hi ∈ {[148.75, 255.0, 212.5]} and centers ci ∈
{[0.75; 1.5], [2.75; 3.5], [3.25; 0.75]} (see Figure 9 for a con-

tour plot). So the global optimum is f∗ = 255 situated in

[2.75; 3.5]. The corresponding Lipschitz constant is approxi-

mated starting from the Mean Value Theorem and then tuned

experimentally to ensure that it produces close to true upper

bounds. Thus, the Lipschitz constant was set to M = 364.54.

A. Influence of tuning parameters. Refinement prediction

accuracy

The first parameter to be tuned is m, the number of VI

updates at each step taken by the robot. On the setup defined

above, we run the algorithm for m ∈ {1, 2, 3, 4, 5} and study

the maximum f -value sampled: f = maxxs
(f(xs)), and the

minimum distance until x∗: ∆x = minxs
(||x∗−xs||), where

xs represents a sample point along the trajectory performed

so far. Another metric of interest is the minimum difference

between the optimum and the values of f sampled so far:

∆f = minxs
(f∗−f(xs)), with xs having the same meaning

as above. The number of trajectory steps for each experiment

is set to n = 125, equivalent to 25m travel distance. The

robot starting position is set in the grid center, x0 = [2; 2].
Figure 3 shows that odd values of m perform better in

finding the maximum position with higher accuracy, while

even values of m are suboptimal, converging to the second

highest RBF. The best choice seems to be m = 3, which

gets close to the maximum faster and scores 20% and 30%
less distance to x∗ compared to the cases of m = 1 and

m = 5 (8.4m compared to 10.6m and 12.4m), respectively.

The intuition is that rewards based on the volume refinements

need to be propagated across the state space, however not too

much, since they are mostly predictions (approximations) and

in most cases their values are overestimated, especially at the

beginning of the experiment. Choosing m = 3 gives balanced

results in terms of both exploration and exploitation.

Figure 4 (left) shows the refined upper bound of the

sampled function built using (4) and the n = 125 samples
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Fig. 3: Illustration of the maximum value sampled so far

(left) and the minimum distance to the maximum center x∗

(right), denoted with ∆x; for m ∈ {1, 2, 3, 4, 5}. The legend

on the left shows the minimum distance between the samples

of f and its maximum value f∗, denoted by ∆f .

Fig. 4: Left: The sampled function (in orange) is bounded

from above by the refined B function (in blue), both eval-

uated on the same grid. Right: The sampling trajectory of

the robot, drawn with blue ’x’ and starting from the black

’x’. The refinements are geared – without being overly com-

mitted – towards higher function values (RBF peaks). This

highlights a good exploration-exploitation tradeoff obtained

for m = 3.

acquired. The robot trajectory in Figure 4 (right) shows

more steps being spent closer to the highest RBF (centered

in [2.75; 3.5]) and less around the ones with lower values

(centered in [0.75; 1.5] and [3.25; 0.75]). This is expected,

since the rewards take into account not only the upper bound,

but also the function values.

Next, we will study the impact of the grid size on the

behavior of the algorithm. For this, the state space will

be split into grids of size {212, 262, 312, 362, 412} and the

behavior evaluated using the metrics from above. We keep

the algorithm tuning and setup unchanged, with the exception

of grid discretization and trajectory length set now to 75m.

This length is equal to the product between the grid step size

and the samples budget n for each experiment respectively.

Except a “lucky” case (212), finer grids find the optimum

with higher accuracy. Note that on all grids x∗ is found with
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Fig. 5: Smaller grid step sizes generally lead to better

precision when searching for the optimum. ∆f is displayed

in the legend on the left, while the legend on the right

displays ∆x.

a precision of 1 grid step size, as m = 3 was kept constant

during this experiment.
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Fig. 6: Time complexity has a quadratic growth with respect

to the grid size.

Time complexity has a quadratic growth with respect to

the grid of points. Figure 6 shows the average execution time

per step for each grid studied above.

Since in practice the Lipschitz constant is generally un-

known, it is instructive to check the robustness of the algo-

rithm in the event of overestimation or underestimation of M .

Another goal is to provide a way of choosing M , as in practi-

cal cases computing the Lipschitz constant analytically is of-

ten impossible, and M must instead be empirically tuned. We

run the algorithm on the setup initially defined taking M ′ =
λ ·M , with λ ∈ {0.2; 0.4; 0.6; 0.8; 1; 1.25; 1.5; 2; 2.5; 3}.

Figure 7 shows that taking M lower that a half of its initial

approximation can lead to finding the optimum late or even

break the algorithm. On the other hand, overestimating the

Lipschitz constant is a safer choice when its value is not

(precisely) known. In this experiment, higher values of M

find x∗ at worst later and do not break the algorithm. A

possible reason is that even though the volume refinements

are weighted by the mean of the sampled function and its

upper bound value, the latter has a greater impact due to its

generally higher value. Decreasing M too much will create
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Fig. 7: Robustness to underestimation (left) and to overesti-

mation (right) of the Lipschitz constant. Taking M less than

half of its initial approximation leads to finding x∗ late or

even breaks the algorithm. Taking M more than twice of this

approximation finds at worst later x∗.

an upper bound B with much lower values compared to the

true ones. So, as a rule of thumb, one should generally choose

M high and decrease its value based on experiments.
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Fig. 8: Illustration of accuracy of the upper bound refine-

ments.

Finally, since reward values (8) are based on predictions of

upper bound refinements, we evaluate the accuracy of these

predictions. Figure 8 compares at each step of the robot the

predicted refinements with the actual ones (computed after

the step has been executed and the new function value has

been observed), for m = 3 and 250 trajectory steps. The two

values follow largely the same trend, with somewhat poorer

accuracy at the beginning of the simulation, improving as the

upper bound decreases and the estimate f̂(x+) gets closer

to the true f(x+). Thus, using the predictions is justified.

B. Comparison to baselines

The learning-based algorithm is next compared to two

different baselines. The first one is represented by a classical

DOO (CDOO) algorithm that, similarly to OOPA, applies

the saw-tooth approach (4) to refine the function envelope



with each sample taken. However, it fully commits to visit

the maximum-B point (5) and thus changes its trajectory

only once this point was reached. CDOO is not aware of the

information gathered through the samples performed along

the trajectory to the next target point.

The second baseline is Gradient Ascent. It applies Local

Linear Regression on the closest N neighbors to the current

position to create a local approximation plane of the sampled

function. This plane is differentiated and the gradient’s

direction that results is followed by the robot with maximum

velocity. This method has the natural limitation of converging

only to local maximum points, however at faster rates.

To have a fair comparison, 15 equidistant starting positions

placed along the lines drawn by the 3 RBF centers (recall

the initial setup) are considered. To give enough time to the

algorithms to find the maximum, we set the number of steps

per trajectory to n = 250 (50m travel distance). The robot

will move with a fixed step of 0.2m (equal to the step size

of the 212 grid). Note that all methods sample the function

with the same frequency, so that e.g. CDOO takes multiple

samples along the (possibly overcommited) trajectory to the

next chosen point. For the gradient-based method N = 4
(N ≥ 3 is required to build the approximation plane).

We display in Figure 9 the result of the experiments. Near

each starting position, drawn with ’x’, the distance until the

optima for each method is given. The entries of each label

correspond to OOPA, CDOO and Gradient Ascent, in this

order, separated by slashes. For each algorithm, the number

before the comma gives the distance traveled by the robot

until convergence (when convergence does not occur, the

distance is replaced by a ‘-’). After the comma, letters ‘y’

(for yes) or ‘n’ (no) show whether the maximum was found

with accuracy of 1 grid step size, δ = 0.2m. Note that for

Gradient Ascent, we give the distance until convergence even

when the algorithm reaches a local optimum (in which case

’n’ is displayed).
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Fig. 9: Results of the OOPA, CDOO and Gradient Ascent

methods.

Excepting a few outliers, the DOO-based methods find

the maximum position with accuracy δ = 0.2m (1 grid step

size). When x∗ is found, OOPA scores 37.55% less distance

on average compared to CDOO. Gradient Ascent finds the

maximum in only a fifth of the runs, mainly when it starts

close to the center of the highest RBF. When this happens,

the gradient-based method tends to find x∗ faster compared

to OOPA or CDOO. In other initial states, Gradient Ascent

converges to a local optimum. These behaviors are expected

due to the local nature of the gradient and its straightforward

choice of the heading direction.

VI. CONCLUSIONS

We considered the problem of finding a global optimum of

a function defined over some physical space, by sampling it

with a mobile robot. A method based on value iteration was

defined to quickly reduce the upper bounds around optima,

and thus implicitly find an optimum.

In future work we will consider more general robot

dynamics than simple integrators, and demonstrate the

method on real robots. Another objective is to provide near-

optimality guarantees.
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