
Control Engineering Practice 153 (2024) 106094 

A
0

Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

Multi-agent active multi-target search with intermittent measurements✩

Bilal Yousuf ∗,1, Radu Herzal, Zsófia Lendek, Lucian Buşoniu ∗,1

Technical University of Cluj-Napoca, Memorandumului 28, Cluj-Napoca, 400114, Cluj, Romania

A R T I C L E I N F O

Keywords:
Multi-target search
Active sensing
Multi-agent systems
Event-triggered measurements
Parrot Mambo minidrone
TurtleBot

A B S T R A C T

Consider a multi-agent system that must find an unknown number of static targets at unknown locations
as quickly as possible. To estimate the number and positions of targets from noisy and sometimes missing
measurements, we use a customized particle-based probability hypothesis density filter. Novel methods are
introduced that select waypoints for the agents in a decoupled manner from taking measurements, which allows
optimizing over waypoints arbitrarily far in the environment while taking as many measurements as necessary
along the way. Optimization involves control cost, target refinement, and exploration of the environment.
Measurements are taken either periodically, or only when they are expected to improve target detection, in an
event-triggered manner. All this is done in 2D and 3D environments, for a single agent as well as for multiple
homogeneous or heterogeneous agents, leading to a comprehensive framework for (Multi-Agent) Active target
Search with Intermittent measurements – (MA)ASI. In simulations and real-life experiments involving a Parrot
Mambo drone and a TurtleBot3 ground robot, the novel framework works better than baselines including
lawnmowers, mutual-information-based methods, active search methods, and our earlier exploration-based
techniques.
1. Introduction

The search for multiple targets by mobile robots is essential in many
applications, such as victim search and rescue (Berger & Lo, 2015;
Cooper, 2020; Pallin, Rashid, & Ögren, 2021), surveillance (Papaioan-
nou, Kolios, Theocharides, Panayiotou, & Polycarpou, 2021), and ex-
ploration of unknown environments (Aguilar, Bravo, Ruiz, Murrieta-
Cid, & Chavez, 2019; Olcay, Bodeit, & Lohmann, 2020; Xu, Yang,
Meng, Cai, & Fu, 2019). Here, we are motivated by the Horizon Europe
SeaClear2.0 project (https://www.seaclear2.eu/), in which a team of
underwater, sea surface, and aerial robots must find targets consist-
ing of ocean litter items. We therefore consider a multi-agent system
(MAS) that explores a 3D or 2D environment to find an unknown
number of static targets at unknown locations as quickly as possible.
Each agent’s sensor probabilistically detects targets depending on their
position relative to the agent and only provides noisy measurements for
those targets that are detected. A particle-based Probability Hypothesis
Density (PHD) filter (Liu, Ji, Zhang, & Liao, 2020; Vo, Singh, & Doucet,
2005) maintains estimated target positions in the form of an intensity

✩ This work was been financially supported by SeaClear2.0, a project co-funded by the European Climate, Infrastructure and Environment Executive Agency
(CINEA) under grant agreement no. 101093822; and by project DECIDE, no. 57/14.11.2022 funded under the PNRR I8 scheme by the Romanian Ministry of
Research, Innovation, and Digitisation.
∗ Corresponding author.

E-mail addresses: bilal.yousuf@aut.utcluj.ro (B. Yousuf), radu@student.utcluj.ro (R. Herzal), zsofia.lendek@aut.utcluj.ro (Zs. Lendek),
lucian.busoniu@aut.utcluj.ro (L. Buşoniu).

1 The first and last authors are joint main authors with equal contribution.

function, a generalization of the probability density that integrates to
the expected number of targets (Dames, 2020).

Many ways have been proposed to identify a known or unknown
number of dynamic or static targets from measurements taken by mo-
bile agents, in robotics (Bircher, Kamel, Alexis, Oleynikova, & Siegwart,
2018; Dang, Khattak, Mascarich, & Alexis, 2019; Ivić, 2022; Juliá,
Gil, & Reinoso, 2012; Murillo, Sánchez, Genzelis, & Giovanini, 2018;
Trenev, Tkachenko, & Kustov, 2021; Wang, Su, Zhu, & Shen, 2010;
Yan, Di, Jiang, Jiang, & Fan, 2019; Zhou, Chen, He, & Bian, 2021),
control (Dames, Tokekar, & Kumar, 2017; Kim, 2021; Lin & Goodrich,
2014; Tyagi, Kumar, & Sujit, 2021), reinforcement learning (Kim, Jang,
& Kim, 2023; Li, Ren, & Li, 2024; Matzliach, Ben-Gal, & Kagan, 2022;
Shen, Lei, Zhang, Li, Cai, & Zhang, 2023; Wang & Fang, 2023; Wang,
Wei, Jiang, Zhao, Wang, & Qi, 2022; Xia, Luo, Liu, Zhang, Shi, &
Liu, 2023; Xiao, Tan, Zhou, & Feroskhan, 2023; Zhang, Wang, Ge, &
Huang, 2024; Zhou, Liu, Shi, Li, Ning, Liu, & Gao, 2023), multi-target
filtering (Chen & Dames, 2020, 2022; Dames, 2020; Dames & Kumar,
2015; Kagan, Goren, & Ben-Gal, 2010), etc. MAS are often used (Dames
& Kumar, 2015; Dames et al., 2017; Leonard & Zoubir, 2019; Liu et al.,
https://doi.org/10.1016/j.conengprac.2024.106094
Received 29 January 2024; Received in revised form 5 September 2024; Accepted
vailable online 18 September 2024 
967-0661/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar
9 September 2024

ticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/conengprac
https://www.elsevier.com/locate/conengprac
https://www.seaclear2.eu/
mailto:bilal.yousuf@aut.utcluj.ro
mailto:radu@student.utcluj.ro
mailto:zsofia.lendek@aut.utcluj.ro
mailto:lucian.busoniu@aut.utcluj.ro
https://doi.org/10.1016/j.conengprac.2024.106094
https://doi.org/10.1016/j.conengprac.2024.106094
http://creativecommons.org/licenses/by/4.0/


B. Yousuf et al. Control Engineering Practice 153 (2024) 106094 
List of Notations

Subscripts are used to specify the time step 𝑘 and decision index
𝑑, whereas superscript 𝑎 indicates agent index and superscript 𝑤
is the candidate waypoint index. Symbol ‘‘*’’ indicates optimal
values. A tilde ‘‘ ̃ ’’ indicates a secondary/auxiliary notation. Left-
superscript ‘‘2D’’ indicates the 2D special case of the framework.
For sets, |⋅| denotes cardinality.

Distributions

𝛿𝜉 Dirac delta centered on 𝜉
 Normal distribution
 Bernoulli distribution

Agent dynamics, targets and sensing

𝑎, 𝐴 Agent index, number of agents
𝑓 Agent nonlinear dynamics
𝑞, 𝑛𝑞 Agent states, number of agent states
𝑞 Agent position in Cartesian coordinates
ℎ State feedback control law
𝑢, 𝑛𝑢 Agent control input, number of inputs
𝑇𝑠 Control sampling period
𝑘 Discrete time step
𝐸 Environment
𝑋 Set of targets
𝑖,𝑁 Target index, total number of targets
𝑥 = (𝚇, 𝚈, 𝚉) Position of target in 3𝐷
𝜋 Probability of detection
𝙵 Size of probabilistic field of view
𝑏 Binary target-detected event
𝑧,𝑍 Measurement, set of measurements
𝜚, 𝑝 Gaussian measurement noise, Gaussian den-

sity function
𝑅, 𝜎 Measurement covariance matrix, standard

deviation
𝛥 Measurement period
𝑚, 𝑘𝑚 Measurement index, time step of 𝑚th mea-

surement
𝑟, 𝜃, 𝜂 Range, heading angle, elevation angle

Filtering

𝐼 Intensity function
𝛷,𝛹 Prediction mapping, update mapping
𝛶 Intensity function of new targets
𝑗 Particle index
𝑥𝑗 , 𝜛𝑗 Location, weight of particle 𝑗
𝑟, 𝑚, 𝑧 Threshold value for cluster radius, cluster

mass, measurement distance

Planning

𝑑, 𝑘𝑑 Decision index, time step of decision with
index 𝑑

𝑜, Waypoint candidate, set of waypoint candi-
dates

𝑤,𝑊 Candidate waypoint index, total number of
candidate waypoints

𝐾 Length of trajectory to a waypoint

2020; Shirsat & Berman, 2021; Wang & Fang, 2023; Zheng, Galland,

Tu, Yang, Lombard, & Gaud, 2020; Zhou, Tzoumas, Pappas, & Tokekar,
2 
𝐪,𝐮 Predicted state trajectory to a waypoint and
corresponding input sequence

𝑀 Number of measurements along a predicted
trajectory

C,T,E Control, target refinement, and exploration
components of the objective function

𝑐, 𝐶 Index of a cluster, total number of clusters
𝜈 Center of a cluster
𝑒, 𝑒 Real exploration function, predicted explo-

ration function
𝑙, Grid point index, set of grid point indices to

represent 𝑒
𝛿 Threshold for triggering a measurement

Multi-agent sensing and planning

𝑘 Set of indices of agents that measure at step
𝑘

𝑘 Set of indices of agents that plan at step 𝑘
𝐰 Joint waypoint candidate index for all

planning agents
𝐽 Objective function

2019). Among all these fields, we focus here on (single and multi-agent)
multi-target filtering, because it accommodates

all the sources of uncertainty in our setting. Approaches in other
fields use different models of uncertainty (e.g. joint uncertainty on the
robot pose and map, versus our case of an unknown number of targets
at unknown locations that are unreliably and noisily detected); and
different representations, like occupancy maps, which are less suited
to our setting than intensity functions. For instance, targets clustered
in a single cell of an occupancy map will not be identified properly,
and if the number of targets is not very large, an occupancy grid may
be inefficient.

In multi-target filtering, most methods use variants of mutual infor-
mation (MI) to evaluate potential waypoints of the agents, e.g. Dames
(2020), Dames and Kumar (2015), Dames et al. (2017). MI measures
the amount of information between agent trajectories and the event
of not seeing any targets, so maximizing MI increases the chances of
seeing previously observed targets. A key shortcoming of such meth-
ods is that exploration of the environment to find new targets is
– to our best knowledge – not explicitly considered. Instead, some
methods include a search component for an unknown-target intensity
function (Chen, Chai, & Yi, 2022; Rost, Axehill, & Hendeby, 2021;
Sung & Tokekar, 2022), which can be viewed as an indirect form of
exploration. While methods from other fields do explore or aim to map
the entire environment (Bircher et al., 2018; Dang et al., 2019; Juliá
et al., 2012; Murillo et al., 2018; Shan, Yang, Liu, & Liu, 2023; Tindall,
Mair, & Nguyen, 2023; Wang et al., 2010, 2022; Yan et al., 2019; Zhou
et al., 2023), they are unsuitable for our context as explained above.

In our previous works, we already showed that incorporating an
explicit exploration objective in the optimization problem solved by
the agents to choose waypoints works better than relying only on MI,
both for a single agent in 2D (Yousuf, Lendek, & Buşoniu, 2022) or
3D (Yousuf, Lendek, & Buşoniu, 2024), as well as for MAS (Yousuf,
Lendek, & Buşoniu, 2023). To our knowledge, these methods were the
first to combine multi-target filtering with exploration. However, they
all take one measurement per agent waypoint. Here, we propose a set
of methods with the key novelty that waypoint selection and control for
navigation are decoupled from taking measurements. Since measurements
are not taken at each control step (but several measurements are taken
along the trajectory to the next waypoint) we call this framework
intermittent-measurement. Its key advantage is that it allows compu-

tationally feasible optimization over waypoints arbitrarily far in the



B. Yousuf et al.

t
t
t

s
g
o
f
d

𝑞

w
a
c
𝑎
o

Control Engineering Practice 153 (2024) 106094 
environment,2 while taking as many measurements as desired along
the way, and taking control costs into account. Measurements are
taken either periodically, or only when they are expected to improve
target detection, in an event-triggered version that aims to reduce the
computational cost of running posterior updates without losing search
performance. All this is done in both 2D and 3D environments, for
a single agent as well as for multiple homogeneous or heterogeneous
agents, leading to a comprehensive framework for (Multi-Agent) Active
target Search with Intermittent measurements – (MA)ASI. In the multi-
agent case, agents can choose waypoints and take measurements fully
asynchronously.

To better explain, consider first a single agent, i.e. ASI. The agent’s
path is chosen by repeatedly picking future waypoints from a set of
candidates placed anywhere in the environment. For each candidate,
a trajectory is generated by a low-level controller, with a length that
depends on the candidate, and the best candidate is picked by solving
an optimization problem with three components: control cost, target
refinement, and exploration. The control component reduces the con-
trol effort required to reach the waypoint. Target refinement focuses on
better pinpointing the locations of targets about which measurements
were previously received, and is computed by summing up probabilities
of detection at estimated target locations. The exploration component
encourages moving towards new, unseen regions and is computed via
an exploration function that is initially large across the whole environ-
ment, and then decreases in observed regions. The planner considers
that measurements are taken at a constant multiple of the control
sampling period, but during execution, the method allows skipping
measurements when they are not expected to refine old targets nor
discover new ones, leading to an event-triggered version of ASI.

In the multi-agent case, MAASI repeatedly solves a joint problem
in which several agents optimize their waypoints at once, using a
multi-agent extension of the three-component objective above. In this
extension, agents coordinate in two ways. First, a common intensity
function is maintained using iterative-corrector PHD filtering (Liu et al.,
2020). Secondly, during optimization, the agents’ exploration objec-
tives are coupled, so each agent understands the regions that other
agents will explore, and the team does not needlessly cluster in one
region. A nontrivial extra challenge in MAASI is that agent trajectories
are varying in length and sensor frequencies are different, so arbitrary
subsets of agents may plan or measure at any given time step. Mecha-
nisms are designed to cope with this, and an event-triggered version of
MAASI is also provided.

We evaluate the new methods ASI and MAASI in extensive sim-
ulations as well as in real-life single- and multi-robot experiments.
First, we pitch ASI against four single-agent baselines: a predefined
lawnmower pattern (Otte, Kuhlman, & Sofge, 2018), and three active-
search methods representative of the multi-target filtering field: an
MI-only method without any exploration, adapted from Dames and
Kumar (2015), a method with an unknown-target search component,
adapted from Sung and Tokekar (2022), and our earlier exploration-
based techniques (Yousuf et al., 2023), which take measurements only
at waypoints, and which we therefore call AS. In simulations, ASI
finds the targets faster (after fewer measurements) than the baselines,
and since MI-only techniques do not explore, they miss some targets.
Similarly, in the multiagent case, MAASI is better than multiagent
versions of the lawnmower and of the method adapted from Sung
and Tokekar (2022), as well as MAAS. Event-triggered measurements
perform similarly in terms of target detections, while the number of
measurements is reduced, for both single and multiple agents.

The real-life single-agent experiment involves a Parrot Mambo
minidrone exploring at a constant altitude to find targets on the

2 The method of Dames and Kumar (2015) is closest to this idea, but there
he distance between measurements ‘‘dilates’’ with the length of the planned
rajectory, so measurements are not really decoupled from control. In addition,
hat method is MI-only.
3 
floor using the camera. The results confirm that ASI improves over
AS and lawnmower search. The multi-agent experiment additionally
involves a TurtleBot3 ground robot, which is slower than the drone
and has a narrower field of view, but a lower-variance sensor. This
setup is notable for two reasons: it illustrates how the framework
handles heterogeneous agents, and it approximates the field scenario of
SeaClear2.0, where a fast drone with a wide field of view senses poorly
underwater using the camera, whereas a slower underwater robot sees
targets more accurately with a sonar that has a relatively narrow field
of view. As in the single-agent case, MAASI is better than MAAS and a
multi-agent lawnmower.

Summarizing, the key contributions of our paper are:

• A set of active target search methods in which the timescales of se-
lecting waypoints, performing control for navigation, and taking
measurements are decoupled, allowing for efficient optimiza-
tion over waypoints placed anywhere in the environment. Mea-
surements are taken either periodically or in an event-triggered
manner, only when they are expected to improve target detection.

• The methods are developed for both single agents and multi-
ple homogeneous or heterogeneous agents, leading overall to a
comprehensive framework for multi-agent active target search.

• Different from existing multi-target filtering works of other au-
thors, and similar to our earlier work, the methods include an
explicit exploration objective.

• In detailed simulation results, we demonstrate improvements
compared to four baselines including a lawnmower, two active
search methods from the literature, and our earlier exploration-
based methods.

• In real indoor experiments, a Parrot Mambo drone and (for the
multi-agent case) a TurtleBot3 ground robot search for targets
located on the floor. Real-life improvements are shown compared
to lawnmowers and our earlier exploration-based method.

Next, Section 2 formulates the problem directly in the 3D multi-
agent case, pointing out how it specializes to 2D and one agent.
Background on PHD filtering is provided in Section 3, separately for
one agent (Vo et al., 2005) and several (Liu et al., 2020). The filtering
framework is heavily customized for our purposes. Next, to make things
easier to follow, we fully present the single-agent case, starting with the
methods in Section 4, and followed by simulations and real-experiment
results in separate subsections of Section 5. Mirroring this structure, we
move to the multi-agent case, with the method in Section 6 and results
in Section 7. Section 8 concludes the paper.

2. Problem formulation

Consider a number 𝐴 of agents that explore a compact 2D or 3𝐷
pace (environment) 𝐸 in search of an unknown number of static tar-
ets, as illustrated in Fig. 1. The main objective is to find the positions
f all the targets in as few steps as possible. We will mathematically
ormulate an optimization problem in Section 4, see (17) there. The
ynamics of each agent are:
𝑎
𝑘+1 = 𝑓 𝑎(𝑞𝑎𝑘, 𝑢

𝑎
𝑘) (1)

ith 𝑘 being the discrete time step and 𝑎 = 1, 2,… , 𝐴 the index of the
gent. The agent index will be dropped later on for the single-agent
ase. The state 𝑞𝑎𝑘 ∈ ℜ𝑛𝑎𝑞 , where 𝑛𝑎𝑞 is the dimension of the state of agent
, contains the position – denoted by 𝑞𝑎𝑘 – and will typically also include
rientation, linear, and angular velocities. The input is 𝑢𝑎𝑘 ∈ ℜ𝑛𝑎𝑢 , and

is applied with sampling period 𝑇𝑠. The control law can be, e.g., a state
feedback:

𝑢𝑎𝑘 = ℎ𝑎(𝑞𝑎𝑘) (2)

but this is just an example, and in general other controllers may be
used. It is assumed that the agents’ state is known accurately enough



B. Yousuf et al. Control Engineering Practice 153 (2024) 106094 
Fig. 1. Environments with 12 targets and 2 agents. Top: 3D. Bottom: 2D, where the
color shows the probability of detection of each agent at their current position, orange
to blue meaning higher to lower probability. (For interpretation of the usage of color
in this and subsequent figures, the reader is referred to the web version of this article.).

not to require an explicit treatment of state uncertainty, and that for
any 𝜖 > 0 the controller is able to take the agent 𝜖-close to any
position in 𝐸 in a finite number of steps. The accurate-state assumption
is justified by the fact that robot pose sensors (e.g. differential GPS,
inertial measurement units) are generally significantly more accurate
than sensors for target detection (e.g. 2D or 3D cameras). This as-
sumption is generally made – although not always explicitly stated –
in target search and tracking applications, see e.g. Dames (2020), Kim
(2021), Kim et al. (2023), Papaioannou et al. (2021), Zhou et al. (2019).
The controllability assumption is mild: since classic state-feedback con-
trollers usually ensure exponential (not just asymptotic) convergence,
it is easily satisfied. Furthermore, recent finite-time, fixed-time, and
prescribed-performance control methods provide even stronger conver-
gence guarantees, see e.g. Chung, Giri, and Son (2019), Gu, Sun, and
Chen (2021), Pandey, Kamal, and Ghosh (2024), Shoufeng, Yingnan,
Liang, and Lei (2024), Sun, Zhu, and Li (2024).

In the environment 𝐸 there are 𝑁 stationary targets, and each target
𝑖 is located at coordinates 𝑥𝑖 = (𝚇𝑖, 𝚈𝑖, 𝚉𝑖) ∈ 𝐸, 𝑖 = 1, 2,… , 𝑁 . The set
of targets is denoted by 𝑋. Both the cardinality 𝑁 and the locations of
the targets are initially unknown.

We use a Random Finite Set (RFS) framework (Chen & Dames,
2022; Dames, 2020; Dames & Kumar, 2015; Dames et al., 2017; Lin
& Goodrich, 2014; Shirsat & Berman, 2021; Vo et al., 2005) to esti-
mate target locations, as detailed in Yousuf et al. (2024). Agents are
equipped with different sensors in general. At each step, agents receive
noisy measurements about a subset of targets that are detected. The
probability with which agent 𝑎 at Cartesian coordinates 𝑞𝑎 = [𝚇𝑎, 𝚈𝑎, 𝚉𝑎]
detects a target at position 𝑥 = [𝚇, 𝚈, 𝚉] is denoted by 𝜋𝑎(𝑥, 𝑞𝑎). For
instance, in most of our simulations, we consider an omnidirectional
4 
ranging sensor for which the probability of detection is defined as:

𝜋𝑎(𝑥, 𝑞𝑎) = 𝐺𝑎𝑒−‖𝜁
𝑎
‖∕2 (3)

where scalar 𝐺𝑎 ≤ 1, and:

𝜁𝑎 =
(

𝚇 − 𝚇𝑎

𝙵𝑎
𝚇

, 𝚈 − 𝚈𝑎

𝙵𝑎
𝚈

, 𝚉 − 𝚉𝑎

𝙵𝑎
𝚉

)

(4)

is the normalized distance between target 𝑥 and agent 𝑎. In (4),
(𝙵𝑎

𝚇
, 𝙵𝑎

𝚈
, 𝙵𝑎

𝚉
) are normalization constants that may be interpreted as the

size of the (probabilistic) field of view (FOV) of agent 𝑎. This detection
probability is used often in the field of target search, see e.g. Dames
et al. (2017), Vo et al. (2005). If 𝙵𝑎

𝚇
= 𝙵𝑎

𝚈
= 𝙵𝑎

𝚉
, 𝜋𝑎 is radially symmetric

around the position of the agent 𝑎, as illustrated in Fig. 1 (bottom), for
the 2𝐷 case. Our method works for a general form of 𝜋𝑎; for instance,
in the experiments, a form of 𝜋𝑎 different from (3) will be used.

Define 𝑘𝑎𝑚 as the time step at which agent 𝑎 takes the 𝑚th mea-
surement, where 𝑚 ≥ 0 denotes the index of the measurement. We
consider two settings. In the periodic setting, measurements are taken
with a multiple 𝛥𝑎 of the control sampling period 𝑇𝑠. For example,
𝛥𝑎 = 2 corresponds to 𝑘𝑎𝑚 = 0, 2, 4, 6…. Measurement instants are
illustrated in the graphical representation of our framework for Active
target Search with Intermittent measurements (ASI) in Fig. 3, with
red lines along the black and green trajectories. In the event-triggered
setting, measurements are taken aperiodically, in a manner that will be
explained in Section 4.

Remark 1. Much of the framework presented in this section is stan-
dard, except for the mechanism for taking intermittent measurements
(only at steps 𝑘𝑎𝑚), which is needed for the planners later.

The binary event 𝑏𝑎𝑖𝑘𝑎𝑚 of agent 𝑎 with position 𝑞𝑎𝑘𝑎𝑚
= (𝚇𝑎𝑘𝑎𝑚

, 𝚈𝑎𝑘𝑎𝑚
, 𝚉𝑎𝑘𝑎𝑚

)
at step 𝑘𝑎𝑚 (i.e. when taking the 𝑚th measurement) detecting a target at
position 𝑥𝑖 follows a Bernoulli distribution given by the probability of
detection, 𝑏𝑎𝑖𝑘𝑎𝑚 ∼ (𝜋𝑎(𝑥𝑖, 𝑞𝑎𝑘𝑎𝑚 )). Given Bernoulli variables 𝑏𝑎𝑖𝑘𝑎𝑚 , together
with the actual target positions 𝑥𝑖 = (𝚇𝑖, 𝚈𝑖, 𝚉𝑖), the set of measurements
𝑍𝑎
𝑘𝑎𝑚

is:

𝑍𝑎
𝑘𝑎𝑚

=
⋃

𝑖∈{1,…,𝑁}s.t.𝑏𝑎
𝑖𝑘𝑎𝑚

=1
𝑧𝑎𝑘𝑎𝑚 (5)

where 𝑧𝑎𝑘𝑎𝑚 = 𝑔𝑎𝑘𝑎𝑚
(𝑥𝑖) + 𝜚𝑎𝑘𝑎𝑚

, and 𝑔𝑎𝑘𝑎𝑚 (𝑥𝑖) is defined as:

𝑔𝑎𝑘𝑎𝑚 (𝑥𝑖) =
[

𝑟𝑎𝑖𝑘𝑎𝑚 , 𝜃
𝑎
𝑖𝑘𝑎𝑚
, 𝜂𝑎𝑖𝑘𝑎𝑚

]𝑇
(6)

with

𝑟𝑎𝑖𝑘𝑎𝑚 =
√

(𝚇𝑖 − 𝚇𝑎𝑘𝑎𝑚
)2 + (𝚈𝑖 − 𝚈𝑎𝑘𝑎𝑚

)2 + (𝚉𝑖 − 𝚉𝑎𝑘𝑎𝑚
)2 (7)

𝜃𝑎𝑖𝑘𝑎𝑚 = arctan
𝚈𝑖 − 𝚈𝑎𝑘𝑎𝑚
𝚇𝑖 − 𝚇𝑎𝑘𝑎𝑚

(8)

𝜂𝑎𝑖𝑘𝑎𝑚 = arcsin
𝚉𝑖 − 𝚉𝑎𝑘𝑎𝑚
𝑟𝑎𝑖𝑘𝑎𝑚

(9)

Thus, for each target 𝑖 detected, the measurement consists of the range
𝑟𝑎𝑖𝑘𝑎𝑚

, bearing angle 𝜃𝑎𝑖𝑘𝑎𝑚 , and elevation angle 𝜂𝑎𝑖𝑘𝑎𝑚 relative to the agent.
This measurement is affected by Gaussian noise 𝜚𝑎𝑘𝑎𝑚 ∼  (, 𝟎, 𝑅𝑎), with
mean 𝟎 = [0, 0, 0]⊤ and diagonal covariance 𝑅𝑎 = diag[(𝜎𝑎)2, (𝜎𝑎)2, (𝜎𝑎)2].

Based on the measurement model, the target measurement density
𝑝𝑎(𝑧𝑎|𝑥) is:

𝑝𝑎(𝑧𝑎|𝑥) =  (𝑧𝑎, 𝑔𝑎𝑘𝑎𝑚 (𝑥), 𝑅
𝑎) (10)

i.e. a Gaussian density centered on 𝑔𝑎𝑘𝑎𝑚
(𝑥) with covariance matrix 𝑅𝑎.

This density will be used to estimate the target locations.
For the special case of 2D space, the measurements in (5) become

𝑧𝑎𝑘𝑎𝑚
=2D 𝑔𝑎𝑘𝑎𝑚

(𝑥𝑖) +2D 𝜚𝑎𝑘𝑎𝑚
. Here 2D𝑔𝑎𝑘𝑎𝑚

(𝑥𝑖) =
[

𝑟𝑎𝑖𝑘𝑎𝑚
, 𝜃𝑎𝑖𝑘𝑎𝑚

]𝑇
contains only

the Euclidean distance 𝑟𝑎𝑖𝑘𝑎𝑚
and the bearing angle 𝜃𝑎𝑖𝑘𝑎𝑚

, computed re-
spectively as in (7) and (8) while imposing 𝚉𝑎 = 𝚉𝑖 = 0. Moreover,
2𝐷𝜚𝑎𝑘𝑎𝑚

is a 2D Gaussian noise with mean [0, 0]𝑇 and covariance 𝑅𝑎 =
diag[(𝜎𝑎)2, (𝜎𝑎)2].



B. Yousuf et al. Control Engineering Practice 153 (2024) 106094 
Fig. 2. Illustration of an intensity function defined over 2D space.

3. Background on the estimation framework

This section summarizes the background on Probability Hypothesis
Density (PHD) and Iterated-Corrector PHD (IC-PHD) filtering, adapted
from Vo et al. (2005) and Liu et al. (2020). We start with the single-
agent PHD filter in Section 3.1, followed by the multi-agent IC-PHD fil-
ter in Section 3.2. Finally, in Section 3.3 we present methods for mark-
ing well-defined targets as found and ignoring future measurements
that may come from these targets.

Remark 2. Compared to standard PHD and IC-PHD filtering, the
framework is modified here to accommodate the intermittent mea-
surements of Section 2, by running posterior updates only when mea-
surements are taken. These modifications become nontrivial in the
multiagent case, where an arbitrary (possibly empty) subset of agents
may measure at each step.

3.1. Single-agent PHD filter

Since in this section we consider a single agent, we drop the agent
index (superscript) 𝑎. Define first the intensity function 𝐼 ∶ 𝐸 →
[0,∞), which is similar to a probability density function, with the key
difference that its integral ∫𝑆 𝐼(𝑥)𝑑𝑥 over some subset 𝑆 ⊆ 𝐸 is not
the probability mass of 𝑆, but the expected number of targets in 𝑆.
An example of an intensity function in 2D is given in Fig. 2, where
the three peaks correspond to possible target locations, and the circles
illustrate the weighted particles.3 For example, the red patch in Fig. 2
is the intensity function 𝐼 defined over the corresponding rectangle 𝑆
lying in the (𝑋, 𝑌 ) plane. The integral of 𝐼 over this red region gives
the expected number of targets in 𝑆.

The PHD filter performs Bayesian updates of an intensity function
based on the measurements 𝑍𝑘𝑚 , and is summarized as:

𝐼𝑘|𝑘−1 = 𝛷(𝐼𝑘−1|𝑘−1)

𝐼𝑘|𝑘 =

{

𝐼𝑘𝑚|𝑘𝑚 = 𝛹𝑘𝑚 (𝐼𝑘𝑚|𝑘𝑚−1, 𝑍𝑘𝑚 ), if 𝑘 = 𝑘𝑚 for 𝑚 ≥ 0
𝐼𝑘|𝑘−1, otherwise

(11)

Here, 𝐼𝑘|𝑘−1 is the prior intensity function, predicted based on 𝐼𝑘−1|𝑘−1
at the previous step 𝑘 − 1, and 𝐼𝑘𝑚|𝑘𝑚 denotes the posterior generated
after processing the new measurements at 𝑘𝑚. Note that prediction is
performed at every step, while updates using 𝛹𝑘𝑚 are performed only
at 𝑘 = 𝑘𝑚, when a new measurement becomes available. At any 𝑘 ≠ 𝑘𝑚,
𝐼𝑘|𝑘 remains equal to the prior, so it is not a true posterior, but we
accept this abuse of notation to keep the updates coherent.

3 In reality, there is no constraint that particle weights are on the PHD
surface, this situation is shown here to give a more intuitive representation.
5 
The prior 𝐼𝑘|𝑘−1 is defined as:

𝐼𝑘|𝑘−1(𝑥) = 𝛷(𝐼𝑘−1|𝑘−1)(𝑥) = 𝛶 + ∫𝐸
𝑝𝑠(𝜉)𝛿𝜉 (𝑥)𝐼𝑘−1|𝑘−1(𝜉)𝑑𝜉 (12)

where 𝑝𝑠(𝜉) is the probability that a target previously located at position
𝜉 still exists. In our specific problem, targets are stationary, so the
transition density of a target 𝑥 at 𝜉 is defined as the Dirac delta 𝛿𝜉 (𝑥)
centered on 𝜉. Moreover, 𝛶 , chosen here to be a constant, denotes the
intensity function of a new target appearing anywhere.

Now, to compute the posterior intensity function 𝐼𝑘𝑚|𝑘𝑚 at step
𝑘𝑚 using the measurements 𝑍𝑘𝑚 , we apply the multi-target posterior
operator 𝛹𝑘𝑚 (𝐼𝑘𝑚|𝑘𝑚−1, 𝑍𝑘𝑚 )(𝑥) to the prior intensity function 𝐼𝑘𝑚|𝑘𝑚−1:

𝐼𝑘𝑚|𝑘𝑚 (𝑥) = 𝛹𝑘𝑚 (𝐼𝑘𝑚|𝑘𝑚−1, 𝑍𝑘𝑚 )(𝑥) =

=

⎡

⎢

⎢

⎢

⎣

1 − 𝜋(𝑥, 𝑞𝑘𝑚 ) +
∑

𝑧∈𝑍𝑘𝑚

𝜓𝑘𝑚𝑧(𝑥)
⟨

𝜓𝑘𝑚𝑧, 𝐼𝑘𝑚|𝑘𝑚−1
⟩

⎤

⎥

⎥

⎥

⎦

⋅ 𝐼𝑘𝑚|𝑘𝑚−1(𝑥)
(13)

where 𝜓𝑘𝑚𝑧(𝑥) = 𝜋(𝑥, 𝑞𝑘𝑚 )𝑝(𝑧|𝑥) denotes the overall probability density
of detecting a target at 𝑥, via a measurement 𝑧 with 𝑝 defined in (10),
and
⟨

𝜓𝑘𝑚𝑧, 𝐼𝑘𝑚|𝑘𝑚−1
⟩

= ∫𝐸
𝜓𝑘𝑚𝑧(𝑥)𝐼𝑘𝑚|𝑘𝑚−1 (𝑥)𝑑𝑥

In practice, we apply the Sequential Monte-Carlo Probability Hypothe-
sis Density (SMC-PHD) filter (Vo et al., 2005), which uses at each 𝑘 a
set of weighted particles (𝑥𝑗 , 𝜛𝑗

𝑘|𝑘) to represent 𝐼𝑘|𝑘, with the property
that ∫𝑆 𝐼𝑘|𝑘(𝑥)𝑑𝑥 ≈

∑

𝑥𝑗∈𝑆 𝜛
𝑗
𝑘|𝑘 for any 𝑆 ⊆ 𝐸. For more details, refer

to Yousuf et al. (2024).

3.2. Multi-agent IC-PHD filter

Let us next consider the full set of 𝐴 agents, some of which receive
noisy multi-target measurements at step 𝑘. Define 𝑘 to be the set of
indices of the agents that receive measurements at 𝑘. Thus, an agent
𝑎 ∈ 𝑘 has 𝑘 = 𝑘𝑎𝑚 for some 𝑚. Multi-agent measurements are
illustrated in Fig. 10 of Section 6, with red lines along the green and
purple trajectories. In the example of that figure, there are two agents;
if both agents happen to measure at 𝑘, then 𝑘 = {1, 2}, whereas if
just one agent measures at 𝑘, then 𝑘 = {1} or 𝑘 = {2}, respectively,
depending on which agent measures. It is also possible that no agent
measures at 𝑘, i.e. 𝑘 = ∅.

In general, each agent 𝑎 ∈ 𝑘 receives a measurement set 𝑍𝑎
𝑘 –

that concerns targets at coordinates 𝑥 – depending on the probability of
detection 𝜋𝑎(𝑥, 𝑞𝑎𝑘) and on the measurement density 𝑝𝑎(𝑧𝑎|𝑥), see again
Section 2. The prediction step is the same as in (11) and (12), as it does
not depend on the measurements. The resulting prior 𝐼𝑘|𝑘−1 is used to
initialize the multi-agent posterior 𝐼0𝑘|𝑘, with agent index 0, meaning
‘‘before processing measurements of any agent’’:

𝐼𝑘|𝑘−1 = 𝛷(𝐼𝑘−1|𝑘−1)(𝑥) =∶ 𝐼0𝑘|𝑘 (14)

The IC-PHD filter (Liu et al., 2020) then generates a posterior intensity
function 𝐼𝑘|𝑘 by processing sequentially the measurements of each
agent 𝑎 ∈ 𝑘:

𝐼𝑎𝑘|𝑘(𝑥) = 𝛹 𝑎𝑘 (𝐼
𝑎−
𝑘|𝑘, 𝑍

𝑎
𝑘 )(𝑥), for 𝑎 ∈ 𝑘 in increasing order

𝐼𝑘|𝑘(𝑥) ∶= 𝐼|𝑘|
𝑘|𝑘 (𝑥)

(15)

where 𝑎− is the previous agent index in 𝑘, and 𝑎− = 0 if 𝑎 is the first
index in 𝑘. Each IC-PHD posterior update is defined as:

𝐼𝑎𝑘|𝑘 =

⎡

⎢

⎢

⎢

⎣

1 − 𝜋𝑎(𝑥, 𝑞𝑎𝑘) +
∑

𝑧𝑎∈𝑍𝑎𝑘

𝜓𝑎𝑘,𝑧𝑎 (𝑥)
⟨

𝜓𝑎𝑘,𝑧𝑎 , 𝐼
𝑎−
𝑘|𝑘

⟩

⎤

⎥

⎥

⎥

⎦

⋅ 𝐼𝑎−𝑘|𝑘(𝑥) (16)

with 𝜓𝑎𝑘,𝑧𝑎 (𝑥) = 𝜋𝑎(𝑥, 𝑞𝑎𝑘𝑎𝑚
)𝑝𝑎(𝑧𝑎|𝑥), similarly to the single-agent case. As

in Section 3.1, a particle-based approximation is used in practice. Note
that for the single-agent case, the IC-PHD reduces to the original PHD
filter where  = {1} at 𝑘 = 𝑘 and  = ∅ at other steps.
𝑘 𝑚 𝑘



B. Yousuf et al. Control Engineering Practice 153 (2024) 106094 
Fig. 3. Illustration of active target search with intermittent measurements.
3.3. Marking and removal of found targets

In a naive implementation, a target search algorithm will con-
tinue to concentrate on targets even when they are well-determined
(i.e. when they have clear peaks in the intensity function), which is
not beneficial since the time would be better spent refining poorly
seen targets or looking for new ones. To achieve this, we remove well-
determined targets. After the measurements of all agents in 𝑘 are
processed, we extract the potential targets as clusters of particles using
K-means (Gu, Zhou, & Chen, 2009). Two conditions are checked for
each cluster 𝑐: the cluster radius must be below a threshold 𝑟, and the
sum of the weights 𝜛𝑗 of the particles in the cluster must be above
a mass threshold 𝑚. Then, each cluster that is narrow enough, and
associated with a large enough concentration of mass in the intensity
function, is taken to correspond to a well-determined (found) target at
position 𝜈𝑐 , equal to the center of the cluster. We remove the particles
belonging to such clusters.

To prevent the formation of another intensity peak at the locations
of old, already found targets, measurements that are likely to be asso-
ciated with these targets are also removed from future measurement
sets 𝑍𝑎

𝑘𝑎𝑚
. Naturally, the algorithm has no means of knowing which

target led to a particular measurement, so for each agent, among all
measurements that are below a threshold 𝑧 (if any) to a found target,
it removes the closest measurement 𝑧𝑎𝑘𝑎𝑚 to it.

4. Single-agent planner

Consider now the problem of designing a path for one agent to
explore the environment to quickly find targets. A classical solution
to this problem would be a lawnmower trajectory, which fills the
space uniformly. We evaluate the lawnmower as a baseline in our
experiments, but a quicker solution is desired. A framework similar
to model predictive control (MPC) is used to find this solution. The
planner ‘‘stitches together’’ a sequence of trajectories, each leading to
a waypoint. The waypoints are generated by solving an optimization
problem with an objective that combines control costs, refining poten-
tial targets, and exploration of the space. All this is formalized and
exemplified next. Since the single-agent case is considered in Sections 4
and 5, we drop the superscript 𝑎 for the duration of these sections.
Consider the agent at decision index 𝑑 that occurs at the discrete
time step 𝑘𝑑 , where the next waypoint must be selected; the agent
has state 𝑞𝑘𝑑 at this time step. Define a set of candidate waypoints
𝑑 =

{

𝑜𝑤𝑑 , 𝑤 = 1,… ,𝑊
}

of the agent, where 𝑜𝑤𝑑 is the 𝑤th candidate
waypoint at decision index 𝑑, and 𝑊 is the total number of candidate
waypoints. Set  should be sufficiently rich for the agent to search
𝑑

6 
for the targets and, in general, it may be defined differently at each 𝑑,
e.g. relative to the agent’s state.

Fig. 3 illustrates and exemplifies the framework. This figure shows
the candidate waypoints from decision indices 𝑑 and 𝑑 + 1 with dark
red ×-shaped outlines. The trajectories from the current state 𝑞𝑘𝑑 to
each candidate waypoint 𝑜𝑤𝑑 , 𝑤 = 1,… ,𝑊 , are shown as lines, black for
the candidates that were not chosen, and green for the optimal, chosen
candidate 𝑜∗𝑑 and its corresponding trajectory. One candidate trajectory,
to a generic waypoint 𝑜𝑤𝑑 , is split into individual predicted steps and
also points out with blue arrows the predicted inputs and with red
vertical lines the measurement steps; see below for the mathematical
formulation. The optimal trajectory 𝑜∗𝑑 is also split into steps and
highlights measurement instants as red lines. The past trajectory to the
current decision index 𝑑 is shown in a dashed green line. In general,
green means optimal, actually executed trajectories, black is related to
generic states, blue to inputs, and red to measurements.

Each candidate waypoint 𝑜𝑤𝑑 of the agent is fed as a reference point
to the low-level controller, which generates the predicted trajectory
𝐪𝑤𝑑 =

[

𝑞𝑤𝑘𝑑+1,… , 𝑞𝑤𝑘𝑑+𝐾𝑤𝑑

]

and corresponding control input sequence

𝐮𝑤𝑑 =
[

𝑢𝑤𝑘𝑑 ,… , 𝑢𝑤𝑘𝑑+𝐾𝑤𝑑 −1

]

, illustrated in Fig. 3 by the black lines and blue
arrows, respectively. Here, 𝑞𝑤𝑘𝑑+𝑗+1 = 𝑓 (𝑞𝑤𝑘𝑑+𝑗 , 𝑢

𝑤
𝑘𝑑+𝑗

), for 𝑗 = 0,… , 𝐾𝑤
𝑑 −

1, and 𝐾𝑤
𝑑 is the length of the trajectory to reach waypoint 𝑜𝑤𝑑 from the

current state 𝑞𝑘𝑑 of the agent. We say the agent reached position 𝑜𝑤𝑑
when the condition

‖

‖

‖

‖

𝑞𝑤𝑘𝑑+𝐾𝑤𝑑
− 𝑜𝑤𝑑

‖

‖

‖

‖

≤ 𝜀 is satisfied, where 𝜀 is a tunable
threshold.

Along each such predicted trajectory 𝐪𝑤𝑑 , measurements are planned
to be taken periodically at instants 𝑘𝑑,𝑚̃ = 𝑘𝑑 + 𝑚̃𝛥, 𝑚̃ = 0,… ,𝑀𝑤

𝑑 − 1.
Here, 𝑀𝑤

𝑑 =
⌈𝐾𝑤𝑑

𝛥

⌉

is the measurement horizon, defined as the total
number of measurements (including an imposed one at the decision
step) along a candidate trajectory 𝐪𝑤𝑑 . In Fig. 3, these instants are the
red lines along agent trajectories.

The optimal waypoint, 𝑜∗𝑑 , reached by the green trajectory in Fig. 3,
is selected by solving (by enumeration) the optimization problem:

𝑤∗ ∈ argmax𝑤=1,…,𝑊
−C(𝑤) + 𝛼 ⋅ T(𝑤) + 𝛽 ⋅ E(𝑤)

𝐾𝑤
𝑑

(17)

The objective function in (17) involves the control cost component
C(𝑤), the target refinement component T(𝑤) aiming to better find the
locations of the targets that were already seen, and the exploration
component E(𝑤), which drives the agent to explore unseen regions.
Tunable parameters 𝛼 and 𝛽 control the tradeoff between these three
components. We normalize the objective function by the length of the
trajectory to avoid an incorrect preference for long trajectories.



B. Yousuf et al.

C

i

a
u

T

w

t
(
h
s

r
w

1
1
1

1
1
1
1
2
2
2
2

s

Control Engineering Practice 153 (2024) 106094 
The control cost (effort) to reach the 𝑤th candidate waypoint is:

(𝑤) =
𝐾𝑤𝑑 −1
∑

𝑗=0
(𝑢𝑤𝑘𝑑+𝑗 )

𝑇 ⋅ 𝑢𝑤𝑘𝑑+𝑗 (18)

.e. the sum of squared predicted inputs.
Target refinement is computed as the sum of the observation prob-

bilities of particle cluster centers (recall that particles are clustered
sing K-means) across all predicted measurement steps:

(𝑤) =
𝑀𝑤
𝑑 −1
∑

𝑚̃=0

𝐶𝑘𝑑
∑

𝑐=1
𝜋(𝜈𝑐𝑘𝑑 , 𝑞

𝑤
𝑘𝑑,𝑚̃

) (19)

here 𝐶𝑘𝑑 denotes the number of clusters at 𝑘𝑑 , and the center 𝜈𝑐𝑘𝑑 of
the 𝑐th cluster has the meaning of an estimated target position. Note
hat since we are actually not taking measurements while computing
19), the clusters remain ‘‘frozen’’ to their values at 𝑘𝑑 . The intuition be-
ind (19) is that the probability of detecting estimated target positions
hould be maximized.

The exploration component E(𝑤) drives the agent to look at unseen
egions of the environment. Define first an exploration function 𝑒,
hich is initialized to 1 for the entire environment. We represent 𝑒 on a

grid of points with indices in a set , which may be 3D or 2D depending
on the problem, initialized with:

𝑒0(𝑥𝑙) = 1,∀𝑙 ∈ 

At each real measurement step 𝑘𝑚, 𝑒 should decrease for each location
𝑥 with an amount related to the probability of detection 𝜋(𝑥, 𝑞𝑘𝑚 ).
Specifically, updates are performed on the grid:

𝑒𝑘𝑚 (𝑥𝑙) = 𝑒𝑘𝑚−1 (𝑥𝑙) ⋅
(

1 − 𝜋(𝑥𝑙 , 𝑞𝑘𝑚 )
)

∀𝑙 ∈  (20)

The meaning of (20) is that position 𝑥𝑙 has been explored to an amount
equal to the probability of detection. We emphasize that predicted
states are denoted with superscript 𝑤 (e.g., 𝑞𝑤𝑘𝑑+𝑗), while real states
are defined without such an index. Along each predicted trajectory 𝐪𝑤𝑑 ,
we evaluate a predicted exploration function 𝑒𝑤𝑘𝑑,𝑚̃ (𝑞

𝑤
𝑘𝑑,𝑚̃

), computed at
predicted position 𝑞𝑤𝑘𝑑,𝑚̃ using multi-linear interpolation on the grid .
At the current decision index, 𝑒 is equal to the last real exploration
function 𝑒𝑤𝑘𝑑,−1 ∶= 𝑒𝑘𝑚 , and afterward it decreases with each predicted
measurement along trajectory 𝐪𝑤𝑑 as follows:

𝑒𝑤𝑘𝑑,𝑚̃ (𝑥𝑙) = 𝑒𝑤𝑘𝑑,𝑚̃−1 (𝑥𝑙) ⋅
(

1 − 𝜋(𝑥𝑙 , 𝑞𝑤𝑘𝑑,𝑚̃ )
)

(21)

Finally, the exploration component along the 𝑤th trajectory is:

E(𝑤) =
𝑀𝑤
𝑑 −1
∑

𝑚̃=0
𝑒𝑤𝑘𝑑,𝑚̃ (𝑞

𝑤
𝑘𝑑,𝑚̃

) (22)

Now, the optimal trajectory, with index 𝑤∗ from (17) gives the
agent’s chosen trajectory to the new waypoint:

𝑞𝑘𝑑+𝑗 = 𝑞∗𝑘𝑑+𝑗 , for 𝑗 = 1,… , 𝐾∗
𝑑 (23)

Note that besides 𝑤∗, we employ superscript ‘‘*’’ to denote the optimal
solution for variables such as trajectories 𝐮∗𝑑 , 𝐪∗𝑑 , and the length 𝐾∗

𝑑 .
Recall that in Fig. 3, this optimal trajectory is highlighted in green.
Measurements (at red lines) are taken along this trajectory as follows:
if 𝑘𝑚 was the last prior measurement point to decision 𝑑, then: 𝑘𝑚+1 =
𝑘𝑑,0, 𝑘𝑚+2 = 𝑘𝑑,1,… , 𝑘𝑚+𝑀∗

𝑑
= 𝑘𝑑,𝑀∗

𝑑−1
. Note that measurements are not

strictly periodic, since we enforce a measurement at each waypoint
𝑘𝑚+1 = 𝑘𝑑,0, even if the number of elapsed steps after the last measure-
ment is smaller than the period 𝛥. For simplicity, to contrast against
our event-triggered version below, we nevertheless call this setting
‘‘periodic’’. Both settings are referred to as ‘‘intermittent measurement’’
since we do not take measurements at all control steps.

The entire procedure is repeated at the next decision step 𝑑 + 1, at
discrete time step 𝑘𝑑+1 = 𝑘𝑑 +𝐾∗

𝑑 .
Taking measurements and running the filter takes energy and com-
putation time. To reduce these costs, we design an event-triggered

7 
variant of the method to allow the agent to take measurements only at
certain steps, instead of at a constant period. For consistency, we still
enforce measuring at each waypoint, for measurement index 𝑚̃ = 0.
Then, the sensor’s smallest sampling period, 𝛥, serves as our starting
point. To decide whether to measure or not, at each potential measure-
ment step 𝑘𝑑,𝑚̃ for measurement index 𝑚̃ ≥ 1, we use the following
criterion:
𝐶𝑘𝑚
∑

𝑐=1
𝜋(𝜈𝑐𝑘𝑚 , 𝑞𝑘𝑑,𝑚̃ ) + 𝛾 ⋅ 𝑒(𝑞𝑘𝑑,𝑚̃ ) > 𝛿 (24)

where 𝛾 is a tunable parameter and 𝛿 is a threshold. We only measure
at 𝑘𝑑,𝑚̃ if (24) is satisfied. The intuition behind (24) is that we skip
measurements that are unlikely to contribute to either the refinement
of known targets – captured by the first term in (24) – or the explo-
ration of new locations along the trajectory – captured by the second
term in (24). The event-triggered method is only implemented during
actual execution, not at the planning stage. Note that the number of
actual measurements 𝑚 is only incremented when (24) holds, and that
the clusters used in (24) are those found after processing the latest
measurement at 𝑘𝑚.

The overall procedure for Active target Search with Intermittent
measurements (ASI) is outlined in Algorithm 1.
Algorithm 1 Active target search with intermittent measurements
1: 𝑑 = −1, 𝑚 = −1
2: for each step 𝑘 ≥ 0 do
3: if 𝑘 = 0 or trajectory finished (𝑘 = 𝑘𝑑 +𝐾∗

𝑑 ) then
4: Planning:
5: 𝑑 = 𝑑 + 1 and 𝑘𝑑 = 𝑘
6: configure candidates 𝑑 = {𝑜𝑤𝑑 , 𝑤 = 1, … , 𝑊 }
7: for each candidate index 𝑤 do
8: compute C(𝑤) (18), T(𝑤) (19), E(𝑤) (22)
9: end for

10: find optimal next waypoint 𝑤∗ by solving (17)
11: end if
12: if 𝑘 = 𝑘𝑑 + 𝑚̃𝛥 for some 𝑚̃ ≥ 0 and (𝑚̃ = 0 or (24) satisfied) then
3: Measurement:
4: 𝑚 = 𝑚 + 1 and 𝑘𝑚 = 𝑘
5: get measurements, and remove those closest

to found targets per Section 3.3, leading to 𝑍𝑘𝑚
6: run filter from Section 3.1 with 𝑍𝑘𝑚
7: Filtering:
8: run K-means to get clusters 𝑐 = 1,… , 𝐶𝑘𝑚 with centers 𝜈𝑐𝑘𝑚
9: mark and delete found targets per Section 3.3.
0: end if
1: Control:
2: execute next trajectory step, from 𝑞𝑘 to 𝑞𝑘+1
3: end for

Remark 3. Compared to our prior work (Yousuf et al., 2024), the
optimization problem (17) additionally involves control cost. More
importantly, each term is now a summation with its own timescale:
control steps 𝑘 in the control cost (18), and (potential) measurement
teps 𝑚̃ in the target refinement (19) and exploration (22). Furthermore,

the timescale of waypoint decisions 𝑑 is different from those of both
control and measurement. Finally, the framework further allows us
to easily add the event-triggered mechanism (24) so that only some
measurements are taken.

5. Single-agent experiments

In this section, to validate the efficiency of the proposed target
search method, we present single-agent simulations involving a Parrot
Mambo drone in Section 5.1, together with a real-life experiment
involving the actual drone in Section 5.2.



B. Yousuf et al. Control Engineering Practice 153 (2024) 106094 
5.1. Simulation results

To validate the efficiency of the proposed target search algorithm,
we ran two sets of simulations in 3D target space. In the first set of
simulations, we compare our novel ASI method against four baselines.
The first baseline is a standard lawnmower that covers the environment
uniformly. The second baseline is Active Search (AS) from our previous
paper (Yousuf et al., 2024). Unlike ASI, which navigates to arbitrarily
far away waypoints and takes multiple measurements along each tra-
jectory, AS optimizes at each planning step in a smaller set of waypoints
that are at a constant distance from the current position of the agent,
and only measures once it reaches the next waypoint. Furthermore, AS
does not consider control costs. The other two baselines are representa-
tive of the literature on active target search with intensity functions: a
planner that uses only MI without exploration, based on Dames and Ku-
mar (2015), and one with an unknown-target search component, based
on Sung and Tokekar (2022). The MI-only method uses only a target
refinement objective, without including an exploration objective. The
method of Sung and Tokekar (2022) represents the intensity function
as a Gaussian mixture, achieves target refinement by driving to the
closest Gaussian, and (in separate experiments) achieves target search
by driving to the widest Gaussian. A future research direction suggested
by Sung and Tokekar (2022) is to mix the two strategies. Here, like
in our earlier work (Yousuf et al., 2024), we adapt their method by
(1) applying it to the clusters instead of Gaussian components; and (2)
choosing a simple mix between search and refinement: the drone first
drives to the nearest cluster, then to the widest, then to the nearest,
and so on.

In the second simulation, we compare ASI with and without the
event-triggered measurement mechanism, to see whether it retains
its target detection performance with fewer measurements, and to
investigate how much the number of measurements can be reduced.

All experiments run in the 3D environment 𝐸 = [0, 260] m × [0, 260]
m × [0, 260] m. A number of 12 targets are uniformly randomly dis-
tributed in the environment 𝐸. In ASI, we define the candidate set 𝑑
as a grid of positions of size 3 × 3 × 3 (27 different choices) in 𝐸, having
a spacing of 80 meters on each axis, and starting from [10, 10, 10]𝑇 such
that the grid is centered in the environment. In the 3𝐷 lawnmower
used as a baseline, the altitude difference on the 𝚉-axis between each
2D ‘‘layer’’ of the lawnmower is constant and set to 48 m, and the 𝚇

and 𝚈 lawnmower spacings are also 48 m. The lawnmower also starts
at [10, 10, 10]𝑇 . In contrast to ASI, in AS, six waypoints candidates are
defined at each step 𝑘, at a distance of 12m from the current position
along six directions: up, down, left, right, forward, and backward.

For simplicity, we use the linear model of a Parrot Mambo drone
from Sütő, Codrean, and Lendek (2023), as our objective is to evaluate
the performance of the planner, rather than that of the low-level
control. The drone model parameters are the moments of inertia on
each axis 𝐼𝑥 = 0.5829 ⋅ 10−4 kg m2, 𝐼𝑦 = 0.7169 ⋅ 10−4 kg m2,
𝐼𝑧 = 1.000 ⋅ 10−4 kg m2, and the mass 𝑚 = 0.063 kg. The agent’s
state 𝑞𝑘 ∈ ℜ12 comprises the drone’s position in the north, east,
down (NED) frame, the roll, pitch, and yaw angles, and the linear
and angular velocities. The control signals 𝑢𝑘 = [𝑢𝜙, 𝑢𝜃 , 𝑢𝜓 , 𝑢𝑐𝑓 ]𝑇 ∈ ℜ4

includes the torques on the three rotational axes and the collective
force. The control sampling period is 𝑇𝑠 = 0.005 s and the measure-
ment period is 𝛥 = 10 times 𝑇𝑠, i.e. 0.05 s. A discrete-time Linear
Quadratic Regulator (LQR) is designed to navigate the agent towards
the waypoints, specified as setpoints for the LQR. In the setpoints, the
angles and velocities are set to 0. The weight matrices are chosen as
𝑄LQR = diag([0.1, 0.1, 10, 0.01, 0.01, 0.01, 0.01, 1, 0.1, 0.1, 0.1]), and 𝑅LQR =
diag([ 1

15 , 1000, 1000, 100]). The initial position of the drone is 𝑞0 =
[1, 1, 1]𝑇 for all the methods except the lawnmower, in which it is
[10, 10, 10]𝑇 as explained above.

The probability of detection 𝜋(𝑥, 𝑞) has form (3) with parameters:
𝐺 = 0.98, 𝙵𝚇 = 𝙵𝚈 = 𝙵𝚉 = 25. The measurement noise covariance
matrix in model (5) is determined through experimental tuning, and
8 
Fig. 4. Comparison between alternative target search methods. The lawnmower per-
formance is shown with the blue continuous line, MI-only with the red dashed line, the
method adapted from Sung and Tokekar (2022) with the orange dotted line, AS with
the cyan dashed–dotted line, and ASI with the green dotted line. For each method,
the line is the mean number of targets found on the 10 maps, and the shaded region
gives a 95% confidence region on the mean. To make the figures easier to follow, the
correspondence between methods and colors is the same in all subsequent plots.

is 𝑅 = diag[1.5, 0.175, 0.295]. The threshold values for target marking
and removal are experimentally set as 𝑟 = 1.1m, 𝑚 = 2.2m, and
𝑧 = 5m. The experiment length is chosen so that all algorithms have
a chance to detect all the targets. For each experiment, we performed
10 independent runs and reported the mean number of targets detected
along with the 95% confidence interval on the mean.

Comparison of ASI to Baselines in the Case of Periodic Measurements.
Execution Time and Sensitivity Study. We start by comparing ASI to
the four baselines explained above: lawnmower, MI-only, the method
adapted from Sung and Tokekar (2022), and AS. For fairness, the
comparison is based on the number of measurement steps, and all
methods maintain a distance of roughly 12 m between consecutive
measurements (since in ASI measurements are time-based, the mea-
surement period is tuned so the average distance between measurement
points is 12 m).

The results in Fig. 4 show the number of target detections as
a function of the number of measurement steps. The proposed ASI
planner works better than all the baselines, followed in order by AS,
the method of Sung and Tokekar (2022), the lawnmower, and the MI-
only method. Notably, since this last method does not include any way
to search for new targets, it does not find all the targets, but focuses
only on those that happen to be detected. Moreover, all active-search
methods outperform the lawnmower.

Fig. 5 shows trajectories of all the methods in one of the 10
experiments, in the same order as in Fig. 4, and an extra trajectory
with ASI, when there are no targets. The lawnmower covers the 3D
environment uniformly. AS and ASI focus on relevant regions to find
targets faster. As opposed to AS, which only takes a single measurement
at each waypoint, the ASI planner generates longer trajectories that
include many measurements. The method adapted from Sung and
Tokekar (2022) also focuses on relevant regions so it is faster than the
lawnmower but slower than AS and ASI. Using ASI, the RMSE between
the actual and estimated target positions is 1.24 m, which is relatively
small for a domain of size of 2603m3. For a better understanding, please
refer to a video of an example trajectory with ASI, available online
at http://rocon.utcluj.ro/files/ASI_targetsearch.mp4. The final, bottom-
right trajectory shows ASI in the case when there are no targets, to
illustrate that in such a case it fills the space in a lawnmower-like way,
which is correct behavior.

Regarding computation time, in order, the lawnmower takes
0.0043±0.00018 s per step, AS 0.018±0.0027 s, the method from Sung
and Tokekar (2022) 0.008±0.00054 s, the ASI algorithm 0.035±

http://rocon.utcluj.ro/files/ASI_targetsearch.mp4


B. Yousuf et al. Control Engineering Practice 153 (2024) 106094 
Fig. 5. Examples of trajectories with the actual targets (black diamonds) and estimated
targets (red diamonds). Top left: Lawnmower. Top right: MI-only. Middle left: Method
adapted from Sung and Tokekar (2022). Middle right: AS. Bottom left: ASI. Bottom
right: ASI with no targets.

0.0021 s, and the MI-only algorithm 0.041±0.0018 s.4 The format is
mean value ±95% confidence half-interval on the mean, in the 10
experiments above (the same format will be used in the sequel). While
ASI is relatively computationally intensive, recall that in practice the
distance traveled by the real robot is the most significant cost, and ASI
is the fastest on that metric.

Next, we study the sensitivity of ASI with respect to the three
parameters deemed most important: weights 𝛼 and 𝛽 in the planning
objective, and the number of particles. For each value or combination
of values, we perform 5 independent runs of ASI in the periodic-
measurement setting above. Table 1 shows that the best value for
both 𝛼 and 𝛽 is 0.75, and that ASI is moderately sensitive to these
parameters, with performance dropping on either side of the optimal
value but not very fast (recall that the next best method in Fig. 4
takes around 300 steps). For example, any combination of values in
0.5, 0.75, 2.5 leads to finding all the targets in at most 221 steps on
average, whereas the next best method in Fig. 4 takes around 300 steps.
Table 2 illustrates that performance reliably improves up to 10 000
particles and then plateaus. As expected, the filtering time increases
with the number of particles, while the planning time is largely constant
and therefore not shown in the table (e.g. for 2000 particles, it is
0.0263±0.0004 s and for 20 000, 0.0294 ±0.00088 s). Neither of these
execution times varied in the experiments of Table 1, so they were not
included there. Importantly, given the 0.05s measurement period, the
algorithm is applicable in real time up to 10 000 particles. Note that
the results of Table 1 were obtained with 10 000 particles, and those of
Table 2 with 𝛼 = 𝛽 = 0.75. These best settings were also used to obtain
the results of Fig. 4 and 5, as well as all the single-agent results in the
sequel.

4 The computer used is equipped with an Intel 1365U CPU, 32 GB of RAM,
and runs Matlab R2024.
9 
Table 1
Effect of 𝛼 and 𝛽 parameters on the number of steps taken by ASI to find all the
targets.

𝛼
𝛽 0.05 0.5 0.75 2.5 5

0.05 153±6 171±8 182±10 167±9 248±12
0.5 173±7 155±10 184±12 200±7 233±10
0.75 177± 6 151±10 117±11 182±13 241±10
2.5 242±8 221±10 183±10 151±6 267±12
5 359±10 329±8 286±7 259±12 375±10

Table 2
The effect of the number of particles on ASI. Results include the number
of measurement steps required to find all targets (in regular font),
together with the computation time taken by filtering (in bold).
Number of particles Number of steps

Filtering time

2000 278±8 steps
0.0006 ± 0.00002 s

4000 250 ± 10 steps
0.0009 ± 0.000052 s

6000 212 ± 12 steps
0.0021 ± 0.00062 s

8000 167±6 steps
0.0057 ± 0.00088 s

10000 117±11 steps
0.0083 ± 0.00021 s

15000 114±9 steps
0.0564 ± 0.00981 s

20000 113±10 steps
0.11264 ± 0.0867 s

Fig. 6. Comparison between periodic measurement (light green continuous line) and
event-triggered measurements (dark green continuous line): targets found over time.

Event-triggered Measurements. Next, we implemented the event-
triggered mechanism from the end of Section 4. The threshold 𝛿 is
set to 4, tuned experimentally. Fig. 6 shows the number of target
detections, this time as a function of the number of control steps. By
using the event-triggered measurement mechanism, the target detection
performance of the algorithm is statistically indistinguishable from
the periodic case, but the number of measurements is reduced with
statistical significance: on average in the 10 experiments, the drone took
100 ± 10 measurement steps in the event-triggered case, compared to
145±17 in the periodic case. This means that fewer measurements must
be processed and the PHD filter update equations are run fewer times,
leading to computational and possibly communication savings.

Fig. 7 (top) shows a trajectory of the original ASI where the drone
takes measurements along the trajectory periodically, highlighting
these measurements. Fig. 7 (bottom) shows a trajectory of the event-

triggered ASI. Measurements are rarer than in the periodic case, and



B. Yousuf et al. Control Engineering Practice 153 (2024) 106094 
Fig. 7. Examples of trajectories with periodic sampling (top) and event-triggered
sampling (bottom). The positions from which the robot measures are shown as red
circles.

they are also taken at widely varying distances, as needed to improve
target detection.

5.2. Real-drone results

As a final piece of the single-agent part of the paper, real-life
implementation results using a Parrot Mambo drone are given. We
again compare our new ASI framework to AS and a lawnmower.

For this experiment, the problem is reduced to a 2D search, with
the targets on the floor and the drone flying at a constant altitude of
1 m to maintain the same FOV. The 2D environment is [0, 2] × [0, 2]m,
and the targets are represented by blue markers, see Fig. 8 (top).
We consider 12 targets manually placed at arbitrary locations. The
candidate waypoints of the drone 𝑑 are defined as a 3 × 3 grid
having a spacing of 0.6 meters on both the 𝚇 and 𝚈 axis and the
corner at [0.1, 0.1], so the grid is centered in the environment. The 𝚇

and 𝚈 lawnmower spacings are set to 0.2 m. Up to 120s are allocated
to complete each experiment. The threshold values for target marking
and removal are experimentally set as 𝑊 = 0.02m, 𝑚 = 0.04m, and
𝑧 = 0.05m.

The drone communicates with MATLAB via Bluetooth to receive
waypoints and send target measurements. The low-level controller
operates in a closed loop on the drone. The pictures taken by the
drone-mounted camera are fed into an image-processing algorithm for
marker identification and localization. For details on the experimental
framework, including the image processing algorithm, communication
protocol, and controller, please refer to Yousuf et al. (2024).

The detection probability, unlike in the simulations, is now binary
(i.e, a deterministic detection model is used):

𝜋(𝑥, 𝑞) =

{

1 𝑥 ∈ 
0 𝑥 ∉ 

(25)

where  = [𝚇𝑞 − 0.2, 𝚇𝑞 + 0.2] × [𝚈𝑞 − 0.2, 𝚈𝑞 + 0.2] is the drone camera’s
field of view at a 1 m altitude, illustrated in Fig. 8 (bottom). Here, 𝚇𝑞 , 𝚈𝑞
is the 2D position of the drone. Target measurements consist of range
and bearing. To determine the measurement covariance 𝑅, we collected
10 
Fig. 8. Top Parrot Mambo minidrone searching for targets (blue markers). Bottom:
Field of view of the Parrot Mambo and the TurtleBot. The latter robot will be used in
the multi-agent experiments of Section 7.2.

100 images of a single target at different positions in the camera image,
and then calculated the empirical covariance of the target positioning
errors, obtaining 𝑅 = diag[0.016, 0.052].

Note that in reality, due to model uncertainty, the optimal predicted
trajectory 𝐪∗𝑑 will be different from the actual trajectory achieved by
implementing the closed-loop onboard controller of the drone. Even
though our notation overlooks this difference for simplicity, the actual
measurements are taken along the real path, and the PHD filter uses
the actual drone states (up to pose estimation errors).

Fig. 9 (top), shows the number of target detections as a function
of the number of measurements, for ASI together with the lawnmower
and AS baselines. ASI works best, followed by AS and the lawnmower,
thereby confirming the results seen in the simulations. Fig. 9 (bottom),
illustrates the trajectory for ASI. The drone finds all the targets with
an RMSE between the actual and estimated target locations of 0.08 m,
which is small compared to the environment size. Note that there
is some drift because we rely on the onboard sensors. A video of
the experiment is available at http://rocon.utcluj.ro/files/ASI_mambo.
mp4.

6. Multi-agent planner

In this second part of the paper, we consider the problem of design-
ing a fast target search path for multiple agents, in a framework that we
call Multi-Agent Active Target Search with Intermittent Measurements
(MAASI).

Similarly to the set 𝑘 of agents that measure at step 𝑘, see
Section 3.2, define 𝑘 as the set of indices of the agents that plan at 𝑘.
An agent 𝑎 must plan at 𝑘 if its previously planned trajectory has just
finished. All other agents 𝑎 ∉ 𝑘 continue their trajectories. Initially,
0 consists of all the agents, while at other steps, it can consist of any
subset of agents, including the whole set if all the agents happen to
finish their earlier trajectories simultaneously. Set  may also often
𝑘

http://rocon.utcluj.ro/files/ASI_mambo.mp4
http://rocon.utcluj.ro/files/ASI_mambo.mp4
http://rocon.utcluj.ro/files/ASI_mambo.mp4


B. Yousuf et al.

c
m
a
s

d
i
S
r
t
c
e
d

f

𝐰

w
t

𝐽

C

p

t

T

s

𝑒

w
a
𝑎
a

Control Engineering Practice 153 (2024) 106094 
Fig. 9. Top: Detected number of targets using the real Parrot Mambo minidrone.
Bottom: ASI trajectory in a real experiment. The same color correspondence as in Fig. 4
applies. In addition to the trajectory, actual and estimated targets, drone waypoints are
shown as pink stars.

be empty, implying that no planning is needed and all agents continue
their existing trajectory.

An agent 𝑎 ∈ 𝑘 is at its 𝑑𝑎th decision and has a set of next waypoint
andidates 𝑎

𝑑𝑎 =
{

𝑜𝑤𝑎𝑑𝑎 , 𝑤
𝑎 = 1,… ,𝑊 𝑎}. Note that, although agents

ay be at different decision indices (e.g., agent 1 at 𝑑1 = 3, agent 2
t 𝑑2 = 2, etc.), the time step of these synchronous decisions is the
ame: 𝑘 = 𝑘𝑑𝑎 for all 𝑎 ∈ 𝑘.

The joint candidate index is 𝐰𝑘 ∈
⨉

𝑎∈𝑘{1,… ,𝑊 𝑎}, where ⨉

enotes cross product, i.e. 𝐰𝑘 is a vector consisting of one candidate
ndex 𝑤𝑎 for each agent 𝑎 ∈ 𝑘. As in the single-agent planner of
ection 4, each candidate waypoint 𝑜𝑤𝑎𝑑𝑎 of each agent 𝑎 ∈ 𝑘 is fed as a
eference point to the low-level controller of agent 𝑎, which generates
he predicted agent trajectory 𝐪𝑤𝑎𝑑𝑎 of length 𝐾𝑤𝑎

𝑑𝑎 and the corresponding
ontrol input sequence 𝐮𝑤𝑎𝑑𝑎 . Note that to simplify the notation, we use
.g. 𝐪𝑤𝑎𝑑𝑎 instead of the full form 𝐪𝑎,𝑤

𝑎

𝑑𝑎 , since the agent index is already
eclared in 𝑤𝑎 and 𝑑𝑎.

A centralized planner is run to find an optimal next joint waypoint
or all planning agents 𝑎 ∈ 𝑘:

∗
𝑘 = argmax𝐰𝑘

∑

𝑎∈𝑘

𝐽 𝑎(𝑤𝑎) (26)

here 𝐽 𝑎(𝑤𝑎) is the objective function of agent 𝑎 ∈ 𝑘, defined similarly
o (17):

𝑎(𝑤𝑎) =
−C𝑎(𝑤𝑎) + 𝛼T𝑎(𝑤𝑎) + 𝛽E𝑎(𝑤𝑎)

𝐾𝑤𝑎
𝑑𝑎

(27)

and C𝑎,T𝑎, and E𝑎 are the cost, target refinement, and exploration
components. These components extend the single-agent versions (18),
(19), and (22) as follows.

The control cost to waypoint candidate 𝑜𝑤𝑎𝑑𝑎 for agent 𝑎 is defined as:

𝑎(𝑤𝑎) =
𝐾𝑤

𝑎
𝑑𝑎 −1
∑

𝑗=0
(𝑢𝑤

𝑎

𝑘𝑑𝑎+𝑗
)𝑇 ⋅ 𝑢𝑤

𝑎

𝑘𝑑𝑎+𝑗
(28)

The target refinement is computed as the sum of the observation
robabilities of agent 𝑎 at the particle cluster centers, summed over
11 
he predicted measurement steps of agent 𝑎:

𝑎(𝑤𝑎) =
𝑀𝑤𝑎
𝑑𝑎 −1
∑

𝑚̃=0

𝐶𝑘𝑑𝑎
∑

𝑐=1
𝜋𝑎(𝜈𝑐𝑘𝑑𝑎 , 𝑞

𝑤𝑎
𝑘𝑑𝑎,𝑚̃

) (29)

where 𝑀𝑤𝑎
𝑑𝑎 is the total number of measurements (including at the

tarting step) along the agent’s candidate trajectory 𝐪𝑤𝑎 , and 𝑘𝑑𝑎 ,𝑚̃, 𝑚̃ =
0,… ,𝑀𝑤𝑎

𝑑𝑎 − 1 are the steps when measurements should be taken by
agent 𝑎. Note that we work with the clusters available at step 𝑘𝑑𝑎 ,
the same for all planning agents. As can be seen in (28) and (29),
given the clusters, C𝑎 and T𝑎 are computed independently for each
agent. This is not the case for the exploration component E𝑎(𝑤𝑎): the
agents remain coupled via this component. Let us first generalize the
exploration function 𝑒. This function is initialized in the same way as
for a single agent in Section 4, 𝑒0(𝑥𝑙) = 1 at all points 𝑥𝑙 on a grid .
Then, at each step 𝑘:

𝑒𝑘(𝑥𝑙) = 𝑒𝑘−1(𝑥𝑙)
∏

𝑎∈𝑘

(

1 − 𝜋𝑎(𝑥𝑙 , 𝑞𝑎𝑘)
)

∀𝑙 ∈  (30)

i.e., 𝑒 is decreased according to the probability of detection by all the
agents 𝑎 ∈ 𝑘. By convention, the product in (30) is equal to 1 when
𝑘 = ∅, so when no agents measure, 𝑒 stays constant.

The exploration component of agent 𝑎 is then:

E𝑎(𝑤𝑎) =
𝑀𝑤𝑎
𝑑𝑎 −1
∑

𝑚̃=0
𝑒𝐰𝑘𝑘𝑑𝑎,𝑚̃ (𝑞

𝑤𝑎
𝑘𝑑𝑎,𝑚̃

) (31)

where 𝑒𝐰𝑘𝑘 is a predicted version of 𝑒𝑘(𝑥𝑙):

̂𝐰𝑘𝑘 (𝑥𝑙) = 𝑒𝐰𝑘𝑘−1(𝑥𝑙)
∏

𝑎∈𝐰𝑘
𝑘

(

1 − 𝜋𝑎(𝑥𝑙 , 𝑞
𝑎,𝐰𝑘
𝑘 )

)

(32)

In (32), 𝐰𝑘
𝑘 is the predicted set of measuring agents at step 𝑘 if

the planning agents 𝑘 were to select joint index 𝐰𝑘. Function 𝑒𝐰𝑘
depends both on the predicted trajectories 𝑞𝑎,𝐰𝑘𝑘 of agents 𝑎 ∈ 𝑘,

hich are directly determined by the indices 𝑤𝑎 in the joint index 𝐰𝑘;
nd on the predicted trajectories 𝑞𝑎,𝐰𝑘𝑘 of the other, continuing agents
∉ 𝑘. The predicted states 𝑞𝑎,𝐰𝑘𝑘 , the predicted sets of measuring

gents 𝐰𝑘
𝑘 , and therefore the predicted exploration function 𝑒𝐰𝑘𝑘 , all

depend on the candidate joint waypoint 𝐰𝑘. Note that, with an abuse
of notation, we use index 𝐰𝑘 even for the trajectories of non-planning
(continuing) agents 𝑎 ∉ 𝑘, because the trajectories of these agents may
be completed in different ways for different joint waypoint indices 𝐰𝑘,
as explained next.

The planner must predict some trajectories for the continuing agents
𝑎 ∉ 𝑘. Each such agent will continue executing the remaining tail of its
current trajectory, and this tail goes into the first part of the predicted
trajectory. Define now the maximal length of the predicted trajectories
of planning agents, max𝑎∈𝑘 𝐾

𝑤𝑎
𝑑𝑎 . Some trajectory tails of continuing

agents will be shorter than this maximal length; this issue is solved by
appending constant states, equal to the last state, to each such agent’s
trajectory. The same is done for trajectories of planning agents that are
shorter than the maximal length (e.g. because the waypoint is close).

Once the optimal index 𝐰∗
𝑘 is determined, real agent trajectories to

the new waypoints are produced, similarly to the single-agent planner
in Section 4. Along the way, agents measure and IC-PHD is applied as
in Section 3.2.

Fig. 10 illustrates the framework. In this example, we have two
agents 𝑎 = 1, 2 that are shown with green and purple trajectories,
respectively, and ×-shaped outlines are the decision steps, with the
decision indices 𝑑𝑎. When both agents are at their initial decision,
i.e. 𝑑1 = 𝑑2 = 0, 𝑘 = 0 = {1, 2} since 𝑘 = 0, and the two agents
jointly plan their next waypoints. The agents again happen to perform
joint planning at decision indices 𝑑1 = 3 and 𝑑2 = 2, which correspond
to the same discrete time step of 𝑘 = 𝑘1𝑑 = 𝑘2𝑑 , so that 𝑘 = {1, 2}. At
other decision indices, either agent 1 chooses its waypoint, 𝑘 = {1},

1
or agent 2 does, 𝑘 = {2}. For instance, at decision index 𝑑 = 1, only



B. Yousuf et al.

𝑚

Control Engineering Practice 153 (2024) 106094 
Fig. 10. Illustration of multi-agent active target search with intermittent measurements.
agent 𝑎 = 1 performs planning, and 𝐰𝑘 = 𝑤1. In this case, we use the
existing trajectory ‘‘tail’’ of agent 𝑎 = 2, indicated by a thick purple line,
to apply (32). Since this tail is too short in this specific case, we extend
it using constant states, which are represented by a dashed purple line.
At decision index 𝑑2 = 1 we follow a similar procedure for agent 2,
with 𝐰𝑘 = 𝑤2. In this case, the ‘‘tail’’ of agent 𝑎 = 1 used to plan is
shown as a thick green line and is supplemented with constant states
illustrated by a green dashed line.

Finally, we adapt our event-triggered approach from Section 4,
introduced there for single-agent scenarios, to accommodate multiple
agents. For each agent 𝑎, we will use an auxiliary measurement index
̃ ≥ 0, so that the interval passing since the last decision step 𝑘𝑑𝑎
is a multiple 𝑚̃ of the measurement period 𝛥𝑎. In other words, 𝑘 =
𝑘𝑑𝑎+𝑚̃𝛥𝑎 =∶ 𝑘𝑑𝑎 ,𝑚̃. At waypoints, when 𝑚̃ = 0, agent 𝑎 always measures,
so it gets added to the measuring set 𝑘. For 𝑚̃ > 0, 𝑎 is added to 𝑘
only if the following multi-agent extension of (24) holds:
𝐶𝑘
∑

𝑐=1
𝜋𝑎(𝜈𝑐𝑘, 𝑞

𝑎
𝑘𝑑𝑎,𝑚̃

) + 𝛾 ⋅ 𝑒𝑘(𝑞𝑎𝑘𝑑𝑎,𝑚̃ ) > 𝛿 (33)

The parameters 𝛾, 𝛿 in (33) have the same meaning as in Section 4.
Therefore, in Fig. 10 we no longer automatically take measurements at
all red lines, but only at those red lines where (33) is satisfied.

To exemplify, let us return to the two-agent scenario of Fig. 10.
Initially, agents are at decision indices 𝑑1 = 𝑑2 = 0. At this point,
both agents must take measurements: 0 = {1, 2}. Consider next as
an example a step 𝑘 at which both agents would have measured in the
periodic setting. In the event-triggered case, at such a step 𝑘, 𝑘 can
be either ∅, {1}, {2}, or {1, 2}, depending on whether condition (33) is
satisfied by no agent, by agent 1, by agent 2, or by both agents.

The overall MAASI method is summarized in Algorithm 2.

Remark 4. Similarly to the single-agent case of Section 4, the main
difference between the new planner and our prior work in Yousuf
et al. (2023) is that in the new planner different timescales are used
for waypoint decisions, control, and measurements. This has nontrivial
implications on the planner, e.g. notably on how the objectives of
different agents interact. Decision and measurement timescales can also
differ among agents, but we choose to keep control timescales the same
12 
Algorithm 2 Multi-agent active target search with intermittent
measurements
1: 𝑑𝑎 = −1 ∀𝑎
2: for each step 𝑘 ≥ 0 do
3: 𝑘 = ∅
4: Planning:
5: for each 𝑎 do
6: if 𝑎 finished its trajectory (𝑘 = 𝑘𝑑𝑎 +𝐾

∗,𝑎
𝑑𝑎 ) then

7: 𝑑𝑎 = 𝑑𝑎 + 1 and 𝑘𝑑𝑎 = 𝑘
8: 𝑘 = 𝑘 ∪ {𝑎}
9: end if

10: end for
11: if 𝑘 ≠ ∅ then
12: for each joint index w𝑘 and 𝑎 ∈ 𝑘 do
13: find C𝑎(𝑤𝑎) (28), T𝑎(𝑤𝑎) (29), E𝑎(𝑤𝑎) (31)
14: find 𝐽 𝑎(𝑤𝑎) (27)
15: end for
16: find best next joint waypoint w∗

𝑘 by solving (26)
17: end if
18: Measurement:
19: 𝑘 = ∅
20: for all 𝑎 do
21: if 𝑘 = 𝑘𝑑𝑎 + 𝑚̃𝛥𝑎 for 𝑚̃ ≥ 0 and (𝑚̃ = 0 or (33) satisfied) then
22: 𝑘 = 𝑘

⋃

{𝑎}
23: get measurements, and remove those closest

to found targets per Section 3.3, leading to 𝑍𝑎
𝑘

24: end if
25: end for
26: Filtering:
27: run filter from Section 3.2 with 𝑘 and 𝑍𝑎

𝑘 , 𝑎 ∈ 𝑘
28: execute K-means to find clusters 𝑐 = 1,… , 𝐶𝑘 with centers 𝜈𝑐𝑘
29: mark and delete any found targets, per Section 3.3
30: Control:
31: execute the next step of all agents’ trajectories
32: end for



B. Yousuf et al. Control Engineering Practice 153 (2024) 106094 
to avoid complicating the notation. The framework then allows us to
easily add per-agent event-triggered measurement rules.

7. Multi-agent results

In this section, we present MAASI simulations in Section 7.1 and
real-life experiments involving a Parrot Mambo drone and a Robotis
TurtleBot3 ground robot in Section 7.2.

7.1. Simulation results

Section 7.1.1 presents results using homogeneous agents in a 3D
environment. We evaluate the performance of MAASI versus multiagent
versions of the two baselines that worked best in the single-agent case:
a multiagent version of the method adapted from Sung and Tokekar
(2022), in which the agents compute waypoints independently like in
Section 5.1, but run the IC-PHD filter jointly; and Multi-Agent Active
Search (MAAS) from our previous paper (Yousuf et al., 2023). The
differences between MAASI and MAAS mirror those between ASI and
AS: MAASI navigates to potentially faraway waypoints and acquires
multiple measurements along the trajectories of the agents, whereas
MAAS defines for each agent a set of waypoint candidates at a constant
distance from its current position, and only takes measurements once
agents reach the next waypoints. Additionally, MAAS does not involve
asynchronous decision-making, as agents reach the waypoints simulta-
neously. Note that most multi-agent methods in the literature (Chen
& Dames, 2022; Dames, 2020; Dames & Kumar, 2015; Ivić, 2022; Lin
& Goodrich, 2014; Zhou et al., 2019) are MI-only, and it would make
little sense to compare them since we expect that they fail in the same
way as the MI-only method in the single-agent case: they will not find
all the targets.

In Section 7.1.2, still with homogeneous agents, we compare MAASI
with and without the event-triggered measurement mechanism.

Finally, in Section 7.1.3, we consider heterogeneous agents navigat-
ing a 2D space in a simulated version of the real experiment that will
follow in Section 7.2. To make the problem more challenging, obstacles
are added in Section 7.1.3.

7.1.1. Homogeneous-agent results with periodic measurements. Execution
time and sensitivity study

Two agents (drones) search for 12 targets in the 3𝐷 environ-
ment 𝐸 = [0, 260]m×[0, 260]m×[0, 260]m. The following settings are the
same as in the single-agent case of Section 5, but now apply to both
agents:

• The candidate waypoints for each agent is a centered 3 × 3 × 3
grid of positions with a spacing of 80 m on each axis, with the
corner at [10, 10, 10]𝑇 .

• The linear Parrot Mambo drone model.
• The form (3) of the probability of detection and its parameters
𝐺 = 0.98, 𝙵𝚇 = 𝙵𝚈 = 𝙵𝚉 = 25.

• The sensor noise covariance matrix 𝑅 = diag[1.5, 0.175, 0.295], and
the threshold values are 𝑟 = 1.1m, 𝑚 = 2.2m, and 𝑧 = 5m.

• In MAAS, the waypoints of each agent are generated in the same
way as in AS, see Section 5.

The initial positions are 𝑞10 = [1, 1, 1]𝑇 for the first agent (like the
drone in the single-agent experiment) and 𝑞20 = [250, 250, 250]𝑇 for the
second agent, (in the opposite corner of the environment). For fairness,
like in the single-agent case, we compare MAASI and MAAS based on
the number of measurement steps. The measurements are taken for
MAASI and MAAS in the same way as for ASI and AS in Section 5. The
MAASI control sampling period is 𝑇 𝑎𝑠 = 0.005 s and the measurement
period is 𝛥𝑎 = 10 for both agents. We performed 10 independent runs
for each experiment and reported the mean number of targets detected
along with the 95% confidence on the mean. Fig. 11 shows that MAASi
outperforms the two baselines and finds targets with good accuracy.
13 
Fig. 11. Top: Comparison between alternative target search methods in the multi-agent
case: The performance of the method from Sung and Tokekar (2022) is shown by the
orange dotted line, MAAS is shown with the cyan continuous line, and MAASI with the
green dashed line. For each method, the line is the mean number of targets found in the
10 runs, and the shaded region gives the 95% confidence region on the mean. Bottom:
MAASI trajectory with the actual targets (black diamonds) and estimated targets (red
diamonds).

Table 3
Effect of 𝛼 and 𝛽 parameters on the number of steps taken by MAASI to find all
targets.

𝛼
𝛽 0.05 0.5 0.75 2.5 5

0.05 148±10 124±8 118±12 164±12 195±10
0.5 133±8 104±10 128±8 162±14 188±12
0.75 174±12 157±14 133±8 177±7 203±10
2.5 193±8 181±12 162±10 181±7 193±12
5 235±10 206±14 176±10 187±12 202±14

As in Section 5.1, we study next computation time and sensitivity to
parameters. In the simulations above, in order, the method from Sung
and Tokekar (2022) takes 0.014 ±0.0056 s per step, MAAS 0.022
±0.0079 s, and MAASI 0.046 ±0.0034 s.5 This ordering is similar to
that in the single-agent case.

Regarding sensitivity, Table 3 shows that the best value for both 𝛼
and 𝛽 is 0.5, slightly smaller than in the single-agent case, and exhibits
similar, moderate drops in performance around the optimal value. In
Table 4, execution times and performance evolve like in the single-
agent case. In particular, performance plateaus after the same number
of particles, 10 000, because the complexity of the intensity functions
to be represented does not change. The results of Table 3 were obtained
with 10 000 particles, and those of Table 4 with 𝛼 = 𝛽 = 0.5. These best
settings were also used to obtain the results of Fig. 11, as well as all
the multi-agent results in the sequel.

7.1.2. Homogeneous agents with event-triggered measurements
Next, in the same setting as above, we implement the event-

triggered mechanism from the end of Section 6. We reuse the single-
agent threshold value 𝛿 = 4 from Section 5.

5 The computer used is the same one as before (Intel 1365U CPU, 32 GB

RAM, Matlab R2024).



B. Yousuf et al. Control Engineering Practice 153 (2024) 106094 
Table 4
The effect of the number of particles on MAASI.
Number of particles Number of steps

Filtering time

2000 193±12 steps
0.0009 ± 0.000072 s

4000 166 ±8 steps
0.0028 ± 0.0023 s

6000 151±10 steps
0.0067 ± 0.0042 s

8000 122±14 steps
0.0091 ± 0.0047 s

10000 104±8 steps
0.0123 ± 0.0078 s

15000 102±10 steps
0.0744 ± 0.0176 s

20000 101±14 steps
0.144 ± 0.0893 s

Fig. 12. Comparison between MAASI with periodic measurements (light green
continuous line) and event-triggered measurements (dark green continuous line).

Fig. 12 shows the number of target detections as a function of the
number of control steps, which is now fair since we no longer compare
to methods that measure only at waypoints. Like in the single-agent
case, by using the event-triggered measurement mechanism, the target
detection performance of the algorithm is statistically indistinguishable
from the performance in the periodic case. On the other hand, on aver-
age across the 10 experiments, the sum of the number of measurements
taken by the two drones is 81±10 in the event-triggered case, compared
to 104 ± 17 in the periodic case. The mean number of measurements is
reduced, but the advantage is less clear than in the single-agent case
since the two confidence intervals overlap.

7.1.3. Heterogeneous agents with periodic measurements
Next, we test the performance of MAASI in a scenario motivated

by our ongoing SeaClear2.0 project: https://www.seaclear2.eu/, where
two different robots search for seafloor litter: a drone and a remotely
operated underwater vehicle (ROV).

In this paper, we use a Parrot Mambo drone for agent 1, but instead
of the ROV, we use a TurtleBot 3 ground robot for agent 2, with a
different velocity and sensor model from the drone. We obtain in this
way a simulation version of the real experiment presented in the next
section. To match that experiment, the environment is now 2𝐷, equal
to [−0.3, 2.4]m × [−0.3, 2.4]m. A number of 12 targets are distributed
uniformly in 𝐸.

Agent 1 (Parrot Mambo) remains the same as in Section 7.1.1–7.1.2,
but now it flies at a constant 1m altitude above the ground. Addition-
ally, we used a unicycle robot model (Khoukhi & Shahab, 2013) for
agent 2 (TurtleBot). Agent 2’s states 𝑞2 ∈ ℜ3 contain the position in
14 
𝚇 and 𝚈 coordinates, along with the heading angle. Its control signal
contains linear and angular velocities: 𝑢2 = [𝑢𝑣, 𝑢𝜔]. We used a discrete-
time feedback controller developed by Khoukhi and Shahab (2013) to
navigate with agent 2 towards the waypoints, and also to control the
heading angle to a constant reference in the direction of travel from
the previous waypoint to the current one.

To make the problem more challenging, four circular obstacles of
various sizes are placed manually at arbitrary locations, and obstacle
avoidance is performed with the method from Yousuf et al. (2024)
where the threshold on the distance between each agent and the
obstacle nearest to it is set to 0.12 m and the obstacle avoidance gain
to 0.002.

For MAASI, the set of the waypoints candidate set is a 3 × 3 grid of
positions in the environment 𝐸 for the drone, with a spacing of 0.6 m
on each axis. The initial position of the drone is set as [0.1; 0.1]. In
contrast, the candidate set for the TurtleBot is a grid of positions of
size 8 × 8 with a spacing of 0.25 m on each axis. The TurtleBot is
initialized at [0; 0]. For each agent in MAAS, we used a candidate set
having 4 different choices at a constant distance of 0.25 m from the
current position in the 4 cardinal directions.

For the probability of detection, we once again used (3) from
Section 2 with parameters: 𝐺1 = 𝐺2 = 0.98, 𝙵1

𝚇
= 𝙵1

𝚈
= 0.3, and 𝙵2

𝚇
=

𝙵2
𝚈
= 0.15. Thus, the FOV of agent 1 is larger than that of agent 2, and

agent 1 is also faster. However, the sensor of agent 2 is slightly more
precise, as shown by the covariances matrices 𝑅1 = diag[0.016, 0.052]
and 𝑅2 = diag[0.011, 0.0311]. The values of the covariance matrices
come from the upcoming real experiment in Section 7.2.6 The threshold
values for target marking and removal are experimentally set as 𝑊 =
0.02m, 𝑚 = 0.04m, and 𝑧 = 0.05m.

Fig. 13 (top) shows the number of targets detected as a function
of the number of measurement steps summed up across both agents.
As for homogeneous agents before, MAASI works faster than MAAS,
and both algorithms find all the targets. Fig. 13 (bottom) shows the
agents searching for the targets while avoiding the obstacles. The drone
explores the environment faster than the TurtleBot.

7.2. Experimental results

Next, MAASI is implemented in a real-life scenario similar to the
simulations of Section 7.1.3, using a Parrot Mambo drone together with
a TurtleBot3. We placed 12 blue markers (targets) manually on the floor
at arbitrary locations, as seen in Fig. 14. We conducted a comparison
between MAASI, MAAS, and a lawnmower version for multiple agents.
First, we explain the setup of the experiments, and then we delve into
the results.

To enable the simultaneous control of two robots, each with a
distinct software architecture, we designed a heterogeneous framework
using Matlab, ROS (Robot Operating System), and Bluetooth commu-
nication. For the Parrot Mambo framework, please refer to Section 5.2.
The planner interfaces with the TurtleBot via ROS. Pictures are taken
by the camera mounted on the TurtleBot, which are fed into an image
processing algorithm for marker identification and localization via seg-
mentation. The majority of segmentation, estimation, and planning for
the TurtleBot are executed on the host computer. A waypoint command
is dispatched to the TurtleBot. Continuous control of the robot’s actions
is achieved using the dynamic window algorithm (Liu, Yao, Chen,
Huang, Xu, Wang, & Guo, 2021).

The detection probability, unlike in the simulations, is now binary
like in Section 5.2 before:

𝜋𝑎(𝑥, 𝑞𝑎) =

{

1 𝑥 ∈ 𝑎

0 𝑥 ∉ 𝑎
(34)

6 Just like in the single-agent experiment ofSection 5.2, but now for both
agents, we collected 100 images of a single target at different positions in
the camera images, then calculated the empirical covariance of target position
error.

https://www.seaclear2.eu/


B. Yousuf et al. Control Engineering Practice 153 (2024) 106094 
Fig. 13. Top: Comparison between MAASI and MAAS for heterogeneous robots, with
obstacles. MAASI is represented by a green continuous line, and MAAS by a cyan
dashed line. Bottom: Trajectories of the two agents with MAASI.

Fig. 14. Parrot Mambo minidrone and TurtleBot searching for targets (blue markers).

For the drone, the FOV is 1 = [𝚇1−0.2, 𝚇1+0.2]×[𝚈1−0.2, 𝚈1+0.2] and
for the TurtleBot it is 2 = [𝚇2 − 0.1, 𝚇2 + 0.2] × [𝚈2 − 0.1, 𝚈2 + 0.2]. Thus,
the TurtleBot’s FOV is off-center, as shown earlier in Fig. 8 (bottom).

For MAASI, we use the candidate waypoint grids from Section 7.1.3,
and for MAAS we use the candidate set from Section 7.1.3. For all
methods, the two agents start their motion from opposite corners:
the drone from [1.9, 1.9]𝑇 , maintaining a constant altitude of 1m, and
the TurtleBot from [0, 0]𝑇 . The lawnmowers of the two agents have a
spacing of 0.25 m on both the 𝚇 and 𝚈 axes and meet in the middle.
Similarly to the lawnmower, for MAASI and MAAS, the two agents start
their motion simultaneously from opposite corners of the environment.
The empirical covariances we found are 𝑅1 = diag[0.016, 0.052] for the
drone and 𝑅2 = diag[0.011, 0.0311] for the TurtleBot. The threshold
values for target marking and removal are experimentally set as 𝑊 =
0.02m, 𝑚 = 0.04m, and 𝑧 = 0.05m.

At the start of each experiment, both agents simultaneously gen-
erate waypoints. However, due to limited battery life and Bluetooth
connectivity, the drone is unable to search for the full length of the
experiment. When the drone trajectory finishes, the TurtleBot switches
from MAASI to ASI to find the remaining targets.
15 
Fig. 15. Top: Detected number of targets using the Parrot Mambo minidrone and the
TurtleBot in real experiments. Bottom: Trajectories of the two agents with MAASI.

With these settings, we compare the number of detected targets
MAASI framework with MAAS and the lawnmower. The results in
Fig. 15 (top) show the target detection as a function of the number
of measurement steps summed up across both agents. Fig. 15 (bottom)
shows the real agents searching for the targets. MAASI performs best,
with the agents finding all targets the fastest; followed by MAAS and
then by the lawnmower. These relationships are similar both to those
in the single-agent real-robot results and to those in the multi-agent
simulations.

A video of the real-life experiment is available at http://rocon.
utcluj.ro/files/MAASI_mambo_turtlebot.mp4. In the video, in the mid-
dle of the experiment at 3 min and 30 s, the drone finishes its trajectory,
and the TurtleBot finds the rest of the targets alone, as discussed
previously.

8. Conclusion

We introduced a framework for multi-agent active target search that
aims to quickly find an unknown number of static targets at unknown
locations. The framework works in 3D or 2D, for homogeneous or
heterogeneous agents, as well as for a single agent; accommodates
asynchronous planning and measurements by agents in the team; and
allows each agent to optionally only take measurements when they
are expected to improve target detection. Simulations and real-life
experiments illustrated better performance than several representative
baselines.

Our solution has a few limitations that need to be addressed in fu-
ture work. The experiments were conducted indoors, and running them
outdoors presents significant new challenges, such as detecting targets
in adverse weather conditions. Additionally, our algorithm relies on
knowing the robots’ poses; joint filtering of target and pose measure-
ments, as described by Mahler (2007), can be performed to address
pose uncertainty. Moreover, future research could explore applying the
technique in the field to search for ocean litter using a combination of
aerial, surface, and underwater robots. One of the key challenges in
this scenario will be devising appropriate sensor models for each type
of robot.

http://rocon.utcluj.ro/files/MAASI_mambo_turtlebot.mp4
http://rocon.utcluj.ro/files/MAASI_mambo_turtlebot.mp4
http://rocon.utcluj.ro/files/MAASI_mambo_turtlebot.mp4


B. Yousuf et al.

S
C
Z
o
M

D

c
i

R

A

B

B

C

C

C

C

C

D

G

G

I

J

K

L

L

L

M
M

M

O

O

P

P

P

R

S

S

S

S

S

S

S

T

T

T

V

W

W

W

X

X

X

Control Engineering Practice 153 (2024) 106094 
CRediT authorship contribution statement

Bilal Yousuf: Writing – original draft, Visualization, Validation,
oftware, Resources, Methodology, Formal analysis, Data curation,
onceptualization. Radu Herzal: Software, Validation, Visualization.
sófia Lendek: Writing – review & editing, Supervision, Method-
logy. Lucian Buşoniu: Writing – review & editing, Supervision,
ethodology, Project administration, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

eferences

guilar, G., Bravo, L., Ruiz, U., Murrieta-Cid, R., & Chavez, E. (2019). A distributed
algorithm for exploration of unknown environments with multiple robots. Journal
of Intelligent and Robotics Systems, 95(3), 1021–1040.

erger, J., & Lo, N. (2015). An innovative multi-agent search-and-rescue path planning
approach. Computers & Operations Research, 53, 24–31.

ircher, A., Kamel, M. S., Alexis, K., Oleynikova, H., & Siegwart, R. (2018). Receding
horizon path planning for 3D exploration and surface inspection. Autonomous
Robots, 42, 291–306.

hen, K., Chai, & Yi, W. (2022). Multi-sensor control for jointly searching and
tracking multi-target using the Poisson multi-Bernoulli mixture. In 11th international
conference on control, automation and information sciences (pp. 240–247). Hanoi,
Vietnam.

hen, J., & Dames, P. (2020). Collision-free distributed multi-target tracking using
teams of mobile robots with localization uncertainty. In IEEE/RSJ international
conference on intelligent robots and systems (pp. 6968–6974). Las Vegas, NV, USA.

hen, J., & Dames, P. (2022). Active multi-target search using distributed Thompson
sampling: Technical report Research Square.

hung, W., Giri, D. K., & Son, H. (2019). Finite-time control of multirotor UAVs under
disturbances. IEEE Access, 7, 173549–173558.

ooper, J. (2020). Optimal multi-agent search and rescue using potential field theory.
In AIAA Scitech 2020 forum (pp. 1–9).

Dames, P. (2020). Distributed multi-target search and tracking using the PHD filter.
Autonomous Robots, 44, 673–689.

Dames, P., & Kumar, V. (2015). Autonomous localization of an unknown number of
targets without data association using teams of mobile sensors. IEEE Transaction on
Automation Science and Engineering, 12(2), 850–864.

Dames, P., Tokekar, P., & Kumar, V. (2017). Detecting, localizing, and tracking an
unknown number of moving targets using a team of mobile robots. The International
Journal of Robotics Research, 36, 1540–1553.

ang, T., Khattak, S., Mascarich, F., & Alexis, K. (2019). Explore locally, plan globally:
A path planning framework for autonomous robotic exploration in subterranean
environments. In 19th international conference on advanced robotics (pp. 9–16). Belo
Horizonte, Brazil.

u, J., Sun, R., & Chen, J. (2021). Improved back-stepping control for nonlinear
small UAV systems with transient prescribed performance design. IEEE Access, 9,
128786–128798.

u, J., Zhou, J., & Chen, X. (2009). An enhancement of K-means clustering algorithm.
In International conference on business intelligence and financial engineering (pp.
237–240). Beijing, China.

vić, S. (2022). Motion control for autonomous Heterogeneous Multiagent Area search
in uncertain conditions. IEEE Transactions on Cybernetics, 52(5), 3123–3135.

uliá, M., Gil, A., & Reinoso, O. (2012). A comparison of path planning strategies
for autonomous exploration and mapping of unknown environments. Autonomous
Robots, 33, 427–444.

agan, E., Goren, G., & Ben-Gal, I. (2010). Probabilistic double-distance algorithm of
search after static or moving target by autonomous mobile agent. In 2010 IEEE
26-th convention of electrical and electronics engineers (pp. 160–164). Eilat, Israel.

Khoukhi, A., & Shahab, M. (2013). Stabilized feedback control of unicycle mobile
robots. International Journal of Advanced Robotic Systems, 10(4), 1–8.

Kim, J. (2021). Tracking controllers to chase a target using multiple autonomous
underwater vehicles measuring the sound emitted from the target. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 51(7), 4579–4587.

Kim, J., Jang, D., & Kim, J. (2023). Distributed multi-agent target search and
tracking with Gaussian process and reinforcement learning. Intelligent Control and
Applications, 21, 3057–3067.

Leonard, M., & Zoubir, A. (2019). Multi-target tracking in distributed sensor networks
using particle PHD filters. IEEE Transactions on Signal Processing, 130–146, 640–644.

i, X., Ren, J., & Li, Y. (2024). Multi-mode filter target tracking method for mobile
robot using multi-agent reinforcement learning. Engineering Applications of Artificial
Intelligence, 127, 1–9.
16 
Lin, L., & Goodrich, M. (2014). Hierarchical heuristic search using a Gaussian mixture
model for UAV coverage planning. IEEE Transactions on Cybernetics, 44(12),
2432–2544.

iu, L., Ji, H., Zhang, W., & Liao, G. (2020). Multi-sensor fusion for multi-target tracking
using measurement division. IET Radar Sonar Navigation, 14, 1451–1461.

iu, L., Yao, J., Chen, J., Huang, J., Xu, H., Wang, B., et al. (2021). Global dynamic
path planning fusion algorithm combining jump-A* algorithm and dynamic window
approach. IEEE Access, 9, 19632–19638.

ahler, R. (2007). Statistical multisource-multitarget information fusion. Artech.
atzliach, B., Ben-Gal, I., & Kagan, E. (2022). Detection of static and mobile targets

by an autonomous agent with deep Q-learning abilities. Entropy, 24(8), 1–24.
urillo, M., Sánchez, G., Genzelis, L., & Giovanini, L. (2018). A real-time path-planning

algorithm based on receding horizon techniques. Journal of Intelligent Robotics
System, 91, 445–457.

lcay, E., Bodeit, J., & Lohmann, B. (2020). Sensor-based exploration of an unknown
area with multiple mobile agents. In 21st IFAC World Congress (pp. 2405–8963).
Berlin, Germany.

tte, M., Kuhlman, M., & Sofge, D. (2018). Competitive target search with multi-agent
teams: symmetric and asymmetric communication constraints. Autonomous Robots,
42(2), 1207–1230.

allin, M., Rashid, J., & Ögren, P. (2021). Formulation and solution of the multi-agent
concurrent search and rescue problem. In IEEE international symposium on safety,
security, and rescue robotics (pp. 27–33). New York, NY, USA.

andey, V., Kamal, S., & Ghosh, S. (2024). Finite-time discrete control for two-DOF
helicopter system. IEEE Transactions on Circuits and Systems II: Express Briefs, 71(8),
3800–3804.

apaioannou, S., Kolios, P., Theocharides, T., Panayiotou, C. G., & Polycarpou, M.
M. (2021). A cooperative multiagent probabilistic framework for search and track
missions. IEEE Transactions on Control of Network Systems, 8(2), 847–857.

ost, P. B., Axehill, D., & Hendeby, G. (2021). Sensor management for search and track
using the Poisson multi-Bernoulli mixture filter. IEEE Transactions on Aerospace and
Electronic Systems, 57(5), 2771–2783.

han, J., Yang, Y., Liu, H., & Liu, T. (2023). Infrared small target tracking based on
OSTrack model. IEEE Access, 11, 123938–123946.

hen, G., Lei, L., Zhang, X., Li, Z., Cai, S., & Zhang, L. (2023). Multi-UAV cooper-
ative search based on reinforcement learning with a digital twin driven training
framework. IEEE Transactions on Vehicular Technology, 72(7), 8354–8368.

hirsat, A., & Berman, S. (2021). Decentralized multi-target tracking with multiple
quadrotors using a PHD filter. Reston, Virginia: AIAA Scitech 2021 Forum.

houfeng, Y., Yingnan, P., Liang, C., & Lei, C. (2024). Predefined-time fault-tolerant
consensus tracking control for Multi-UAV systems with prescribed performance and
attitude constraints. IEEE Transactions on Aerospace and Electronic Systems, 60(4),
4058–4072.

un, P., Zhu, B., & Li, S. (2024). Vision-based prescribed performance control for
UAV target tracking subject to actuator saturation. IEEE Transactions on Intelligent
Vehicles, 9(1), 2382–2389.

ung, Y., & Tokekar, P. (2022). GM-PHD filter for searching and tracking an unknown
number of targets with a mobile sensor with limited FOV. IEEE Transactions on
Automation Science and Engineering, 19(3), 2122–2134.

ütő, B., Codrean, A., & Lendek, Zs. (2023). Optimal control of multiple drones for
obstacle avoidance. In 22nd IFAC World Congress (pp. 5980–5986). Yokohama,
Japan.

indall, L., Mair, E., & Nguyen, T. (2023). Radio frequency signal strength based
multi-target tracking with robust path planning. IEEE Access, 11, 43472–43484.

renev, I., Tkachenko, A., & Kustov, A. (2021). Movement stabilization of the Parrot
Mambo quadcopter along a given trajectory based on PID controllers. In 20th IFAC
conference on technology, culture, and international stability, (TECIS 21), IFAC-papers
online: 54, (pp. 227–232). Russia, Moscow.

yagi, P., Kumar, Y., & Sujit, P. B. (2021). NMPC-based UAV 3D target tracking in
the presence of obstacles and visibility constraints. In International conference on
unmanned aircraft systems (pp. 858–867). Athens, Greece.

o, B. N., Singh, S., & Doucet, A. (2005). Sequential Monte Carlo methods for
multitarget filtering with random finite sets. IEEE Transactions on Aerospace and
Electronic Systems, 41(4), 1224–1245.

ang, X., & Fang, X. (2023). A multi-agent reinforcement learning algorithm with the
action preference selection strategy for massive target cooperative search mission
planning. Expert Systems with Applications, 231, 1–20.

ang, L., Su, F., Zhu, H., & Shen, L. (2010). Active sensing based cooperative target
tracking using UAVs in an urban area. In 2010 2nd International conference on
advanced computer control: 2, (pp. 486–491). Shenyang, China.

ang, G., Wei, F., Jiang, Y., Zhao, M., Wang, K., & Qi, H. (2022). A multi-
AUV maritime target search method for moving and invisible objects based on
multi-agent deep reinforcement learning. Sensors, 22(21), 1–18.

ia, J., Luo, Y., Liu, Z., Zhang, Y., Shi, H., & Liu, Z. (2023). Cooperative multi-target
hunting by unmanned surface vehicles based on multi-agent reinforcement learning.
Defence Technology, 29, 80–94.

iao, J., Tan, X. M., Zhou, X., & Feroskhan, M. (2023). Learning collaborative multi-
target search for a visual drone swarm. In IEEE conference on Artificial Intelligence
(pp. 5–7). Santa Clara, CA, USA.

u, X., Yang, L., Meng, W., Cai, Q., & Fu, M. (2019). Multi-agent coverage search in
unknown environments with obstacles: A survey. In Chinese control conference (pp.

2317–2322). Guangzhou, China.

http://refhub.elsevier.com/S0967-0661(24)00253-3/sb1
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb1
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb1
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb1
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb1
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb2
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb2
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb2
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb3
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb3
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb3
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb3
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb3
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb4
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb4
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb4
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb4
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb4
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb4
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb4
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb5
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb5
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb5
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb5
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb5
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb6
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb6
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb6
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb7
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb7
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb7
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb8
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb8
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb8
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb9
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb9
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb9
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb10
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb10
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb10
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb10
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb10
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb11
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb11
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb11
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb11
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb11
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb12
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb12
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb12
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb12
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb12
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb12
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb12
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb13
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb13
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb13
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb13
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb13
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb14
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb14
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb14
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb14
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb14
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb15
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb15
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb15
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb16
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb16
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb16
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb16
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb16
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb17
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb17
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb17
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb17
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb17
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb18
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb18
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb18
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb19
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb19
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb19
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb19
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb19
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb20
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb20
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb20
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb20
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb20
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb21
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb21
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb21
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb22
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb22
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb22
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb22
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb22
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb23
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb23
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb23
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb23
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb23
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb24
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb24
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb24
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb25
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb25
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb25
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb25
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb25
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb26
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb27
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb27
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb27
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb28
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb28
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb28
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb28
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb28
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb29
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb29
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb29
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb29
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb29
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb30
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb30
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb30
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb30
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb30
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb31
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb31
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb31
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb31
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb31
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb32
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb32
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb32
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb32
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb32
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb33
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb33
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb33
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb33
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb33
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb34
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb34
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb34
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb34
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb34
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb35
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb35
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb35
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb36
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb36
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb36
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb36
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb36
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb37
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb37
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb37
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb38
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb38
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb38
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb38
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb38
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb38
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb38
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb39
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb39
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb39
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb39
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb39
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb40
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb40
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb40
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb40
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb40
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb41
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb41
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb41
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb41
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb41
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb42
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb42
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb42
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb43
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb43
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb43
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb43
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb43
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb43
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb43
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb44
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb44
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb44
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb44
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb44
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb45
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb45
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb45
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb45
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb45
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb46
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb46
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb46
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb46
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb46
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb47
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb47
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb47
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb47
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb47
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb48
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb48
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb48
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb48
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb48
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb49
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb49
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb49
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb49
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb49
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb50
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb50
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb50
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb50
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb50
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb51
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb51
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb51
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb51
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb51


B. Yousuf et al. Control Engineering Practice 153 (2024) 106094 
Yan, F., Di, K., Jiang, J., Jiang, Y., & Fan, H. (2019). Efficient decision-making for
multiagent target searching and occupancy in an unknown environment. Robotics
and Autonomous Systems, 114, 41–56.

Yousuf, B., Lendek, Zs., & Buşoniu, L. (2022). Exploration-based search for an unknown
number of targets using a UAV. In 6th IFAC conference on intelligent control and
automation sciences: 55, (pp. 93–98). Cluj,Romania.

Yousuf, B., Lendek, Zs., & Buşoniu, L. (2023). Multi-agent exploration-based search for
an unknown number of targets. In 22nd IFAC World Congress (pp. 5999–6004).
Yokohama, Japan.

Yousuf, B., Lendek, Zs., & Buşoniu, L. (2024). Exploration-based planning for
multiple-target search with real-drone results. Sensors, 24(9), 1–20.

Zhang, R., Wang, J., Ge, J., & Huang, Q. (2024). Multiagent cooperative search learning
with intermittent communication. IEEE Intelligent Systems, 39(02), 11–20.

Zheng, X., Galland, S., Tu, X., Yang, Q., Lombard, A., & Gaud, N. (2020). Obstacle
avoidance model for UAVs with joint target based on multi-strategies and follow-
up vector field. In 11th international conference on ambient systems, networks and
technologies: 170, (pp. 257–264). Warsaw, Poland.

Zhou, Y., Chen, A., He, X., & Bian, X. (2021). Multi-target coordinated search algorithm
for swarm robotics considering practical constraints. Frontiers in Neurorobotics, 15,
144–156.

Zhou, Y., Liu, Z., Shi, H., Li, S., Ning, N., Liu, F., et al. (2023). Cooperative multi-
agent target searching: a deep reinforcement learning approach based on parallel
hindsight experience replay. Complex and Intelligent Systems, 9, 4887–4898.

Zhou, L., Tzoumas, V., Pappas, G., & Tokekar, P. (2019). Resilient active target tracking
with multiple robots. IEEE Robotics and Automation Letters, 4(1), 129–136.

Bilal Yousuf was born in Karachi, Pakistan in 1993. He
received the Master’s degree in Electrical Engineering (Con-
trol Systems) from the Pakistan Navy Engineering College,
a part of the National University of Science and Technology
(PNEC-NUST) in 2018. Bilal’s passion for research and
engineering led him to pursue a PhD in robotics and control
systems. Bilal works as a full-time Research Assistant and
PhD student at the Technical University of Cluj-Napoca, Ro-
mania, within the Robotics and Nonlinear Control (ROCON)
group. His research interests primarily revolve around the
design of nonlinear control systems for robotic vehicles and
artificial intelligence.
17 
Radu Herzal is an undergraduate student at the Technical
University of Cluj-Napoca, pursuing a BSc degree in Control
Engineering. Due to his passion for technology and research,
he joined the Robotics and Nonlinear Control (ROCON)
group as a student researcher. His research interests include
robotics, nonlinear control systems, and multiagent systems.

Zsofia Lendek received the MSc degree in control en-
gineering from the Technical University of Cluj-Napoca,
Romania, in 2003, and the PhD degree from the Delft
University of Technology, the Netherlands, in 2009. She is
currently a full professor at the Technical University of Cluj-
Napoca, Romania. Her research interests include observer
and controller design for nonlinear systems, in particular
Takagi–Sugeno fuzzy systems. She is an Associate Editor
for IEEE Transaction on Fuzzy systems and Engineering
Applications of Artificial Intelligence.

Lucian Busoniu received his Ph.D. degree cum laude from
the Delft University of Technology, the Netherlands, in
2009. He is a full professor with the Department of Au-
tomation at the Technical University of Cluj-Napoca, where
he leads the group on Robotics and Nonlinear Control. He
has previously held research positions in the Netherlands
and France. His research interests include nonlinear optimal
control using artificial intelligence and reinforcement learn-
ing techniques, robotics, and multiagent systems. He serves
on the editorial board of the Elsevier journal Engineering
Applications of Artificial Intelligence and was the recipient
of the 2009 Andrew P. Sage Award for the Best Paper in
the IEEE Transactions on Systems, Man, and Cybernetics.

http://refhub.elsevier.com/S0967-0661(24)00253-3/sb52
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb52
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb52
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb52
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb52
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb53
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb53
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb53
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb53
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb53
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb54
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb54
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb54
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb54
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb54
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb55
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb55
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb55
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb56
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb56
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb56
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb57
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb57
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb57
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb57
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb57
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb57
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb57
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb58
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb58
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb58
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb58
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb58
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb59
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb59
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb59
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb59
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb59
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb60
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb60
http://refhub.elsevier.com/S0967-0661(24)00253-3/sb60

	Multi-agent active multi-target search with intermittent measurements
	Introduction
	Problem Formulation
	Background on the Estimation Framework
	Single-agent PHD Filter
	Multi-agent IC-PHD Filter
	Marking and Removal of Found Targets

	Single-Agent Planner
	Single-Agent Experiments
	Simulation Results
	Real-drone Results

	Multi-Agent Planner
	Multi-Agent Results
	Simulation Results
	Homogeneous-agent Results with Periodic Measurements. Execution Time and Sensitivity Study
	Homogeneous Agents with Event-triggered Measurements
	Heterogeneous Agents with Periodic Measurements

	Experimental Results

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References


