
     

Fall monitoring and detection for at-risk persons using a UAV 

Cristi Iuga, Paul Drăgan, Lucian Bușoniu 

Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania  

(e-mails: iugacristi@gmail.com, paul.andrei.dragan@gmail.com, lucian@busoniu.net) 

 

Abstract: We describe a demonstrator application that uses a UAV to monitor and detect falls of an at-risk 

person. The position and state (upright or fallen) of the person are determined with deep-learning-based 

computer vision, where existing network weights are used for position detection, while for fall detection 

the last layer is fine-tuned in additional training. A simple visual servoing control strategy keeps the person 

in view of the drone, and maintains the drone at a set distance from the person. In experiments, falls were 

reliably detected, and the algorithm was able to successfully track the person indoors. 
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1. INTRODUCTION 

More than a billion people today experience some form of 

disability, while the world population is rapidly ageing. 

Between 2000 and 2050, the proportion of people over 60 

years will double from about 11% to 22%. We consider here a 

robotic assistant for elderly and disabled persons that must be 

constantly monitored due to the risk of falling. Falling 

frequency is about 28-35% each year for people over 64 years 

of age and 32%-42% for those over 70 (WHO, 2007). 

State-of-the-art efforts in assistive robotics are predominantly 

placed on fixed manipulators or mobile ground robots, which 

are limited in the types of environments they can address 

(Boucher et al., 2013). On the other hand, unmanned aerial 

vehicles (UAVs) trade off manipulation capability to gain 

mobility and speed, being unaffected by terrain difficulty 

(Mathe and Busoniu, 2015). Despite their potential (Baer et al, 

2014) UAVs have so far been virtually unexplored in assistive 

care. 

In this paper we present a first application along this direction: 

a UAV that uses computer vision to monitor a person for falls 

while autonomously following them in an indoor environment. 

While UAVs have been widely used in disaster monitoring and 

search-and-rescue, see e.g. Andriluka et al. (2010), Murphy 

(2014), to our knowledge they have never been used for person 

fall detection. Instead, this is done usually with fixed cameras 

(Cucchiara et al., 2007, Skubic et al., 2016), wearable or other 

sensors (Bourke et al., 2007, de Lima et al. 2017). Our work is 

closely related to that of Andriluka et al. (2010), where UAVs 

are used to find injured persons in a search-and-rescue setting. 

We choose the Parrot AR.Drone 2.0 quadrotor, a very popular 

low-cost UAV that is easy to automate using ROS (Robotic 

Operating System). Our method achieves person detection by 

running the deep learning object detector YOLOv2 (You Only 

Look Once version 2) (Redmon and Farhadi, 2017) on the 

images received from the Parrot AR.Drone 2.0. The output 

data from the detector is used to find the position and distance 

of person in the scene, and thereby to direct the drone to remain 

at a set distance and orientation from the person, using a simple 

visual servoing strategy (Thuilot et al., 2002). Fall detection is 

achieved with the same deep-learning method, YOLOv2, but 

in this case we fine-tune the last layer using a custom dataset. 

We chose a vision-based learning solution because it is simple 

to apply, flexible, and relies on a sensor already available on 

the UAV (the camera) rather than e.g. wearable sensors. All 

the detection and control algorithms run off-board, on a 

computer that wirelessly communicates with the drone. Our 

experimental results confirm that the method works for 

tracking the person indoors and detects falls reliably. 

Next, Section 2 provides the background required in the vision 

techniques we use. Section 3 explains the most important 

component of our method – detection of upright and fallen 

persons from images. Section 4 outlines the method for 

tracking the person across multiple images. Section 5 presents 

the control technique as well as the overall results obtained. 

Section 6 gives our conclusions and outlines future work. 

2. BACKGROUND 

2.1 Classification and object detection from images 

Image classification and object detection are two of the most 

important and well-studied computer vision tasks. The aim of 

classification is to assign a label to an image, where the label 

is taken from a fixed set of classes, while object detection 

focuses on localizing in an image all the objects that belong to 

one or multiple categories. Classification algorithms usually 

take as input an image and output a single label or class, while 

object detection algorithms output the enclosing bounding 

boxes and classes of objects present in a given image. With the 

advent of large image datasets, e.g. Imagenet (Russakovsky et 



 

 

     

 

al., 2015) and MS-COCO (Lin et al., 2014), Convolutional 

Neural Networks (CNNs), became the de facto method of 

approaching both classification (Krizhevsky et al., 2012; 

Simonyan and Zisserman, 2015; He et al., 2016) and object 

detection (Ren et al., 2015; Redmon and Farhadi, 2017). 

Detection of fallen persons (called simply fall detection in the 

sequel) can be formulated both as a classification task, where 

the algorithm should output whether an image contains a fallen 

person or not, or as an object detection problem, requiring the 

localization of all the fallen people in an image. Works such as 

Nunez-Marcos et al. (2017) take the first approach, while in 

this paper we will treat fall detection as an object detection task 

and we will make use of the YOLO (You Only Look Once) 

(Redmon and Farhadi, 2017) architecture to detect both 

upright and fallen people, the former being necessary to track 

the person with the drone.  

2.2 YOLOv2 object detection network 

YOLOv2 (Redmon and Farhadi, 2017) is a CNN architecture 

for object detection. The method obtained good results on the 

VOC 2012 detection dataset (Everingham et al., 2012) 

performing on par with state-of-the-art detectors at that time 

such as Faster R-CNN (Ren et al., 2015). Due to its lightweight 

structure, YOLO can run at around 40 FPS on a GeForce GTX 

Titan X and at between 20 and 25 FPS on a GeForce GTX 970, 

the graphics card in our hardware setup, rendering it attractive 

for applications that require soft real-time constraints.  

YOLOv2 outputs, for each object 𝑂𝑗 present in an image 𝐼, a 

probability distribution over the classes 𝑐𝑖 ∈ 𝐶, where 𝐶 is the 

set of all classes; and in addition a bounding box 𝐵𝑗 =

 [𝑥, 𝑦, 𝑤, ℎ] enclosing object 𝑂𝑗, where (𝑥, 𝑦) are the 

coordinates of the top-left corner of the bounding box and 

(𝑤, ℎ) are its width and height, respectively. The network is 

trained in a supervised manner, meaning that both true labels 

and true bounding box coordinates must be fed for each object 

to the training algorithm.  

3. PERSON AND FALL DETECTION 

Due to its speed and accuracy, we select the YOLOv2 object 

detection framework, and in this section we explain how we 

adapt and use it for our application.  

To detect the person in the upright position, we use the CNN 

with the standard set of weights pre-trained on the MS-COCO 

dataset. Although this method is sensitive to arm positioning, 

since it tends to enlarge the bounding box in order to include 

the possibly raised arms of a subject, it still achieves 75% 

accuracy. This result is good enough to infer distance 

information from the bounding boxes, keeping in mind that 

these bounding boxes are further filtered by using a Kalman 

filter, as explained in the upcoming Section 4. Thus, detection 

of a standing person works nearly off-the-shelf, and we 

dedicate the rest of this section to the more interesting fall 

detection task. Note that we aim to detect falls a posteriori, 

which may then be used to alarm a caretaker, rather than in 

real-time, which could conceivably help the monitored person 

recover from the fall; the latter would be unlikely to work 

given the limitations of our platform. 

3.1 Fall detection methodology 

As already hinted in Section 2.1, we formulate the problem of 

fall detection as an object detection task and use the YOLOv2 

CNN architecture to identify the fallen person, if any. We also 

considered treating the problem as a classification task, but this 

would mean that the network would be difficult to train for 

unconstrained environments, body posture and placement, and 

for variations of clothing and body appearance. This would 

impair generalization in practice.  

Furthermore, solving the problem with an object detection 

algorithm comes with certain advantages that will be useful in 

future extensions of our method. Firstly, the algorithm can 

detect multiple fallen people in the same scene and enclose 

them in the image within different bounding boxes. Secondly, 

having bounding boxes means that we know estimates of the 

position of the detected fallen persons in the scene, which can 

be useful, for example, for targeted medication delivery. 

To work for fall detection, the YOLOv2 object detector has to 

be retuned. We start from the standard set of weights pre-

trained on MS-COCO, which we used above for upright 

person detection. However, here we replace the last layer with 

a simpler one, capable of only single-class detection, and then 

fine-tune the network on a custom dataset. This custom 

training dataset consists of 500 manually labeled images, taken 

from the frames of two videos. These images contain a single 

person as subject, wearing the same set of clothes across all 

frames. The videos are recorded indoors, in our laboratory, 

using the AR.Drone 2.0 camera, from two different 

perspectives, while the UAV is inflight. 

For training we use the stochastic gradient descent algorithm 

with momentum, with a learning rate of 0.001 and a 

momentum of 0.99. We use mini-batches that each consist of 

4 randomly selected images. We train the network for 2000 

iterations or 2000 mini-batches, meaning that each image is 

seen by the algorithm around 16 times.  

While in principle the same network (or at least the common 

parts up to the last layer) can be used for both upright and 

fallen people detection, for ease of implementation and testing 

we decided to run two separate networks, one for upright 

person detection and one for fall detection, in parallel on 

separate threads. 

3.2 Fall detection results 

To evaluate the effectiveness of detection, we test the retuned 

network on a different dataset, which was obtained in a similar 

manner as the training dataset. In this case, however, we take 

the video from a single perspective, with two subjects, both 

wearing different clothes than in the training images. In total, 

we have gathered 619 images with our subjects in upright or 

fallen-like postures. 



 

 

     

 

Table 1 shows the test results. We can see that, in spite of the 

small number of examples in the training dataset, the network 

obtains high accuracy and generalizes well for different 

clothing styles and different subjects. An example of the 

output from the specialized network can be observed in Fig. 1. 

Table 1. Fall detection test results 

 
Total Positives 

False 

positives 

False 

negatives 

Number of 

images 

619 535 37 84 

Percentage 100% 86.24% 5.97% 13.57% 

 

 

 

Fig. 1. Fall detection with the modified YOLOv2 CNN 

4. PERSON TRACKING 

In order to follow the person, the controller we will discuss in 

Section 5 takes as input a bounding box enclosing the subject 

in the image. The bounding box detected by YOLOv2 is 

sometimes too noisy and therefore the vertices coordinates 

change abruptly, causing performance issues with the control 

of the drone. We address this problem using a Kalman filter 

that smooths the bounding box outputs from the detection 

network. This will make the coordinates of the vertices of the 

bounding boxes change steadily as the target moves laterally, 

distances themselves from, or approaches the drone. 

The model used in the Kalman filter equations is detailed next. 

We use the state vector: 

𝑥𝑘 = [𝑥1,𝑘   𝑦1,𝑘   𝑥2,𝑘  𝑦2,𝑘  𝑣𝑥1,𝑘  𝑣𝑦1,𝑘  𝑣𝑥2,𝑘  𝑣𝑦2,𝑘]
𝑇
 

where (𝑥1,𝑘  𝑦1,𝑘) and (𝑥2,𝑘  𝑦2,𝑘) are the coordinates of the 

top-left and bottom-right corners of the bounding box, and 

(𝑣𝑥1,𝑘   𝑣𝑦1,𝑘) and (𝑣𝑥2,𝑘   𝑣𝑦2,𝑘)  are the velocities of these 

corners. The discrete time sample is denoted by 𝑘. The 

measurement (output of the vision algorithm) only provides 

the positions of the corners, denoted together by 𝑧𝑘 =

[𝑥1,𝑘   𝑦1,𝑘   𝑥2,𝑘  𝑦2,𝑘]
𝑇
. Denote also the vector of velocities 

𝑣𝑘 = [𝑣𝑥1,𝑘  𝑣𝑦1,𝑘   𝑣𝑥2,𝑘   𝑣𝑦2,𝑘]
𝑇
. 

The dynamics describing state transitions consists of a noisy 

first-order Euler integration of the velocities to obtain the 

positions, and random-walk velocities: 

𝑧𝑘+1 =  𝑧𝑘 +  𝑣𝑘 ∙ 𝑇𝑆 + 𝑤𝑧𝑘 , 𝑣𝑘+1 =  𝑣𝑘 + 𝑤𝑣𝑘  

Such a model is called a constant-velocity model in computer 

vision, where it is often used to track objects with unknown 

motion. These dynamics are noisy linear: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝑤𝑘 

with 𝐴 = [
𝐼4 𝑇𝑆𝐼4

04 𝐼4
] and the overall noise 𝑤𝑘 =  [𝑤𝑧𝑘

𝑇 , 𝑤𝑣𝑘
𝑇 ]𝑇 

is zero-mean Gaussian with covariance matrix 𝑄 = 10−4𝐼8.  

For the measurement equation, the positions are mapped 

directly from the measurement to the state, while the velocities 

are not directly measured and thus they are not included in the 

mapping. This is represented as: 

𝑧𝑘 = 𝐶 ∙ 𝑥𝑘 + 𝑢𝑘 

with 𝐶 = [𝐼4 04]. The measurement noise 𝑢𝑘 is also zero-

mean Gaussian, with covariance 𝑅 = 10𝐼4. The Kalman filter 

is run with the initial error covariance matrix 𝑃0 = 0.1𝐼8. For 

the equations of the Kalman filter see e.g. Ristic et al. (2004). 

Fig. 2 illustrates the tracking results, with the filtered bounding 

box in cyan smoothly approaching the measurement from the 

classifier, shown in solid green. 

 

Fig. 2. Measured and filtered box in two subsequent frames 



 

 

     

 

5.  DRONE CONTROL 

In this section we present the final part of our application, the 

control strategy, as well as the overall experimental results. 

5.1 Vision-based control 

We apply a visual servoing strategy where the goal is to 

maintain the drone at a reference distance 𝑑𝑟𝑒𝑓  of 4 meters 

from the target, and to maintain the target in the center of the 

image. The commands correct the orientation 𝜃 of the drone 

on the z axis (the yaw) and the position on the x axis 

(represented as a distance 𝑑𝑥 from the person), by altering the 

angular and linear velocity setpoints 𝜔, 𝑉 along these two axes. 

These setpoints are then sent to the AR.Drone 2 firmware, 

which applies a low-level control in order to track them. Fig. 

3 visually illustrates the control strategy. 

 

Fig. 3. Illustration of the vision-based control strategy 

The feedback to the yaw and distance controllers is computed 

based on measurements derived from the filtered bounding 

box around the person. Specifically, the yaw controller uses 

the deviation of the box center from the center of the image in 

order to keep the target in the center of the frame, while the 

distance controller uses the computed distance from the target 

in order to keep the drone at the desired reference distance 

from the person. Experiments have shown that in our case, the 

distance at which the target is from the drone is most reliably 

computed from the area of the bounding box: 

𝑑𝑥 = 𝛼𝑆 + 𝛽 

where 𝑆 is the area, 𝛼 is a scaling factor and 𝛽 a scaling bias, 

both determined experimentally. The area is simply the width 

times the height of the box in pixels, see again Fig. 3. 

Preliminary control experiments with the drone have shown 

that computing continuous commands and sending them at 

each frame to the drone does not result in a good flight 

behavior: the drone either did not respond promptly or well to 

the commands, or it over-responded and lost the target before 

further corrections could be applied. A practical solution to 

this issue was to use for both the yaw and distance controllers  

tripositional control laws (bipositional above some magnitude 

threshold, plus a zero level in-between). Therefore, the linear 

and angular control setpoints to be applied are computed as 

follows for the rotation and distance correction: 

𝜔 = {
−0.1, if 𝑐 < −𝑐̅

0, if − 𝑐̅ ≤ 𝑐 ≤ 𝑐̅
0.1,if 𝑐 > 𝑐̅

  

 

𝑉 = {

−0.1, if 𝑑𝑥 < 𝑑𝑟𝑒𝑓 − �̅�

0, if 𝑑𝑟𝑒𝑓 − �̅� ≤ 𝑑𝑥 ≤ 𝑑𝑟𝑒𝑓 + �̅�

0.1, if 𝑑𝑥 > 𝑑𝑟𝑒𝑓 + �̅�

 

 

where 𝑐 is the position of the box center relative to the center 

of the image, normalized to [−0.5, 0.5] over the image width, 

and the thresholds are 𝑐̅ = 0.15, �̅� = 0.6m. The setpoint 

values are given in normalized units, as required by the 

AR.Drone 2.0 firmware. 

5.2 High-level strategy 

The high-level behavior of the drone is implemented in the 

form of a state machine. The states and the algorithm for 

switching between them are presented in Fig. 4. Assuming that 

the initialization and takeoff activities of the drone have been 

carried out successfully, the state machine enters the Follow 

target loop. In this state, the UAV is mostly in a hovering 

mode, however the yaw and distance controllers do make 

position adjustments based on bounding box estimates 

received from the person detector, by following the control 

strategy presented above. When no bounding box is received, 

e.g. due to transient network losses, the position error is 

considered to be 0 and the drone does not exit the Hover state. 

 
Fig. 4. The state-machine algorithm used to fly the drone 



 

 

     

 

At each loop iteration, the controller also parses the input 

stream coming from the Fall detector. When a fallen message 

is received, the drone proceeds with a landing procedure. Our 

demonstrator implements no special action here, but this 

condition could be used to e.g. alert a caretaker or deliver first-

aid medication.   

5.3 Results 

In our practical experiments, the drone generally behaved 

appropriately, responding correctly to the given commands 

and flying without losing its target, with some limited 

resilience to occlusions (see the demo video below).  

Fig. 5 illustrates how the distance controller works to maintain 

the reference distance of 4 meters. In the experiment, the target 

was first at 6 meters from the drone, before the controller 

started to send correction commands. After the drone correctly 

approached the target and reached a relatively stable hover, the 

person approached the drone. This resulted in the drone 

moving backwards in order to maintain the reference distance. 

 

Fig. 5. Evolution of distance between drone and target during 

a control experiment 

Fig. 6 shows, for the same experiment, the evolution of the 

target center coordinate, in pixels along the horizontal 

dimension of the image. The center of the image corresponds 

to 300 pixels. The drone uses yaw rotation to maintain target 

center at the center of the image. Note that during the 

experiment the person was actually slightly moving sideways 

with respect to the drone. 

 

Fig. 6. Evolution of target center coordinate 

A video of a practical demonstration is available at 

http://rocon.utcluj.ro/files/aufdemo.mp4. Fig. 7 shows a few 

representative video stills, each including on the left the 

perspective of the drone, where the detected bounding box 

around the person is shown as a rectangle and its centre is 

shown as a disk. To the right of each still, the perspective of 

the monitored person and a third-person view are shown. The 

three stills illustrate, in order: the normal situation where the 

person is at the reference distance; the controller in action 

when the person is moving; and a successful fall detection 

event (in which case the bounding box becomes red). 

 

 

 

Fig. 7. Practical demonstration 

6. CONCLUSIONS 

In this paper we presented a first application for monitoring 

and detecting falls of at-risk (e.g. elderly) persons using a 

UAV. The position and state (upright or fallen) of the person 

are determined with deep-learning-based vision methods, and 

a simple control strategy keeps the person in view of the drone 

and maintains a set distance between the two. In experiments, 

falls were reliably detected, and the algorithm was able to 

correct the position of the drone so as to follow the person. 

http://rocon.utcluj.ro/files/aufdemo.mp4


 

 

     

 

This application is a proof of concept and many elements can 

be improved. On the vision side, open issues include e.g. 

obstacle detection, explicit handling of occlusions, and 

robustness to multiple persons in the scene. At least as 

important is the control strategy, where better controllers 

should provide increased performance and a smoother 

behavior of the drone; here it will be important to address 

effects due to the wireless communication network, using 

techniques from networked control systems. On the 

implementation side, merging into a single network the two 

networks currently responsible for detecting respectively the 

position and the state of the person would lead to 

computational savings for the GPU or CPU. The final 

application objective is to have the entire sensing and control 

pipeline run on board of the drone, for which a different drone 

with stronger on-board processors is needed. 
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