

Fall monitoring and detection for at-risk persons using a UAV

Cristi Iuga, Paul Drăgan, Lucian Bușoniu

Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania

(e-mails: iugacristi@gmail.com, paul.andrei.dragan@gmail.com, lucian@busoniu.net)

Abstract: We describe a demonstrator application that uses a UAV to monitor and detect falls of an at-risk

person. The position and state (upright or fallen) of the person are determined with deep-learning-based

computer vision, where existing network weights are used for position detection, while for fall detection

the last layer is fine-tuned in additional training. A simple visual servoing control strategy keeps the person

in view of the drone, and maintains the drone at a set distance from the person. In experiments, falls were

reliably detected, and the algorithm was able to successfully track the person indoors.

Keywords: unmanned aerial vehicles, deep learning, fall detection.

1. INTRODUCTION

More than a billion people today experience some form of

disability, while the world population is rapidly ageing.

Between 2000 and 2050, the proportion of people over 60

years will double from about 11% to 22%. We consider here a

robotic assistant for elderly and disabled persons that must be

constantly monitored due to the risk of falling. Falling

frequency is about 28-35% each year for people over 64 years

of age and 32%-42% for those over 70 (WHO, 2007).

State-of-the-art efforts in assistive robotics are predominantly

placed on fixed manipulators or mobile ground robots, which

are limited in the types of environments they can address

(Boucher et al., 2013). On the other hand, unmanned aerial

vehicles (UAVs) trade off manipulation capability to gain

mobility and speed, being unaffected by terrain difficulty

(Mathe and Busoniu, 2015). Despite their potential (Baer et al,

2014) UAVs have so far been virtually unexplored in assistive

care.

In this paper we present a first application along this direction:

a UAV that uses computer vision to monitor a person for falls

while autonomously following them in an indoor environment.

While UAVs have been widely used in disaster monitoring and

search-and-rescue, see e.g. Andriluka et al. (2010), Murphy

(2014), to our knowledge they have never been used for person

fall detection. Instead, this is done usually with fixed cameras

(Cucchiara et al., 2007, Skubic et al., 2016), wearable or other

sensors (Bourke et al., 2007, de Lima et al. 2017). Our work is

closely related to that of Andriluka et al. (2010), where UAVs

are used to find injured persons in a search-and-rescue setting.

We choose the Parrot AR.Drone 2.0 quadrotor, a very popular

low-cost UAV that is easy to automate using ROS (Robotic

Operating System). Our method achieves person detection by

running the deep learning object detector YOLOv2 (You Only

Look Once version 2) (Redmon and Farhadi, 2017) on the

images received from the Parrot AR.Drone 2.0. The output

data from the detector is used to find the position and distance

of person in the scene, and thereby to direct the drone to remain

at a set distance and orientation from the person, using a simple

visual servoing strategy (Thuilot et al., 2002). Fall detection is

achieved with the same deep-learning method, YOLOv2, but

in this case we fine-tune the last layer using a custom dataset.

We chose a vision-based learning solution because it is simple

to apply, flexible, and relies on a sensor already available on

the UAV (the camera) rather than e.g. wearable sensors. All

the detection and control algorithms run off-board, on a

computer that wirelessly communicates with the drone. Our

experimental results confirm that the method works for

tracking the person indoors and detects falls reliably.

Next, Section 2 provides the background required in the vision

techniques we use. Section 3 explains the most important

component of our method – detection of upright and fallen

persons from images. Section 4 outlines the method for

tracking the person across multiple images. Section 5 presents

the control technique as well as the overall results obtained.

Section 6 gives our conclusions and outlines future work.

2. BACKGROUND

2.1 Classification and object detection from images

Image classification and object detection are two of the most

important and well-studied computer vision tasks. The aim of

classification is to assign a label to an image, where the label

is taken from a fixed set of classes, while object detection

focuses on localizing in an image all the objects that belong to

one or multiple categories. Classification algorithms usually

take as input an image and output a single label or class, while

object detection algorithms output the enclosing bounding

boxes and classes of objects present in a given image. With the

advent of large image datasets, e.g. Imagenet (Russakovsky et

al., 2015) and MS-COCO (Lin et al., 2014), Convolutional

Neural Networks (CNNs), became the de facto method of

approaching both classification (Krizhevsky et al., 2012;

Simonyan and Zisserman, 2015; He et al., 2016) and object

detection (Ren et al., 2015; Redmon and Farhadi, 2017).

Detection of fallen persons (called simply fall detection in the

sequel) can be formulated both as a classification task, where

the algorithm should output whether an image contains a fallen

person or not, or as an object detection problem, requiring the

localization of all the fallen people in an image. Works such as

Nunez-Marcos et al. (2017) take the first approach, while in

this paper we will treat fall detection as an object detection task

and we will make use of the YOLO (You Only Look Once)

(Redmon and Farhadi, 2017) architecture to detect both

upright and fallen people, the former being necessary to track

the person with the drone.

2.2 YOLOv2 object detection network

YOLOv2 (Redmon and Farhadi, 2017) is a CNN architecture

for object detection. The method obtained good results on the

VOC 2012 detection dataset (Everingham et al., 2012)

performing on par with state-of-the-art detectors at that time

such as Faster R-CNN (Ren et al., 2015). Due to its lightweight

structure, YOLO can run at around 40 FPS on a GeForce GTX

Titan X and at between 20 and 25 FPS on a GeForce GTX 970,

the graphics card in our hardware setup, rendering it attractive

for applications that require soft real-time constraints.

YOLOv2 outputs, for each object 𝑂𝑗 present in an image 𝐼, a

probability distribution over the classes 𝑐𝑖 ∈ 𝐶, where 𝐶 is the

set of all classes; and in addition a bounding box 𝐵𝑗 =

 [𝑥, 𝑦, 𝑤, ℎ] enclosing object 𝑂𝑗, where (𝑥, 𝑦) are the

coordinates of the top-left corner of the bounding box and

(𝑤, ℎ) are its width and height, respectively. The network is

trained in a supervised manner, meaning that both true labels

and true bounding box coordinates must be fed for each object

to the training algorithm.

3. PERSON AND FALL DETECTION

Due to its speed and accuracy, we select the YOLOv2 object

detection framework, and in this section we explain how we

adapt and use it for our application.

To detect the person in the upright position, we use the CNN

with the standard set of weights pre-trained on the MS-COCO

dataset. Although this method is sensitive to arm positioning,

since it tends to enlarge the bounding box in order to include

the possibly raised arms of a subject, it still achieves 75%

accuracy. This result is good enough to infer distance

information from the bounding boxes, keeping in mind that

these bounding boxes are further filtered by using a Kalman

filter, as explained in the upcoming Section 4. Thus, detection

of a standing person works nearly off-the-shelf, and we

dedicate the rest of this section to the more interesting fall

detection task. Note that we aim to detect falls a posteriori,

which may then be used to alarm a caretaker, rather than in

real-time, which could conceivably help the monitored person

recover from the fall; the latter would be unlikely to work

given the limitations of our platform.

3.1 Fall detection methodology

As already hinted in Section 2.1, we formulate the problem of

fall detection as an object detection task and use the YOLOv2

CNN architecture to identify the fallen person, if any. We also

considered treating the problem as a classification task, but this

would mean that the network would be difficult to train for

unconstrained environments, body posture and placement, and

for variations of clothing and body appearance. This would

impair generalization in practice.

Furthermore, solving the problem with an object detection

algorithm comes with certain advantages that will be useful in

future extensions of our method. Firstly, the algorithm can

detect multiple fallen people in the same scene and enclose

them in the image within different bounding boxes. Secondly,

having bounding boxes means that we know estimates of the

position of the detected fallen persons in the scene, which can

be useful, for example, for targeted medication delivery.

To work for fall detection, the YOLOv2 object detector has to

be retuned. We start from the standard set of weights pre-

trained on MS-COCO, which we used above for upright

person detection. However, here we replace the last layer with

a simpler one, capable of only single-class detection, and then

fine-tune the network on a custom dataset. This custom

training dataset consists of 500 manually labeled images, taken

from the frames of two videos. These images contain a single

person as subject, wearing the same set of clothes across all

frames. The videos are recorded indoors, in our laboratory,

using the AR.Drone 2.0 camera, from two different

perspectives, while the UAV is inflight.

For training we use the stochastic gradient descent algorithm

with momentum, with a learning rate of 0.001 and a

momentum of 0.99. We use mini-batches that each consist of

4 randomly selected images. We train the network for 2000

iterations or 2000 mini-batches, meaning that each image is

seen by the algorithm around 16 times.

While in principle the same network (or at least the common

parts up to the last layer) can be used for both upright and

fallen people detection, for ease of implementation and testing

we decided to run two separate networks, one for upright

person detection and one for fall detection, in parallel on

separate threads.

3.2 Fall detection results

To evaluate the effectiveness of detection, we test the retuned

network on a different dataset, which was obtained in a similar

manner as the training dataset. In this case, however, we take

the video from a single perspective, with two subjects, both

wearing different clothes than in the training images. In total,

we have gathered 619 images with our subjects in upright or

fallen-like postures.

Table 1 shows the test results. We can see that, in spite of the

small number of examples in the training dataset, the network

obtains high accuracy and generalizes well for different

clothing styles and different subjects. An example of the

output from the specialized network can be observed in Fig. 1.

Table 1. Fall detection test results

Total Positives

False

positives

False

negatives

Number of

images

619 535 37 84

Percentage 100% 86.24% 5.97% 13.57%

Fig. 1. Fall detection with the modified YOLOv2 CNN

4. PERSON TRACKING

In order to follow the person, the controller we will discuss in

Section 5 takes as input a bounding box enclosing the subject

in the image. The bounding box detected by YOLOv2 is

sometimes too noisy and therefore the vertices coordinates

change abruptly, causing performance issues with the control

of the drone. We address this problem using a Kalman filter

that smooths the bounding box outputs from the detection

network. This will make the coordinates of the vertices of the

bounding boxes change steadily as the target moves laterally,

distances themselves from, or approaches the drone.

The model used in the Kalman filter equations is detailed next.

We use the state vector:

𝑥𝑘 = [𝑥1,𝑘 𝑦1,𝑘 𝑥2,𝑘 𝑦2,𝑘 𝑣𝑥1,𝑘 𝑣𝑦1,𝑘 𝑣𝑥2,𝑘 𝑣𝑦2,𝑘]
𝑇

where (𝑥1,𝑘 𝑦1,𝑘) and (𝑥2,𝑘 𝑦2,𝑘) are the coordinates of the

top-left and bottom-right corners of the bounding box, and

(𝑣𝑥1,𝑘 𝑣𝑦1,𝑘) and (𝑣𝑥2,𝑘 𝑣𝑦2,𝑘) are the velocities of these

corners. The discrete time sample is denoted by 𝑘. The

measurement (output of the vision algorithm) only provides

the positions of the corners, denoted together by 𝑧𝑘 =

[𝑥1,𝑘 𝑦1,𝑘 𝑥2,𝑘 𝑦2,𝑘]
𝑇
. Denote also the vector of velocities

𝑣𝑘 = [𝑣𝑥1,𝑘 𝑣𝑦1,𝑘 𝑣𝑥2,𝑘 𝑣𝑦2,𝑘]
𝑇
.

The dynamics describing state transitions consists of a noisy

first-order Euler integration of the velocities to obtain the

positions, and random-walk velocities:

𝑧𝑘+1 = 𝑧𝑘 + 𝑣𝑘 ∙ 𝑇𝑆 + 𝑤𝑧𝑘 , 𝑣𝑘+1 = 𝑣𝑘 + 𝑤𝑣𝑘

Such a model is called a constant-velocity model in computer

vision, where it is often used to track objects with unknown

motion. These dynamics are noisy linear:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝑤𝑘

with 𝐴 = [
𝐼4 𝑇𝑆𝐼4

04 𝐼4
] and the overall noise 𝑤𝑘 = [𝑤𝑧𝑘

𝑇 , 𝑤𝑣𝑘
𝑇]𝑇

is zero-mean Gaussian with covariance matrix 𝑄 = 10−4𝐼8.

For the measurement equation, the positions are mapped

directly from the measurement to the state, while the velocities

are not directly measured and thus they are not included in the

mapping. This is represented as:

𝑧𝑘 = 𝐶 ∙ 𝑥𝑘 + 𝑢𝑘

with 𝐶 = [𝐼4 04]. The measurement noise 𝑢𝑘 is also zero-

mean Gaussian, with covariance 𝑅 = 10𝐼4. The Kalman filter

is run with the initial error covariance matrix 𝑃0 = 0.1𝐼8. For

the equations of the Kalman filter see e.g. Ristic et al. (2004).

Fig. 2 illustrates the tracking results, with the filtered bounding

box in cyan smoothly approaching the measurement from the

classifier, shown in solid green.

Fig. 2. Measured and filtered box in two subsequent frames

5. DRONE CONTROL

In this section we present the final part of our application, the

control strategy, as well as the overall experimental results.

5.1 Vision-based control

We apply a visual servoing strategy where the goal is to

maintain the drone at a reference distance 𝑑𝑟𝑒𝑓 of 4 meters

from the target, and to maintain the target in the center of the

image. The commands correct the orientation 𝜃 of the drone

on the z axis (the yaw) and the position on the x axis

(represented as a distance 𝑑𝑥 from the person), by altering the

angular and linear velocity setpoints 𝜔, 𝑉 along these two axes.

These setpoints are then sent to the AR.Drone 2 firmware,

which applies a low-level control in order to track them. Fig.

3 visually illustrates the control strategy.

Fig. 3. Illustration of the vision-based control strategy

The feedback to the yaw and distance controllers is computed

based on measurements derived from the filtered bounding

box around the person. Specifically, the yaw controller uses

the deviation of the box center from the center of the image in

order to keep the target in the center of the frame, while the

distance controller uses the computed distance from the target

in order to keep the drone at the desired reference distance

from the person. Experiments have shown that in our case, the

distance at which the target is from the drone is most reliably

computed from the area of the bounding box:

𝑑𝑥 = 𝛼𝑆 + 𝛽

where 𝑆 is the area, 𝛼 is a scaling factor and 𝛽 a scaling bias,

both determined experimentally. The area is simply the width

times the height of the box in pixels, see again Fig. 3.

Preliminary control experiments with the drone have shown

that computing continuous commands and sending them at

each frame to the drone does not result in a good flight

behavior: the drone either did not respond promptly or well to

the commands, or it over-responded and lost the target before

further corrections could be applied. A practical solution to

this issue was to use for both the yaw and distance controllers

tripositional control laws (bipositional above some magnitude

threshold, plus a zero level in-between). Therefore, the linear

and angular control setpoints to be applied are computed as

follows for the rotation and distance correction:

𝜔 = {
−0.1, if 𝑐 < −𝑐̅

0, if − 𝑐̅ ≤ 𝑐 ≤ 𝑐̅
0.1,if 𝑐 > 𝑐̅

𝑉 = {

−0.1, if 𝑑𝑥 < 𝑑𝑟𝑒𝑓 − �̅�

0, if 𝑑𝑟𝑒𝑓 − �̅� ≤ 𝑑𝑥 ≤ 𝑑𝑟𝑒𝑓 + �̅�

0.1, if 𝑑𝑥 > 𝑑𝑟𝑒𝑓 + �̅�

where 𝑐 is the position of the box center relative to the center

of the image, normalized to [−0.5, 0.5] over the image width,

and the thresholds are 𝑐̅ = 0.15, �̅� = 0.6m. The setpoint

values are given in normalized units, as required by the

AR.Drone 2.0 firmware.

5.2 High-level strategy

The high-level behavior of the drone is implemented in the

form of a state machine. The states and the algorithm for

switching between them are presented in Fig. 4. Assuming that

the initialization and takeoff activities of the drone have been

carried out successfully, the state machine enters the Follow

target loop. In this state, the UAV is mostly in a hovering

mode, however the yaw and distance controllers do make

position adjustments based on bounding box estimates

received from the person detector, by following the control

strategy presented above. When no bounding box is received,

e.g. due to transient network losses, the position error is

considered to be 0 and the drone does not exit the Hover state.

Fig. 4. The state-machine algorithm used to fly the drone

At each loop iteration, the controller also parses the input

stream coming from the Fall detector. When a fallen message

is received, the drone proceeds with a landing procedure. Our

demonstrator implements no special action here, but this

condition could be used to e.g. alert a caretaker or deliver first-

aid medication.

5.3 Results

In our practical experiments, the drone generally behaved

appropriately, responding correctly to the given commands

and flying without losing its target, with some limited

resilience to occlusions (see the demo video below).

Fig. 5 illustrates how the distance controller works to maintain

the reference distance of 4 meters. In the experiment, the target

was first at 6 meters from the drone, before the controller

started to send correction commands. After the drone correctly

approached the target and reached a relatively stable hover, the

person approached the drone. This resulted in the drone

moving backwards in order to maintain the reference distance.

Fig. 5. Evolution of distance between drone and target during

a control experiment

Fig. 6 shows, for the same experiment, the evolution of the

target center coordinate, in pixels along the horizontal

dimension of the image. The center of the image corresponds

to 300 pixels. The drone uses yaw rotation to maintain target

center at the center of the image. Note that during the

experiment the person was actually slightly moving sideways

with respect to the drone.

Fig. 6. Evolution of target center coordinate

A video of a practical demonstration is available at

http://rocon.utcluj.ro/files/aufdemo.mp4. Fig. 7 shows a few

representative video stills, each including on the left the

perspective of the drone, where the detected bounding box

around the person is shown as a rectangle and its centre is

shown as a disk. To the right of each still, the perspective of

the monitored person and a third-person view are shown. The

three stills illustrate, in order: the normal situation where the

person is at the reference distance; the controller in action

when the person is moving; and a successful fall detection

event (in which case the bounding box becomes red).

Fig. 7. Practical demonstration

6. CONCLUSIONS

In this paper we presented a first application for monitoring

and detecting falls of at-risk (e.g. elderly) persons using a

UAV. The position and state (upright or fallen) of the person

are determined with deep-learning-based vision methods, and

a simple control strategy keeps the person in view of the drone

and maintains a set distance between the two. In experiments,

falls were reliably detected, and the algorithm was able to

correct the position of the drone so as to follow the person.

http://rocon.utcluj.ro/files/aufdemo.mp4

This application is a proof of concept and many elements can

be improved. On the vision side, open issues include e.g.

obstacle detection, explicit handling of occlusions, and

robustness to multiple persons in the scene. At least as

important is the control strategy, where better controllers

should provide increased performance and a smoother

behavior of the drone; here it will be important to address

effects due to the wireless communication network, using

techniques from networked control systems. On the

implementation side, merging into a single network the two

networks currently responsible for detecting respectively the

position and the state of the person would lead to

computational savings for the GPU or CPU. The final

application objective is to have the entire sensing and control

pipeline run on board of the drone, for which a different drone

with stronger on-board processors is needed.

ACKNOWLEDGEMENT

This work was supported by a grant of the Romanian National

Authority for Scientific Research, CNCS-UEFISCDI, project

number PN-III-P1-1.1-TE-2016-0670.

REFERENCES

Andriluka, M. et al. (2010). “Vision based victim detection

from unmanned aerial vehicles”, IEEE/RSJ International

Conference on Intelligent Robots and Systems.

Baer, M., Tilliette, M-A., Jeleff, A., Ozguler, A., and Loeb, T.

(2014). Assisting older people: From robots to drones,

Gerontechnology 13(1):57-58.

Boucher, P. et al. (2013). Design and validation of an

intelligent wheelchair towards a clinically-functional

outcome, Journal of NeuroEngineering and

Rehabilitation 10(58):1-16.

Bourke, A.L., O’Brien, J.V., Lyons, and G.M. (2007),

Evaluation of a threshold-based tri-axial accelerometer

fall detection algorithm, Gait & Posture 26(2): 194-199.

Cucchiara, R., Prati, A. and Vezzani, R. (2007) A multi-

camera vision system for fall detection and alarm

generation, Expert Systems 24(5): 334-345.

Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., and

Zisserman, A. (2012). The PASCAL Visual Object

Classes Challenge (VOC2012) Results.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual

learning for image recognition. In Computer Vision and

Pattern Recognition.

Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012).

Imagenet classification with deep convolutional neural

networks. In Advances in Neural Information Processing

systems, 1097-1105.

de Lima, A.L.S. et al. (2017), Freezing of gait and fall

detection in Parkinson’s disease using wearable sensors: a

systematic review, Journal of Neurology 264(8): 1642-

1654.

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P.,

Ramanan, D., Dollar, P., and Zitnick, C.L. (2014).

Microsoft COCO: Common objects in context. In

European Conference on Computer Vision.

Mathe, K., Busoniu, L. (2015) Vision and Control for UAVs:

A Survey of General Methods and of Inexpensive

Platforms for Infrastructure Inspection, Sensors 15(7):

14887-14916.

Murphy, R. (2014). Disaster Robotics, MIT Press, 2014.

Nunez-Marcos, A., Azkune, G., and Arganda-Carreras, I.

(2017). Vision-based fall detection with convolutional

neural networks. In Wireless Communications and Mobile

Computing.

Redmon, J. and Farhadi, A. (2017). Yolo9000: better, faster,

stronger. In Computer Vision and Pattern Recognition.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn:

Towards real-time object detection with region proposal

networks. In Advances in Neural Information Processing

Systems, 91-99.

Ristic, B., Arulampalam, S., Gordon, N. (2004) Beyond the

Kalman Filter: Particle Filters for Tracking Applications.

Artech House.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,

Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,

M., Berg, A.C., and Fei-Fei, L. (2015). ImageNet Large

Scale Visual Recognition Challenge. International

Journal of Computer Vision, 115(3): 211-252.

Simonyan, K. and Zisserman, A. (2015). Very deep

convolutional networks for large-scale image recognition.

In International Conference on Learning

Representations.

Skubic, M. et al. (2016). Testing non-wearable fall detection

methods in the homes of older adults, IEEE Annual

International Conference on Engineering in Medicine and

Biology Society.

WHO (2007). Global report on fall prevention in older age,

World Health Organization.

