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Abstract: Compared to manual wheelchairs and fully electric powered wheelchairs, power-assisted 

wheelchairs (PAWs) provide a special structure where the human can use her/his propulsion to interact 

with the assistive system. In this context, different studies have focused on the assistive control of PAWs 

in recent years. This paper presents an observed-based assistive control design using only position 

encoders. With a time-varying sampling induced by these position encoders, the wheelchair is described 

by a discrete-time Linear Parameter Varying model. Based on a Takagi-Sugeno (TS) representation, an 

observer is designed by using LMI techniques. According to the estimated human torques, we use the 

frequencies with which the wheels are pushed to compute the reference velocity of the centre of gravity. 

The wheelchair turns with a constant yaw velocity when one of two wheels is braked by the human. 

Reference tracking is accomplished by a PI controller. Simulation results confirm that the proposed 

assistive control algorithm provides a good maneuverability for users to control the velocity of the centre 

of gravity and the yaw velocity of the wheelchair.  
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1. INTRODUCTION 

Power-assisted wheelchairs (PAWs), such as the 

motorization kits Duo and Nomad designed by AutoNomad 

Mobility (Mohammad, et al., 2015), are driven by both 

human metabolic power and electrical power from a battery. 

Thanks to this energy storage structure (Guanetti, et al., 

2017), PAWs can provide advantages which cannot be 

provided by traditional wheelchairs. For example, PAWs 

have a good compromise between rest and physical exercise 

for users. Consequently, this kind of wheelchairs prevents 

disabled people from suffering the common issues caused by 

a long-term use of manual wheelchair, such as rotator cuff 

tendonitis, lateral epicondylitis and calcific tendonitis (Levy, 

et al., 2004). Meanwhile, PAWs can also enable users to 

maintain a desired physical activity level, which cannot be 

provided by a fully electric powered wheelchair (Rabhi, et 

al., 2013)( Fattouh, et al., 2004). 

In classical PAWs, different sensors are used to estimate 

the user’s intention or obtain the condition of the road (Seki, 

et al., 2005)(Seki, et al., 2009). Due to the complexity and the 

high cost of sensors, this kind of PAWs is neither practical 

nor affordable for most disabled persons. For these reasons, 

we use “software sensors” via the observer-based approach 

(Blandeau, et al., 2018) to reconstruct the human torques 

using only the angular position encoders. 

However, the angular position encoders only provide a new 

measurement at a fixed angular position interval (Phillips, et 

al., 1995). In other words, the sampling time is time-varying 

depending on the angular velocity. This time-varying 

sampling leads to a discrete-time Linear Parameter-Varying 

(LPV) model for the wheelchair. We use a Takagi-Sugeno 

(TS) form to represent the discrete-time LPV model (Takagi 

and Sugeno 1985)(Precup and Hellendoorn 2011). Moreover, 

the observer gains are obtained via Linear Matrix Inequality 

(LMI) techniques (Boyd et al. 1994) (Estrada-Manzo, et al., 

2016). Compared to the previous work (Feng, et al., 2017), 

the present work considers a time-varying observer and 

delayed nonquadratic Lyapunov function to guarantee the 

convergence of the observer. 

 

Figure 1: Power-assistance framework 

Based on the estimated human torques, the idea is to 

propose an efficient assistive algorithm in which users can 

control a PAW depending on their will and perception of the 

environment. In this framework, shown in Fig 1, users play 

two important roles. The first role is that of human controller 

that perceives the environment to generate control signals 



 

 

     

 

(human torques). The second role is that of a metabolic 

energy storage unit. This metabolic energy storage is driven 

by the state of fatigue which would influence the 

performance of the human controller. With the help of the 

assistive algorithm, by observing the states of wheelchair, the 

state of fatigue and the environment, users can control the 

velocity and yaw rotation of the wheelchair. 

In our proposed approach, the control loop is closed by the 

user and the assistive torques are generated based on the 

human torque profiles which are estimated from the angular 

position signals. Here, it is necessary that the human acting as 

“the controller” gets information about the surrounding 

environment to make a decision. Hence, the human can be 

also considered as an extra “sensor”. The advantage of this 

design is that the human can perceive the information which 

is difficult or impossible to obtain by conventional sensors. 

Future trajectory is derived from this information. The 

assistive system just helps the user to accomplish what he/she 

is willing to do. 

The estimation of the human intention is based on the 

frequencies and the direction of their torques. For 

accelerating the wheelchair, users have to push it more 

frequently, which is detected by a Fast Fourier Transform 

(FFT). Once running, if no action is detected, the velocity is 

maintained. Users can brake the right or left wheel to turn 

right or left respectively. The only way to stop or slow down 

the wheelchair is to brake both wheels. These four rules 

govern the assistive system.  

The paper is organized as follows. The mechanical 

dynamics of the power-assisted wheelchair and its 

corresponding TS representation are introduced in Section 2. 

Based on the observer, a power-assisted control algorithm is 

elaborated in Section 3. Simulation results are presented in 

Section 4 for validating the proposed approaches. Section 5 

gives our conclusions. 

2. WHEELCHAIR MODELING  

2.1 Mechanical dynamics 

In this study, we consider the wheelchair as a two-wheeled 

vehicle (Tsai, et al., 2012). The caster’s dynamics are not 

taken into consideration.  and  are respectively the left 

angular position and the right angular position, r is the wheel 

radius, d is the distance between two wheels and c is the 

centre of gravity of the wheelchair with the human. 

The two-wheeled PAW can be described by the dynamics: 

  

 

(1) 

where the inertial parameters  and  are: 

 

 

 

(2) 

Here, , , , and  denote respectively the mass of 

wheelchair including the human, the viscous friction 

coefficient, the inertia of the wheelchair with respect to the 

vertical axis through c, the inertia of each driving wheel 

around the wheel axis.  and  are the total torques exerted 

on the right wheel and the left wheel respectively. The total 

torques consists of the unknown torques  exerted by 

user and the assistive torques  given by the electrical 

motors: 

  

 
(3) 

The velocity  of the centre of gravity and the yaw velocity 

 of the wheelchair are the two basic motions which human 

naturally uses as controlled variables for a desired trajectory. 

The position of the centre of gravity and the rotation of the 

wheelchair are respectively  and . These variables can be 

represented by the angular positions ,  and the angular 

velocities ,  as follows: 
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By choosing the state vector , the human 

torque as inputs , the motor torque inputs 

 and the outputs , the 

mechanical system (1) can be rewritten in the following form: 
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where the matrices are: 
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2.2 Time-varying sampling 

Due to the way the two incremental encoders receive the 

signals, the sampling period of the angular positions is time 

varying with the angular velocity. After detecting a rising 

edge from one of the two angular position sensors, see Fig 2, 

the system updates the state of the discrete system with the 

new measurement. The angular velocities are considered as 

constant between two updates. Therefore, the sampling time s 

depends on the angular velocities of the two wheels. 

 

Figure 2: Data sampling example 

To derive a discrete-time model, the classical Euler’s 

method is applied with , 

where  , R Ls  is the sampling time depending on the 

angular velocities  and . Then, we obtain the discrete-

time LPV model as follows:  



 

 

     

 

  

 
(5) 

with the following matrices: 

  4,  d R LA s A I ,  , d R LB s B  

Instead of using a predetermined sampling time, this 

sampling approach updates the state information as soon as a 

new measurement is received by the system. Compared to the 

conventional fixed sampling rate, simulation and 

experimental results (Losero, et al., 2015; Losero, et al., 

2016) in the literature show that a satisfying result of the state 

estimation can be obtained by this approach.  

2.3 Polynomial approximation for human torques 

We consider that the unknown input torques  and  

exerted on the wheels can be approximated by a  degree 

polynomial function in time, for example for the right wheel 

 Using this assumption, the discrete-time 

input torques dynamic approximation can be expressed as: 

  (6) 

Further, (6) can be expressed as: 

 

 

 

(7) 

where  is the binomial coefficient. Consider the 

unknown input vector  

. The dynamics (7) of the vector  

can be written as: 

 
 (8) 

where:  

 

Applying the same reasoning for the left wheel, the 

dynamics of the vector   

 are: 

  (9) 

Defining an extended state vector as 

, the discrete-time 

LPV system (5) can be rewritten as: 

  

 
(10) 

where: 

, 

 

3. ASSISTIVE SYSTEM DESIGN 

The assistive system consists in three parts, Fig 2. the 

human input torques, the velocity and the yaw rotation of the 

wheelchair are estimated by the observer. According to the 

frequencies and the direction of the estimated human torques, 

the algorithm generates the reference signals. Finally, the 

reference tracking is accomplished by a Proportional-Integral 

(PI) controller. 

 

 

Figure 3: Assistive system overview 

3.1 Observer design using TS model 

 In this section, an unknown input observer for discrete-

time LPV system is designed using LMI techniques and last 

results of Non Quadratic Lyapunov functions (Ding 2010) 

and delayed Lyapunov functions (Guerra et al. 2012).    

Thereinafter, the asterisk  represents transposes of a 

symmetric matrix. For sake of simplicity, we adopt the 

notations: 

 

The nonlinear term  in (10) is the time difference 

between two consecutive rising edges produced by two 

encoders. This information can be easily obtained during data 

acquisition. As the sampling time is bounded (when the 

angular velocities are not zero), the nonlinear term can be 

expressed using the classical Sector Nonlinearity Approach 

(Taniguchi et al. 2001):  

 

 

(11) 

where s  and s  are the boundaries of the sampling time i.e.  

. Therefore, we can rewrite the nonlinear 

model (10) as the following TS model: 
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The observer considered for the TS model (12) is: 

          1ˆ ˆ ˆ1 
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With for the delayed state the notation: 

 
iG  and ijK , , 1,2i j  being free matrices to be derived 

from the LMI constraints problem. The estimation errors are 

. Their dynamics are derived as: 

  (14) 

The considered delayed nonquadratic Lyapunov function is 

given by (Guerra et al. 2012): 
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In order for the estimation errors to converge to zero, the 

considered Lyapunov function (16) must decrease along the 

trajectories of (15). The variation of (16) is negative if the 

following inequality holds: 

 
 

(16) 

We define the following LMI term: 

 
 

(17) 

Theorem 1 (Guerra et al., 2012): The estimation error (15) 

is globally asymptotically stable if there exist some matrices 

,  and  for all  such that the LMI conditions 

 in (18) hold. 

The complete proof and more details can be found in 

(Guerra et al., 2012). Applying Theorem 1, the observer gains 

(14) can be found by computing the LMIs (18). 

3.2 Reference generation 

Based on the estimated human torques, a reference 

generation algorithm is introduced in this section. The 

proposed power assisted control method is to make the 

wheelchair more manoeuvrable for the user. More precisely, 

the velocity, yaw rotation of the wheelchair can be efficiently 

controlled by human torques. Since the goal is neither to use 

a torque sensor, nor to have a precise wheelchair + human 

model, it is impossible to reconstruct a precise amplitude of 

the human torques. Our reference generation algorithm is 

based merely on the direction and the frequencies of the 

human torques estimated from angular positions. 

We consider that the frequencies of the human torque range 

between 0.2-2 Hz which represents approximatively the 

frequency of propulsion performed by normal users 

(Boninger, et al., 2000). Consequently, the undesired high 

frequency components in the estimated signals are filtered 

automatically. Then, the frequencies are reconstructed by the 

real-time FFT. The system performs an FFT over a 

predefined time interval by using the windowing technique. 

This technique provides a “view” of data through the time 

interval so called window. 

The assistive algorithm should be simple and efficient 

enough to give users a natural way to control the wheelchair. 

A higher frequency of users’ propulsions leads a higher 

velocity  of the wheelchair. We design here the 

reference velocity  is proportional (with a ratio ) to the 

highest frequency of left/right hand propulsions. Even if users 

do not push symmetrically, the assistive algorithm makes the 

wheelchair go straight. Braking one of the two wheels gives 

the way to turn. The desired angle to turn depends on how 

long users brake. If users push less frequently or do not push 

anymore, the reference velocity keeps constant. To brake or 

stop the wheelchair (excepted emergency stop provided by a 

specific device), users should brake both wheels. This action 

reduces the reference velocity  with a constant rate .  

The whole algorithm is shown in Fig. 4. 

This new mechanism enables the users to control actively 

velocity, braking and rotation by changing the frequencies 

and direction of their propulsions. It is worth noting that the 

reference generation does not depend on the amplitude of the 

estimated human torques. Moreover, there are only three 

parameters ,  and  to tune. These advantages make the 

algorithm easy to generalize to different kinds of wheelchairs 

and users. 

 

Figure 4: Reference generation diagram 

4. SIMULATION 

In this section, the proposed observer and power-assisted 

algorithm are validated by numerical simulations. The goal is 

to follow the given reference trajectory (or the desired 

trajectory of the user) under the proposed assistive algorithm 

and the considered wheelchair dynamics. The human torque 

control signals are generated directly by a user. The 

interaction between the user and the virtual simulation is 

realised by the keyboard and screen as shown figure 5. Here, 

the PAW is assumed to move on a flat surface. The profile of 

the human torques are represented by the positive half cycle 

of a sinusoidal. To perform the trajectory tracking, the user 

receives the trajectory of the wheelchair from screen and 

changes the frequencies and the direction of propulsions by 

keyboard. 

 

Figure 5: Simulation structure 

The following parameters are used to carry out the 

simulation. , , , 



 

 

     

 

,  and . Regarding the 

observer structure, a second degree polynomial is applied for 

the approximating function (7). s  and s  are respectively 

0.001s and 0.5s. For the reference generation, we use 

,  and . Regarding the FFT, we 

choose a time interval of  for the window. Before 

collecting enough data, we initialize the reference velocity as 

 for the 10 first seconds. The PI controller 

gains are obtained via pole placement including, of course, an 

anti-wind-up structure. 

4.1 Observer validation without power-assistance 

Four sequences (green, blue, black and red) of human 

torque are presented in Fig. 6. They represent respectively the 

sequence of acceleration, turn right, turn left and brake. As 

shown in Fig. 6. The observer can qualitatively reconstruct 

the human torque in terms of frequencies and directions of 

the propulsions. 

 

Figure 6: Human torque reconstruction without assistance  

 

Figure 7: Reference signals generated from the previous estimated human 

torques 

4.2 Reference generation validation without power-

assistance 

We feed the estimated human torques obtained in the 

previous part to the reference generation bloc. In the green 

sequence, the frequencies of the human torque are 0.2Hz, 

0.5Hz and 1Hz. As mentioned previously the ratio , we 

notice in Fig. 7 that the reference velocities  are equal to 

0.2m/s, 0.4m/s, 1m/s and 2m/s and correspond to the 

frequencies of human torque. Also, the reference rotation is 

 for  and    for . In the 

red sequence, the algorithm detects human wants to stop or 

brake the wheelchair. Accordingly,  and  are 

reduced to 0. Via the proposed observer, the reference 

generation bloc can provide reference signals for the  

and  desired by the user. 

4.3 Predefined trajectory tracking 

For this simulation, a predefined trajectory depicted in 

Fig.8 (including the start point and endpoint) is given. 

Human should follow this trajectory with the help of the 

proposed assistive system. The wheelchair has an initial 

velocity .  

 

Figure 8: Predefined trajectory tracking performed by a human controller 

under the proposed assistive algorithm 

 

Figure 9: Reference signals and reference tracking performed by a PI 

controller 

As we can see in Fig. 8, the human tries to follow smoothly 

the trajectory to reach the endpoint. In addition, the human 

increases gradually the velocity and corrects little by little the 

direction to point to the endpoint. In Fig. 9, the observer 

reconstructs successfully the velocity   and the rotation 

velocity  . Moreover, the reference tracking is accomplished 

by the proposed controller. The small oscillations in   and 

 



 

 

     

 

  are due to the “strong” human input torques. Another 

advantage of the assistive system is that the manoeuvrability 

of the wheelchair does not depend on how strongly the users 

push. It depends only on the frequency and the direction of 

propulsion. That is to say, the person who does not have the 

capacity to provide a strong propulsion (due to fatigue or 

pathologies) can manipulate the wheelchair as well as a 

physically strong person. On the other hand, if users are 

motivated to do physical exercise, they can always provide a 

desired propulsion to complete the assistive torques. 

5. CONCLUSIONS 

In this paper, we have presented an observer-based 

assistive control design for PAWs. To address the time-

varying sampling period of the positions encoders, we derive 

a LPV model for wheelchair. Next, an observer has been 

proposed to reconstruct the human torques. We use the 

frequency of the estimated human torques to compute the 

reference velocity and the reference rotation. Simulation 

results show the validity of the observer and of the reference 

generation. Using the assistive system, the human reaches the 

endpoint trying to follow the given trajectory. This assistive 

control design not only reduces the system cost by removing 

the need of torque sensors, but also increases the 

manoeuvrability of the wheelchair for different kind of users. 

For future work, a learning algorithm which is able to adapt 

to each different user can be integrated into the present 

assistive control algorithm. 
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