
1

Real-Time Optimistic Planning with Action Sequences
Thijs Wensveen, Lucian Buşoniu, Robert Babuška

Abstract—Optimistic planning (OP) is a promising approach
for receding-horizon optimal control of general nonlinear sys-
tems. This generality comes however at large computational costs,
which so far have prevented the application of OP to the control
of nonlinear physical systems in real-time. We therefore introduce
an extension of OP to real-time control, which applies open-loop
sequences of actions in parallel with finding the next sequence
from the predicted state at the end of the current sequence.
Exploiting OP guarantees, we provide conditions under which
the algorithm is provably feasible in real-time, and we analyze
its performance. We report successful real-time experiments for
the swingup of an inverted pendulum, as well as simulation results
for an acrobot, where the impact of model errors is studied.

I. INTRODUCTION

We consider the problem of optimally controlling a non-
linear system in discrete time, so that a discounted infinite-
horizon sum of rewards is maximized [1]. An optimistic
planning (OP) [2] type of algorithm is adopted, which uses
the model to compute an adaptive-horizon sequence of control
actions that is near-optimal for the current state of the system,
applies the first action of this sequence, and then repeats
the procedure. OP methods are therefore a type of receding-
horizon model-predictive control (MPC) [3]. However, they
integrate a mixture of artificial intelligence, machine learning,
and global optimization ideas, which leads to quite a different
approach from classical MPC. First, OP is highly general, al-
lowing arbitrary nonlinear system dynamics and nonquadratic
reward functions. Second, it provides a quantitative relation-
ship between computation invested and near-optimality.

Several OP algorithms exist [4]–[7] and have shown good
performance in simulation [7], [8]. Here we will consider the
simplest such algorithm: optimistic planning for deterministic
systems (OPD) [4]. OPD works for a finite number of discrete
actions, and explores the infinitely deep tree of possible action
sequences, by always refining further a sequence with the
largest upper bound – hence the “optimistic” label. OPD is
relatively unaffected by the state dimensionality. It is typically
used with a fixed computational budget, meaning that the
algorithm performs a fixed number of tree node expansions
before returning a sequence of actions.

An unavoidable price must be paid for the generality
of OPD: computational complexity. The algorithm generally
requires a budget that is exponential (in a well-characterized
way) in the depth of the tree explored, and this depth directly
relates to solution quality. Due to this, to our knowledge no
real-time application of OPD to physical control systems has
been reported so far. The main problem is that OPD is applied
in receding horizon while assuming that it takes negligible

T. Wensveen and R. Babuška are with the Delft Center for Sys-
tems and Control, Delft University of Technology, the Netherlands (thi-
jswensveen@gmail.com, r.babuska@tudelft.nl). L. Buşoniu is with the De-
partment of Automation, Technical University of Cluj-Napoca, Romania
(lucian@busoniu.net). This work was supported by a grant of the Romanian
National Authority for Scientific Research, CNCS-UEFISCDI, project number
PNII-RU-TE-2012-3-0040.

time to compute a sequence after measuring the state. This is
of course not true, and so real-time applicability is hampered.

We propose here an extension of OP that solves this
problem: real-time OP with sequences (RTOPS). Instead of
single actions, RTOPS applies open-loop sequences, increasing
the time available for planning. While the current sequence
is being applied on a separate thread, replanning of a new
sequence starts immediately, from the predicted state at the
end of the current sequence. In this way, computation can
take advantage of the entire available time, while actions
are always available to apply to the system. Exploiting the
complexity analysis of OPD, we derive conditions on the
computation budget and the length of the applied subsequence
that guarantee the real-time feasibility of RTOPS. We examine
the performance impact of the length of the applied initial
subsequence. Real-time control results for swingup of an
inverted pendulum are shown, in addition to simulation results
for the acrobot (a two-link robot arm with a fixed end-joint
and an actuated middle joint). For the acrobot, we also study
the impact of model errors.

Our closest related work is [9], where sequences computed
with OP are also applied, but with a different goal: to mini-
mize communications in networked control. However, [9] still
assumes that sequences are found near-instantaneously after
measuring the state. RTOPS addresses this by replanning from
the predicted state, in parallel to the control thread.

Applying sequences to increase the time available for com-
putation is a simple but effective idea, and so it has been
investigated before. As early as 1999, [10] introduced the
idea of intermittently moving the horizon in an MPC setting,
applying a sequence of actions and then shifting the horizon by
the length of the applied sequence. In [11] another intermittent
approach is described, very similar to ours: a predicted state,
based on the current state and the current action sequence,
is used to find the next action sequence. This approach is
studied in more detail in [12], where it is split into three
modules: a state predictor, an open-loop control policy, and
an intermittent controller. In [13] the computational delay δ is
explicitly included in the design, by only computing at step k a
sequence for the interval [k+δ, k+N] where N is the horizon.
Similarly, [14] takes a sampled-data approach and designs the
control at the ith step for the time interval [ti + δ, ti+1 + δ],
already covering the delay at the next computation. Both [13]
and [14] focus on stability guarantees.

All these works assume the existence of a maximum compu-
tation time that makes the approach feasible. In contrast, we
provide an explicit characterization of how (and when) this
computation time can be guaranteed. The specific properties
of OPD are essential to this characterization. Our overall main
novelty is integrating OP and real-time control.

Next, Section II formalizes the optimal control problem and
OPD. Section III describes RTOPS and its analysis, while
Section IV gives our experiments. Section V concludes.

2

II. OPTIMAL CONTROL PROBLEM AND OPD ALGORITHM

We consider deterministic, discrete-time nonlinear systems,
with dynamics described by xk+1 = f(xk, uk), with xk ∈ X
the state and uk ∈ U the action at time step k. Here X and
U are the state and action spaces, respectively. A reward is
assigned to each state transition, defined by rk = ρ(xk, uk),
where ρ : X ×U → R is the reward function. We adopt for a
large part the notations as used in [9], as they are suitable for
the real-time extension here.

In the sequel it is assumed firstly that all rewards are in
the interval [0, 1]. Note however that any bounded reward
function can be scaled to this interval without changing the
optimal solution. The main way to achieve boundedness is
by saturating a possibly unbounded original reward function.
Moreover, the physical limitations of the system may be
meaningfully modeled by saturating the states and actions,
in which case a reward bound follows from the saturation
limits. Secondly, we also assume that the action space is
discrete or discretized, with cardinality |U | = K. Many
systems have inherently finitely-many actions, because they
are controlled by switches, e.g. water barriers and sluices
[15]. When the actions are originally continuous, discretization
reduces performance, but the loss is often manageable. On
the other hand, our approach for real-time control works for
continuous-action planning algorithms as well, such as our
method in [16] – but the complexity analysis prerequisite for
real-time guarantees is not yet available for this method.

The objective is to optimally control the system, by applying
a sequence of actions that maximizes cumulative rewards. To
formalize this, we define ud = [u0, u1 . . . ud−1] to be an
action sequence of length d. The value of an (infinitely long)
sequence of actions starting from state x0 is then:

vx0(u∞) =
∑
k≥0

γkρ(xk, uk) (1)

where uk are the actions from the infinite length sequence u∞,
and the states are the result of applying these actions, xk+1 =
f(xk, uk). The discount factor γ is constrained to the interval
[0, 1) and is used to differentiate between the importance of
present rewards and future rewards. Discounting is necessary
for our planning algorithms, and many other works in optimal
control use it. Given (1), the optimal value is defined as v∗x0

=
supu∞ vx0(u∞).

In the OPD algorithm, a given amount of computation is
imposed, where computation is considered proportional to the
number of calls to the model (transition and reward functions);
and the algorithm is expected to return the best possible
sequence of actions within this allowed computation. To this
end, OPD searches the space of all infinite length action-
sequences starting from state x0, by developing a look-ahead
tree in which nodes represent states and branches represent
actions, see Figure 1. Each node is reachable following a
unique path in the tree, corresponding to a unique sequence
of actions. Note, however, that states in the tree are not
necessarily unique, as it is possible that identical states are
reached from the initial state via different paths.

Three quantities are defined for any sequence ud: a lower
bound on the values (1) of the infinite-length action sequences

Fig. 1. Optimistic planning tree example for K = 3 actions. Branches are
labeled by the action ul

d, where l is again the index of the action and d is the
depth of the node at which the action was applied, and the corresponding
children nodes are labeled by the resulting states xl

d. The leaves L are
enclosed by a dashed line.

u∞ starting from state x0 and having ud as initial subse-
quence, an upper bound on these values, and an optimal value
among them. The lower bound is:

`x0(ud) =
d−1∑
k=0

γkρ(xk, uk) (2)

where uk are again actions from the sequence ud. This is a
lower bound because all future rewards are non-negative. The
upper bound is defined as:

bx0(ud) = `x0(ud) +
γd

1− γ
(3)

where γd + γd+1 + · · · = γd

1−γ is the reward obtained if all
future rewards after depth d would be equal to the maximum
reward of 1. Finally, the optimal value among infinite length
sequences starting with ud is:

vx0(ud) = `x0(ud) + γdv∗xd
(4)

that is, the value of following actions ud from x0 and
continuing optimally from xd onwards.

OPD develops the tree optimistically, by always expanding a
leaf node with the largest upper bound: argmaxud∈L bx0(ud),
motivating the algorithm’s name. Each expansion generates
K new nodes, one for each of the K actions available in
the current state, and so an expansion requires K calls to
the model. A computational budget of n node expansions is
imposed, and after exhausting it, OPD returns a sequence that
has the largest lower bound among all sequences explored:
u0

d0
= argmaxud∈L `x0(ud), interpreted as a safe – rather

than optimistic – choice.
In [2], [4] it is shown that the length d0 of the returned

action sequence u0
d0

is guaranteed to be the largest expanded
depth in the tree,1 and that the suboptimality of this sequence
is bounded as follows:

v∗x0
− vx0(u

0
d0

) ≤ γd0

1− γ
(5)

In this case we say that the sequence is “ γd0

1−γ -optimal”.

1Or one action longer, in which case by convention we eliminate this action.

3

Now, the depth reached by OPD depends on the size of the
near-optimal subtree T ∗(x0) [2], [9]:

T ∗(x0) =
{

ud | d ≥ 0, v∗x0
− vx0(ud) ≤

γd

1− γ

}
(6)

This is because OPD only expands nodes that belong to this
subtree. To formalize the relationship between computation
and depth, define the asymptotic branching factor κ(x0) ∈
[1,K] of this subtree as follows:

κ(x0) = lim sup
d→∞

|T ∗d (x0)|1/d (7)

where |T ∗d (x0)| represents the number of nodes in T ∗(x0) at
depth d. Branching factor κ(x0) is a measure of the complexity
of OPD. If κ(x0) > 1, reaching a depth d in the tree OPD
requires n = O(κ(x0)d) expansions [2].2 In the special case
that κ(x0) = 1, only n = O(d) expansions are needed.
Intuitively this can be explained as follows: if there is only
one action at each depth that is near-optimal as d → ∞ (i.e.
κ(x0) = 1), then asymptotically each expansion will increase
the depth of the tree. Otherwise, if more near-optimal actions
are available at each depth, the near-optimal subtree grows
exponentially and the general formula holds.

By solving for the depth d0 in the number of expansions
in the near-optimal subtree above (either n = O(κ(x0)d)
or n = O(d)) and then replacing this depth in the near-
optimality bound (5), we find a bound stated directly in terms
of the computation n invested. All this is summarized in
the following theorem, together with a synthesis of the other
properties we discussed above. In this theorem, c(x0) is related
to the constants in the O(·) expressions above, which are used
e.g. to cover the nonasymptotic regime of tree growth.

Theorem 1 (see [2], [9]): When called with budget n at
state x0, OP returns a sequence u0

d0
of length d0 equal to the

largest expanded depth on the tree, and which is γd0

1−γ -optimal.
Further:
• When κ(x0) > 1, a depth of d0 ≥ c(x0) log n

log κ(x0)
is

reached and the sequence is O(n
−

log 1/γ
log κ(x0))-optimal.

• When κ(x0) = 1, a depth of d0 ≥ c(x0)n is reached and
the sequence is O(γc(x0)n)-optimal.

where c(x0) > 0 is a state-dependent constant.

III. REAL-TIME OPTIMISTIC PLANNING WITH ACTION
SEQUENCES

A. Algorithm

In principle, OPD should be applied at every step (every
state encountered) during the interaction with the system,
where it would return an action sequence. The first action
from this sequence would be applied to the system, the new
state would be measured and then the whole procedure would
be repeated in receding horizon. The problem with this is
the implicit assumption that OPD takes negligible time to
execute (much less than a sampling time), which is not true.
Being designed for very general problems, OPD is relatively

2Let g, h : (0,∞) → R, then statement g(t) = O(h(t)) for large t means
that ∃t0, c > 0 so that g(t) ≤ ch(t), ∀t ≥ t0.

computationally costly. So the procedure is not implementable
in practical, real-time control.

To address this issue, we propose the following approach.
OPD is called to obtain a sequence of actions, which is no
different from the typical setting. However, instead of just
applying the first action of the sequence, the entire sequence
or an initial subsequence thereof will be used. While this
current sequence is being applied, on a different computation
thread a next action sequence is being computed from the
predicted state at the end of the current sequence, to make
sure that this new sequence will be appropriate at the time
the current one runs out. At that time, this new sequence
starts being applied, and so on. Thus a significant amount
of time (equal to the sampling interval times the length of
the applied sequence) is available to execute OPD at each
call. Since OPD returns sequences of actions by default, the
complexity of the planning is not increased with this approach,
effectively increasing the ability to meet real-time constraints.
The resulting algorithm is referred to as Real-Time Optimistic
Planning with Sequences, RTOPS. We have to require that
initially enough (but finite) time is available for computing the
first sequence, as no previous sequence is available to ensure
the real-time constraints are met. An alternative would be to
apply an a priori, suboptimal controller during this time if one
is available, e.g. if the system is at an equilibrium, a sequence
of actions with value zero. This zero-sequence solution is the
one we adopt in our experiments.

The following notations are used to formalize the algorithm:
um

dm
is an action sequence of length dm, computed at the mth

call to OPD, m = 0, 1, The indices m are omitted when
the calculation time is not relevant. Predictions are indicated
with a hat, e.g. x̂k+d′ is the predicted state at time step k+d′.

RTOPS is driven by two parameters: the computation n
allowed at each call, and the length d′ of the initial subse-
quence to apply from the sequence returned (which may be of
larger depth dm). These two parameters can in general be set
independently, although of course they must satisfy constraints
to ensure real-time applicability, and our analysis below details
these constraints. Algorithm 1 summarizes the procedure,
where OPD(x, n) means that OPD is applied in state x with
budget n. We emphasize that model (and therefore prediction)
errors are not explicitly taken into account in the algorithm
and analysis; however, in Section IV-A we empirically study
the effect of model mismatch, and analyzing this effect is our
first priority in ongoing work.

B. Real-time guarantees
The applicability of RTOPS in real-time requires one crucial

condition. Simply put, this condition is that a sequence of
length d ≥ d′ must be computable within a time that is at
most equal to the time it takes the system to go through d′

actions. Denote the execution time of one node expansion by
Te, then a budget n can be chosen as long as nTe ≤ d′Ts,
where Ts is the sampling interval. The condition then becomes
that OPD called with budget n always returns a sequence of
length d ≥ d′. To make this condition explicit, we need to
take into account the complexity of the problem, as measured
by the asymptotic branching factor κ.

4

Algorithm 1 Pseudo-code for RTOPS
Input: initial state x0, budget n, subsequence length d′

1: k ← 0, m← 0
2: apply OPD(x0, n) to obtain u0

d0

3: send subsequence u0
d′ to buffer

(buffer sends actions to system, while planning continues)
4: loop
5: measure current state xk

6: simulate um
d′ from xk, to find prediction x̂k+d′

7: apply OPD(x̂k+d′ , n), obtaining um+1
dm+1

8: (if needed, wait until buffer is empty)
9: send subsequence um+1

d′ to buffer
10: k ← k + d′, m← m + 1
11: end loop

To provide a uniform guarantee, we introduce the worst-
case branching factor and constant c among all states, κ̄ =
supx∈X κ(x), c = infx∈X c(x). We will analyze the theo-
retical case where κ̄ is known, making a further distinction
between κ̄ > 1 and κ̄ = 1. Most problems are likely to have
a branching factor with 1 < κ̄ < K. However, in practice κ̄
and c are often not known a priori, so to obtain a safe real-
time constraint we must also consider an absolute worst-case
scenario where for some states all nodes at each depth need
to be expanded, leading to κ̄ = K. In this case, OPD would
work the same as uniform planning, or breadth-first search,
where nodes are expanded in the order of their depth (and the
constant is not needed).

Theorem 2: RTOPS is feasible in real-time if the settings
n and d′ jointly satisfy the following conditions:

n ≤ d′Ts/Te (8)

and either of:

• for κ̄ > 1, c known: d′ ≤ c
log n

log κ̄
(9)

• for κ̄ = 1, c known: d′ ≤ cn (10)

• for κ̄, c unknown: d′ ≤ log[n(K − 1) + 1]
log K

− 1 (11)

Proof: Consider first κ̄ > 1, c known. Then, for any state
x for which κ(x) > 1, by Theorem 1 OPD reaches depth
d ≥ c(x) log n

log κ ≥ c log n
log κ̄ , by definition of κ̄ and c. Hence,

taking d′ that satisfies (9) ensures d ≥ d′ is reached, and
a subsequence of length d′ is available. Further, (8) ensures
that computation finishes within d′ steps, and therefore the
algorithm is viable in real-time. States where κ(x) = 1 are
trivially handled by noticing that c(x)d ≥ cn ≥ c log n

log κ̄ .
The case κ̄ = 1 is handled similarly using the appropriate

formula in Theorem 1.
Finally, when the entire tree must be expanded, given a

value of n take d to be the smallest depth so that n ≤∑d
i=0 Ki = Kd+1−1

K−1 , which means at least some nodes at d
were expanded, and the sequence returned has at least length
d. Solving for d we get d ≥ log[n(K−1)+1]

log K −1, and so choosing
d′ to satisfy (11) ensures real-time feasibility.

So far n was set independently from d′. It will often be
best to simply select the largest n allowed by (8) so as to

fully exploit the available time. Otherwise, the algorithm will
waste time, which is not desirable unless other considerations
must be taken into account, such as battery life if RTOPS is
applied on a mobile device. Therefore, we next study the case
when only d′ is freely selected, while the budget is kept fixed
to the maximum possible, n = bd′Ts/Tec where b·c is the
floor operator. In this case the feasibility condition is given
only in terms of d′.

Corollary 3: When n = bd′Ts/Tec, RTOPS is feasible in
real-time if the setting for d′ satisfies either of:

• κ̄ > 1, c known: d′
Ts

Te
− κ̄d′/c − 1 ≥ 0 (12)

• κ̄ = 1, c known: d′(c
Ts

Te
− 1)− c ≥ 0 (13)

• κ̄, c unknown: (d′
Ts

Te
− 1)(K − 1)−Kd′+1 + 1 ≥ 0 (14)

Proof: In general, conditions (9)-(11) can all be written
as d′ ≤ g(n) for some strictly increasing function g. We have
n > d′Ts/Te − 1, so if we ensure d′ ≤ g(d′Ts/Te − 1), then
due to the increasing nature of g, d′ ≤ g(n) is implied. The
conditions then are simply obtained by filling in from (9)-(11)
the appropriate forms of g in each case.

Several remarks are in order. First, even if branching factor
κ̄ and constant c are assumed known, all the conditions are
conservative in general, because κ̄ and c are worst-case values.
In fact, given the chosen budget n (much) larger depths d
may be reached, improving the quality of the sequences, since
their near-optimality is γd

1−γ by (5). Conservativeness of course
increases even more when κ̄ is unknown.

Second, it is possible that no values of d′ and n exist that
satisfy the conditions. This simply means that for the problem
considered, OPD requires too much computation to be applied
in real-time. Either a more powerful processor is needed or the
code must be optimized (e.g., for the system simulator).

Third, the execution time Te can be found as follows in
practice. OPD is applied offline from some representative
system states and its execution time is measured. Dividing
the overall time by the total number of expansions gives an
approximation of Te.

Last but not least, measuring the computation budget by
the number of expansions implicitly assumes that the other
operations (computing lower and upper bounds, navigating the
tree to find optimistic sequences, etc.) take negligible time.
This is justified by the fact that OPD targets complex nonlinear
systems, and simulating such systems is often computationally
intensive (e.g. by requiring numerical integration). In practice
it may however be important to take into account tree oper-
ations, and we provide a heuristic to do this when selecting
Te. The time complexity of tree operations in OPD depends
on the branching factor κ. It is highest for κ = 1, when
the algorithm has to navigate at each iteration along a path
of depth O(n), giving overall time complexity of O(n2) (for
κ > 1, the time complexity is only O(n log n) [6]). Therefore,
to avoid computation taking longer in practice than expected,
in the preliminary experiment to find Te the tree could be
forced to have κ = 1, leading to the largest complexity in tree
operations. This can be done by creating an artificial reward

5

function that always gives rewards of 1 for one action and
rewards of 0 for all other actions.

C. Performance guarantees

Besides real-time applicability, it is also important to un-
derstand the quality of the solution produced by RTOPS. In
[9] an important property was shown for OPD when it applies
sequences of actions: a near-optimality guarantee holds that
only depends on the length d0 of the first sequence computed,
and is not affected by the length d′ of the subsequences
applied. This property directly applies to RTOPS, since it finds
the first sequence in the same way as the algorithm in [9]:

Theorem 4 ([9]): RTOPS satisfies:

v∗x0
− vx0([u

0
d′ ,u

1
d′ , . . .]) ≤

γd0

1− γ
(15)

where [u0
d′ ,u

1
d′ , . . .] is the infinitely long sequence applied by

RTOPS in closed-loop and d0 on the right side is the depth
reached on the first planning instance.

Here and in the sequel, operator [·, . . . , ·] denotes the
concatenation of two or more sequences. Intuitively, the near-
optimality of the long sequence u0

d0
is γd0

1−γ due to Theorem
1, and in addition to that replanning earlier will retain at least
the same bound as the original sequence.

Although this near-optimality bound does not change with
the length of the applied subsequence, this does not mean that
the actual performance is the same. While no definite answer
can be given as to whether longer or shorter subsequences
perform better, since either case is possible depending on the
problem [9], bounds can be given on the performance loss in
both cases. Recall that u0

d′ is the initial, applied subsequence
of length d′, which we take here strictly smaller than the length
d0 of the full sequence u0

d0
returned by RTOPS. Also, u1

d1
is

the sequence found by RTOPS when re-planning from state
xd′ , which results from applying sequence u0

d′ .
Theorem 5: Applying a shorter subsequence u0

d′ and re-
planning a new sequence u1

d1
may lose or gain value, com-

pared to the value v(u0
d0

) of the full sequence returned by
RTOPS, up to the following bounds:

vx0(u
0
d′)−

γd0

1− γ
≤ vx0(u

0
d0

) ≤ vx0([u
0
d′ ,u

1
d1

]) +
γd′+d1

1− γ
(16)

Moreover, the bounds are tight in general: for either bound, a
problem exists where the bound holds with equality.

Proof: The second inequality was proven in [9], and an
example was given there in which the bound is tight. To prove
the first inequality, observe that v∗x0

− vx0(u
0
d0

) ≤ γd0

1−γ from
Theorem 1, and also that v∗x0

− vx0(u
0
d′) ≥ 0 by definition of

the optimal value. Then:

vx0(u
0
d′)− vx0(u

0
d) =[

v∗x0
− vx0(u

0
d0

)
]
−

[
v∗x0
− vx0(u

0
d′)

]
≤ γd0

1− γ

which is equivalent to the desired result.
An example is constructed to prove that this bound is also

tight, as shown in Figure 2. In this example, all rewards are
equal to zero in the explored tree at the first planning instance,

Fig. 2. Worst-case example of performance-loss when applying longer
sequences. Sequence superscripts have been dropped for readability.

so OPD chooses the sequence arbitrarily, by some tie-breaking
rule. Then, the tree can be constructed in such a way that the
tie-breaking rule selects a sequence ud after which, even with
replanning, the high-reward path is unreachable. Re-planning
after applying the shorter subsequence ud′ , however, does
result in finding the high-reward sequence, because it is part
of the subtree that has xd′ as its root. Since the high-reward
path starts at d0, replanning later loses a value of γd0

1−γ .
Intuitively, the first inequality of Theorem 5 says that, when

compared to applying the full-length sequence, the shorter
sequence cannot gain more than γd0

1−γ , i.e. the uncertainty of
the full-length sequence; and the second inequality says that
the shorter sequence followed by replanning cannot lose more
than γd′+d1

1−γ , i.e. the uncertainty of the combined sequence after
replanning.

IV. EXPERIMENTAL STUDY

This section describes experiments conducted to analyze the
practical performance of RTOPS on two systems: an acrobot
simulation and a real inverted pendulum. For the simulated
acrobot, a part of the experiments have been done with the
addition of simulated model mismatches. In a real system such
as the inverted pendulum setup, it is of course inevitable that
model errors are present.

A. Acrobot simulation

The acrobot is a two-link robot arm, where one joint is
fixed and only the middle joint is actuated, see Figure 3. The
aim is to swing up both links to the upright position, and
the problem gets its name from the similarity to a gymnast
(acrobat) on the horizontal bar. The acrobot is a commonly
used nonlinear control example.

The acrobot has a four-dimensional state-space, x =
[θ1, θ̇1, θ2, θ̇2], where: θ1 is the angle in radians of the first link
(the “body”) with respect to the vertical axis, θ2 is the angle
in radians of the second link (the “legs”), also with respect to
the vertical axis, and θ̇1, θ̇2 are the angular velocities of the
first and second link, respectively. The control action u is a
torque applied to the middle joint.

The dynamics of the system are described as follows [17]:[
a11 a12

a21 a22

]
·
[
θ̈1

θ̈2

]
=

[
b1

b2

]

6

Fig. 3. Acrobot system. The figure is taken from [17].

where

a11 = (4/3 ·m1 + 4m2)l12, a22 = 4/3 ·m2l2
2

a11 = (4/3 ·m1 + 4m2)l12, a22 = 4/3 ·m2l2
2

a12 = a21 = 2m2l1l2 cos(θ1 − θ2)

b1 = 2m2l2l1θ̇
2
2 sin(θ2 − θ1)

+ (m1 + 2m2)l1g sin(θ1)− µ1θ̇1 − u

b2 = 2m2l2l1θ̇
2
1 sin(θ1 − θ2) + m2l2g sin(θ2)− µ2θ̇2 + u

Here, l1 = 0.5 m is the half-length of the first link, l2 = 0.5
m is the half-length of the second link, m1 = 1 kg and m2 =
1 kg are the mass of the first and second link, respectively,
g = 9.81 m/s2 is the gravitational acceleration and µ1 = 0.05
and µ2 = 0.05 are the friction coefficients of the links. The
sampling time was set to Ts = 0.1 s. The action is discretized
into a set of size K = 3 containing values −2, 0, 2.

The reward function used to express the goal of swinging
up the acrobot is:

rk = 1−
√

[yk−(l1+l2)]
2+x2

k

2(l1+l2)

with the cartesian coordinates of the “feet”:

xk = l1 sin(θ1) + l2 sin(θ2), yk = l1 cos(θ1) + l2 cos(θ2)

and discount factor γ = 0.99. This form was chosen in [18] to
provide information about the progress towards the goal state
of pointing up, while keeping rewards in the interval [0, 1].

Theorem 2 with the case in equation (11) is used to find the
feasible combinations of n and d′, which allow for real-time
application of RTOPS. The possible combinations are shown
in Figure 4. Next we report simulation results in two scenarios:
one where the model was identical to the system, and another
where a model mismatch was introduced.

Perfect model: All feasible lengths for the applied subse-
quence have been used, in combination with a large budget
n for each choice of d′ (it might be possible to shrink
the budget while maintaining performance, but our aim is
to use all the allowable computation time). The results are
summarized in Table I. The performance is generally good for
short sequences and poor for long ones, however, this is not an
exact relationship and has exceptions (e.g. d′ = 4 leads to bad
performance while d′ = 3 and 5 do not). So for the acrobot,
even when the model is accurate, applying long sequences is
not favorable, likely because closing the loop sooner does help
to react better to the evolution of the state.

Fig. 4. The gray area shows all possible combinations of n and d′ for which
the worst-case condition for real-time applicability of RTOPS holds. Being
integer, d′ must lie on a dotted line in the gray area. Note that the horizontal
axis is logarithmic.

TABLE I
DISCOUNTED SUM OF REWARDS (OVER 100 STEPS) FOR THE ACROBOT

SIMULATION. THE COLUMNS ARE SORTED IN DESCENDING ORDER OF THE
SUM, AND THE BEST PERFORMING SETTINGS ARE IN BOLD.

Discounted sum
n d′ of rewards

82950 3 46.34372
138300 5 46.34372
193600 7 46.30856
55300 2 46.26664

221200 8 46.25057
165900 6 46.14592
248900 9 45.28947
110600 4 40.41503
276600 10 40.22135
304200 11 39.12224

Fig. 5. Acrobot simulation results with d′ = 3 and n = 82950.

Fig. 6. Acrobot simulation results with d′ = 4 and n = 110600.

As an illustration, the reward and angle trajectories in the
experiments with the best performing setting (d′ = 3) and the
atypical poorly-performing short d′ = 4 are shown in Figures

7

5 and 6, respectively. The swing-up succeeds for d′ = 3 but
fails for d′ = 4, reflecting the numerical differences in return.

Model mismatch:
In practice, models will of course never be perfect, so we

also study the performance of RTOPS when model errors are
present. Several experiments for different kinds of parameter
errors in the acrobot model have been conducted. The errors
are introduced on the mass and length of the links. Four
different settings are used for the parameters of the first
link/second link: modeled too low/low, too low/high, too
high/low, too high/high. For the first link “too low” means
the modeled mass is m1 · 0.95 (the real mass is m1) and
l1 · 0.99, and “too high” means m1 · 1.02 and l1 · 1.02. For
the second link “low” is m2 · 0.97 and l2 · 0.6 and “high”
m2 · 1.03 and l2 · 1.01. Table II shows the results for d′ = 2
and d′ = 3. Interestingly, neither of these values of d′ performs
consistently better. The model mismatch seems to determine
which of the settings outperforms the other (or if they give
the same performance). We include trajectories for the model
mismatch type for which the performance differs most between
the two settings (namely “high/low”), in Figures 7 and 8. The
performance with d′ = 2 is not as good at first, but it is able
to keep both links positioned upright after one “miss”.

TABLE II
COMPARISON OF PERFORMANCE BETWEEN d′ = 2 AND d′ = 3 FOR

DIFFERENT MODEL PARAMETER ERRORS. FOR EACH TYPE OF ERROR, THE
BEST SETTING IS HIGHLIGHTED IN BOLD.

d′ \(m1, l1/m2, l2) low/low low/high high/low high/high
2 (n = 55310) 48.2293 46.2644 44.8735 45.9687
3 (n = 82950) 48.0277 46.2731 47.4749 45.9687

Fig. 7. Acrobot simulation results with d′ = 2 and n = 55310, for
“high/low” model mismatch.

Fig. 8. Acrobot simulation results with d′ = 3 and n = 82950, for the
same mismatch.

B. Real inverted pendulum

A DC motor setup developed at TU Delft is used to create
an inverted pendulum, by attaching an additional mass at the
edge of the rotating disc. A picture of the setup is shown in
Figure 9. The state is two-dimensional, x = [θ, θ̇], where θ
is the angle in radians of the (virtual) pole with respect to
the vertical axis, and θ̇ its angular velocity. Both θ and θ̇ are
provided directly by the interface software. The control action
is the armature voltage and we choose to limit it to a maximum
of umax = 0.9 V. The action is discretized into K = 3 discrete
values, −umax, 0.0, umax. The goal is to bring the weight to
the top and then stabilize it there. Since the maximum voltage
is small, several swings are required to accumulate energy
before the pendulum can be pointed up.

Fig. 9. Experimental setup: DC motor as inverted pendulum. The aim is to
position the weight at the top, opposite to where it is located in the picture.

The dynamics of this inverted pendulum are:

θ̈ = 1/J(mgl sin(θ)− (b +
K2

R
)θ̇ + Kmu) (17)

where m = 0.03 kg is the mass of the attached weight, g =
9.81 m/s2 is the gravitational acceleration, l = 0.042 m is the
distance between the center of the disc and the center of the
weight, b = 3.0 · 10−6 Nms/rad is the damping coefficient,
K = 53.6 · 01−3 Nm/A is the torque constant, R = 9.50 Ω
is the rotor resistance, Km = K

R and J = 10 · 10−5 kg·m2

is the moment of inertia of the rotor. The sampling time in
the experiments was set to Ts = 0.05 seconds. The numerical
integration method used to simulate the model is Runge-Kutta
4th order, which in preliminary tests gave results close to the
actual system. The reward function is [18]:

rk = 0.5(cos(θ) + 1.0) (18)

which again provides progress information towards the goal
θ = 0, while remaining in [0, 1]; and γ = 0.99.

When using RTOPS on a real system, real-time synchro-
nization must be taken into account, as well as the fact that
planning and applying actions are done concurrently. To this
end, we run RTOPS and the I/O-interface with the system
(including the actuation with the sequence of actions) in two
separate processes that communicate through a UDP socket.

We choose the settings n = 1666 and d′ = 2, which are
feasible due to Theorem 2. Moreover, d′ is small, which gave
good results for the acrobot. Since this is a real-life system, a
perfect model does not exist.

Our experiments show good performance: Figure 10 illus-
trates that RTOPS can indeed bring the weight to the upright

8

Fig. 10. The controlled trajectory produced by RTOPS on the real inverted
pendulum system.

Fig. 11. Results with fuzzy QI policy; compare to Figure 10. The system
trajectories are mirrored with respect to the horizontal axis, but this is not
relevant since there is no preference between the two directions in the optimal
solution.

position, through as much as five swings. Thus RTOPS is
able to search over a long enough horizon to plan these
five swings. We also verify how close the RTOPS solution
is to the optimal one. Approximate value iteration with a
very accurate approximator is used to find a provably near-
optimal control policy [1], and this policy is then used to
control the system. Note that value iteration is applicable
due to the low dimensionality of the problem, and quickly
becomes intractable for higher dimensions; in contrast, OPD
is independent of the state dimensionality (although it is
limited to a few action dimensions). The results with this near-
optimal policy are shown in Figure 11, and they are close
to those of RTOPS, except for the elimination of chattering
around the equilibrium. Looking at the discounted sum of
rewards obtained (truncated at 1200 steps, which induces an
error of less than γ1200

1−γ < 0.0006 compared to the infinite-
horizon value), fuzzy Q-iteration obtained 68.8578, compared
to RTOPS at 68.3578; the difference is small.

V. CONCLUSIONS AND FUTURE WORK

We introduced an extension to real-time control of an
optimistic planning algorithm for deterministic near-optimal
control. Our approach applies sequences of actions in par-
allel with running OP to find the next sequence from the
predicted state at the end of the current sequence. We provided
conditions under which the algorithm is guaranteed to be
feasible in real-time, and we analyzed its performance by
extending results in [9]. Experiments were reported for two

nonlinear systems: a simulation of an acrobot, and a real
inverted pendulum.

The most important extension of this work is to provide
performance guarantees while taking model mismatch into
account. Further, the same idea of using long-horizon solutions
to allow more time for computation should also work for other
OP algorithms, such as OP for stochastic systems [6] or for
continuous actions [8].

REFERENCES

[1] D. P. Bertsekas, Dynamic Programming and Optimal Control, 4th ed.
Athena Scientific, 2012, vol. 2.

[2] R. Munos, “The optimistic principle applied to games, optimization and
planning: Towards foundations of Monte-Carlo tree search,” Foundations
and Trends in Machine Learning, vol. 7, no. 1, pp. 1–130, 2014.

[3] L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory
and Algorithms. Springer, 2011.

[4] J.-F. Hren and R. Munos, “Optimistic planning of deterministic systems,”
in Proceedings 8th European Workshop on Reinforcement Learning
(EWRL-08), Villeneuve d’Ascq, France, 30 June – 3 July 2008, pp.
151–164.

[5] S. Bubeck and R. Munos, “Open loop optimistic planning,” in Proceed-
ings 23rd Annual Conference on Learning Theory (COLT-10), Haifa,
Israel, 27–29 June 2010, pp. 477–489.

[6] L. Buşoniu and R. Munos, “Optimistic planning for Markov decision
processes,” in Proceedings 15th International Conference on Artificial
Intelligence and Statistics (AISTATS-12), ser. JMLR Workshop and
Conference Proceedings, vol. 22, La Palma, Canary Islands, Spain, 21–
23 April 2012, pp. 182–189.

[7] L. Buşoniu, E. Páll, and R. Munos, “An analysis of optimstic, best-
first search for minimax sequential decision making,” in 2014 IEEE
International Symposium on Adaptive Dynamic Programming and Re-
inforcement Learning (ADPRL-14), Orlando, 10–12 December 2014.

[8] C. Mansley, A. Weinstein, and M. L. Littman, “Sample-based plan-
ning for continuous action Markov decision processes,” in Proceedings
21st International Conference on Automated Planning and Scheduling,
Freiburg, Germany, 11–16 June 2011, pp. 335–338.

[9] L. Buşoniu, R. Postoyan, and J. Daafouz, “Near-optimal strategies
for nonlinear networked control systems using optimistic planning,” in
Proceedings American Control Conference 2013 (ACC-13), Washington,
DC, 17–19 June 2013, pp. 3020–3025.

[10] E. Ronco, T. Arsan, and P. Gawthrop, “Open-loop intermittent feedback
control: practical continuous-time GPC,” IEE Proceedings on Control
Theory and Applications, vol. 146, no. 5, pp. 426–434, 1999.

[11] P. J. Gawthrop and L. Wang, “Intermittent predictive control of an
inverted pendulum,” Control Engineering Practice, vol. 14, no. 11, pp.
1347–1356, 2006.

[12] ——, “Intermittent model predictive control,” Proceedings of the Insti-
tution of Mechanical Engineers, Part I: Journal of Systems and Control
Engineering, vol. 221, no. 7, pp. 1007–1018, 2007.

[13] W.-H. Chen, D. Ballance, and J. O’Reilly, “Model predictive control of
nonlinear systems: computational burden and stability,” IEEE Proceed-
ings on Control Theory and Applications, vol. 147, no. 4, pp. 387–394,
2000.

[14] R. Findeisen and F. Allgöwer, “Computational delay in nonlinear
model predictive control,” in Proceedings International Symposium on
Advanced Control of Chemical Processes, Hong Kong, 2004, pp. 427–
432.

[15] H. van Ekeren, R. Negenborn, P. van Overloop, and B. De Schutter,
“Time-instant optimization for hybrid model predictive control of the
Rhine-Meuse delta.” Journal of Hydroinformatics, vol. 15, no. 2, pp.
271–292, 2013.

[16] L. Buşoniu, A. Daniels, R. Munos, and R. Babuška, “Optimistic planning
for continuous–action deterministic systems,” in 2013 IEEE Interna-
tional Symposium on Adaptive Dynamic Programming and Reinforce-
ment Learning (ADPRL-13), Singapore, 16–19 April 2013.

[17] R. Coulom, “Reinforcement learning using neural networks, with appli-
cations to motor control,” Ph.D. dissertation, Institut National Polytech-
nique de Grenoble, 2002.

[18] J.-F. Hren, “Planification optimiste pour systèmes déterministes,” Ph.D.
dissertation, Lille 1 University - Science and Technology, 2012.

