
Sorting objects from a conveyor belt using active perception with a
POMDP model

Ady-Daniel Mezei, Levente Tamás, Lucian Buşoniu

Abstract— We consider an application where a robot must
sort objects traveling on a conveyor belt into different classes.
The detector and classifier work on 3D point clouds, but are of
course not fully accurate, so they sometimes misclassify objects.
We describe this task using a novel model in the formalism
of partially observable Markov decision processes. With the
objective of finding the correct classes with a small number of
observations, we then apply a state-of-the-art POMDP solver
to plan a sequence of observations from different viewpoints,
as well as the moments when the robot decides the class of the
current object (which automatically triggers sorting and moving
the conveyor belt). In a first version, observations are carried
out only for the object at the end of the conveyor belt, after
which we extend the framework to observe multiple objects.
The performance with both versions is analyzed in simulations,
in which we study the ratio of correct to incorrect classifications
and the total number of steps to sort a batch of objects. Real-life
experiments with a Baxter robot are then provided with publicly
shared code and data at http://community.clujit.ro/
display/TEAM/Active+perception.

I. INTRODUCTION

Recent advances in the industrial domain (for example
Industry 4.0) have opened up a multitude of opportunities
for robots, as they are expected to perform the tasks either
on their own or along other humans, as coworkers [1], [2],
[3], [4]. In such cases, most of the time it is expected from
robots to adapt to the environment and to take decisions on
their own. In practice however, sensor and motor inaccura-
cies, noise–affected data, algorithm misbehaviours, improper
classifications or object occlusions are just a few of the
challenges that the robot has to deal with in the decision
making process.

A very useful framework to handle sensing uncertainty in
particular is active perception, which closes the loop between
the sensing and control modules of the robot by taking
control actions with the explicit purpose of obtaining more
informative data from the sensors.

In this paper the following active perception problem is
considered. A robot is working in a factory and has the task
of sorting objects of different shapes that travel on a conveyor
belt. The classification of the objects is done using a sensor
the robot is equipped with, and due to sensor inaccuracies,
multiple scans are required for a proper classification. The
robot has a set of poses (viewpoints) from which it scans

The authors are with the Automation Department, Technical Uni-
versity of Cluj-Napoca, Romania ({daniel.mezei, levente.tamas, lu-
cian.busoniu}@aut.utcluj.ro). This work was supported by two grants of the
Romanian National Authority for Scientific Research, CNCS-UEFISCDI:
project number PN-III-P1-1.1-TE-2016-0670, grant agreement no. 9/2018;
and grant number PN-III-P2-2.1-BG-2016-0140; and also by Hungarian Re-
search Fund grant number OTKA K 120367 and MTA Bolyai Scholarship.

the conveyor belt. It starts from an initial viewpoint and can
move between viewpoints in order to gain more information
about the objects.

Our main contribution is a solution of the sorting task
in the framework of partially observable Markov decision
processes (POMDPs). The step of modeling the problem as
a POMDP is essential, and we describe it in detail. Object
classes are uncertain so a probability distribution (belief
state) over them is maintained, which is updated using the
observations. At each step, the robot has the option of either
changing the viewpoint to make a new observation, or to
decide on the class of the object at the end of the belt, sort it,
and advance the belt. A sequence of these actions is planned
over a long horizon so as to maximize a cumulative sum of
rewards assessing the quality of sorting decisions, using a
state-of-the-art planner called DESPOT [5].

A key feature of the method is that it allows the robot
to observe multiple positions from the conveyor belt at the
same time, from each scan. This allows us to accumulate and
propagate information between positions when the conveyor
belt advances, so that the robot already starts with a good
estimate of the new class at the end of the belt. This reduces
the total number of steps needed to sort the objects, while
still maintaining a high classification accuracy.

In addition to simulation results, we present also real
experiments with a Baxter robot equipped with an ASUS
Xtion 3D sensor mounted on one of its wrists. The objects
being sorted are light bulbs of different shapes, and their
classification is carried out the data coming from the sensor
in the form of point clouds. For both simulation and on the
physical robot, we report two sets of experimental results.
In the first case the robot observes only a single object from
the conveyor belt without propagating the belief states, while
in the second case the observations are extended to two
positions and the propagation strategy is adopted.

Related work: References [6], [7] provide early approaches
toward active perception. Since then, the field has grown
tremendously, as the availability and range of applications
of robotic platforms and sensors has increased.

In active perception, there are two ways to perform de-
tection: passive and active. In the former, the observation
viewpoint is changed, leaving the state of the objects unal-
tered, see e.g. [8], [9], while in the latter, the objects are
actively manipulated in order to improve classification, e.g.
[10]. In this paper we use the passive approach.

Patten et al. [8] propose an active perception based method
to detect objects in a cluttered environment. The solution uses
RGB-D data (where D means depth), and by maintaining



class and pose information in an occupancy grid it is able
to detect multiple objects at once. The solution chooses,
in a greedy manner, from a set of viewpoints the one that
contains most information about the scene, handling in this
way possible occlusions between objects. Our solution and
[8] both take into account class and pose information to
choose the next action, the difference being that our approach
plans the next actions taking into account a longer horizon,
rather than just one step.

The setup presented in [11] is similar to ours: the robot
uses 3D information to detect objects travelling on a con-
veyor belt and to manipulate them. One difference from
our approach is that the conveyor belt transports the objects
continuously and is not stopped to perform object detection
before restarting the belt. Besides that, the solution in [11]
takes into account only the detection of the objects being
transported for their subsequent manipulation and does not
treat uncertainty associated with their detection.

In [12], [13], a 3D sensor is moved between multiple
viewpoints to perform scans. Class and pose information
about the targets are modeled using a POMDP, based on
which the next moves are planned. However, the scenario
considered there is different and does not have the structure
of the conveyor-belt problem considered here, which allows
us to additionally use propagation of the belief state to reduce
detection time. Moreover, the solutions of [12], [13] handle
possible occlusion between the objects from the environment,
while in our case the objects are transported in cups on
the conveyor belt, in a controlled manner, so the occlusion
problem does not arise.

In [14], POMDPs are applied for active navigation and
obstacle avoidance. There exist of course other active sensing
paradigms that do not employ POMDPs, see e.g. [15], [16].

Next, Section II describes POMDPs in general and for
the problem at hand. Section III details the active perception
pipeline, hardware, and software. The results are given in
Section IV, before the conclusions in Section V.

II. POMDP MODEL OF THE SORTING TASK

A POMDP (partially observable Markov decision process)
is defined in general as a tuple (S,A, T,R, Z,O) [17], where
S represents a discrete, finite set of states, A is the finite
set of actions and T : S × A × S → [0, 1] is a state
transition function attached to the POMDP. When an action
a is performed in a state s, the outcome is a new state, s′,
with the probability T (s, a, s′). Moreover, R : S × A → R
is the attached reward function, which is assumed bounded
and r = R(s, a) says that the reward r is obtained if in state
s action a is executed.

At any step, the underlying state s is not known, instead
observations z ∈ Z provide incomplete information about it.
O : S ×A×Z → [0, 1] is the observation function attached
to the POMDP. It gives the probability O(s′, a, z) of making
a certain observation z if s′ is obtained after taking a.

Next, we move on to the problem of sorting objects on
a conveyor belt. To model this problem as a PODMP, we
describe in turn the states, actions, and the transition, reward

and observation functions (for the latter, we also explain
the set of possible observations). To make things clear, after
providing the definition of each object for the general sorting
problem, we instantiate it for our specific example problem
that we will study in our experiments. It must nevertheless
be kept in mind that the framework can be applied to any
such sorting problem.

The states of the sorting problem are defined in general
as follows:

cj ∈ C = {c1, c2, c3, . . . , cL}
p ∈ P = {p1, p2, p3, . . . , pK}
s = (c1, c2, . . . , cH , p)
s ∈ S = CH × P

(1)

with c1, c2,. . . , cL being the classes of objects that travel on
the conveyor belt and p1,p2,. . . , pK being the viewpoints.
The states can be divided in two categories: object classes
and viewpoints. There are L classes of objects, whose models
are known, that are transported on the conveyor belt and K
viewpoints from which observations can be taken, both L and
K being finite. H represents the number of positions from
the conveyor belt that are of interest, and the robot observes
all the objects from those positions. The viewpoints are fully
observable, owing to access to the internal sensors of the
robot arm. The object classes are partially observable (see
the observation function definition, later). The state collects
the classes for the H positions and the current viewpoint.
We use superscript j to denote the position index.

In our particular problem, the observation points were
uniformly sampled from the surface of a sphere [18]. In order
to avoid occlusion between the objects and the belt, only the
upper half of the sphere was used. The sphere had a 70 cm
radius and was centered on the end of the conveyor belt.
The radius of the sphere has been fined tuned, taking into
account the limitations of the RGB-D sensor as well as the
geometry of the robot arms. Points outside the workspace
of the arm were considered unreachable and eliminated
from the sampled list, and a graph was constructed out
of the remaining points. Figure 1 shows a set of sampled
points that would be used for graph construction. For each
point its closest neighbours are computed along the cardinal
directions(north, south, east, west), the robot being restricted
to travel only through neighbouring points.

In the end, we were left with K = 3 three viewpoints,
denoted by p1, p2, p3. Moreover, L = 4 object classes
were used, namely: “elongated”, “livarno”, “mushroom”, and
“standard”. The number of positions of interest from the
conveyor belt is H = 2.

Actions are given in general by:

Ap ∈ {m1,m2, . . . ,mK}
Ad ∈ {d1, d2, . . . , dL}
a ∈ A : Ap

⋃
Ad

(2)

Actions are either of the motion type (set Ap) or of the
decision type (set Ad). Motion actions are deterministic and
each moving the arm to a particular viewpoint. A decision
action means that the robot is sufficiently sure about the
class identified for the object at the end of the conveyor



Fig. 1: The point sampling and reachability testing in a
simulated environment. Example models for light bulbs are
given on the right and preprocessed candidates on the left.

belt to stop the identification process, move the object to its
appropriate bin, advance the conveyor belt, and proceed to
the next object.

In our particular problem, the motion actions are m1, m2,
m3, moving the arm to p1, p2, p3, while the decision actions
are: d1, d2, d3, d4, corresponding to each object class. The
transition function, T , is made up of the position transition
function and the class transition function, the latter one being
deterministic. These transition functions are:

Tp(p,m, p
′) =

{
P (p′|m, p) = 1 if p′ = pi and m = mi

0 otherwise
(3)

T jc (c
′j
i , a, c) =



1, if a /∈ Ad and c′j = cj

1,
if a ∈ Ad and j ≤ H − 1

and c′j = cj+1

1
L , if a ∈ Ad and j = H

0, otherwise

(4)

The meaning of this second function is the following. As
mentioned, the robot is concerned only with a limited num-
ber, H , of positions from the conveyor belt. A motion action
leaves the classes unaltered (first branch). However, when a
decision action is executed the first object is removed from
the conveyor belt, its class is eliminated from the vector of
classes and each of the remaining values is shifted with
one position (second branch), except the last one which
is sampled from a uniform distribution (third branch); see
also Figure 2 for an example. Note that in reality, the class
will be given by the true, subsequent incoming object, but
since the POMDP transition function is time-invariant, this
cannot be encoded and we use a uniform distribution over
the classes instead. Also note that this transition function
is completely defined for any particular instantiation of the
problem, including ours (so we do not need to instantiate it
further).

The observation function is defined in a factored way, by
exploiting the specific structure of the problem. Instead of
maintaining a common function O, we factor it across belt
positions j ≤ H . Each such individual observation function
oj provides an observation zj ∈ {z1, z2, . . . , zL}, where zi

means that the object at position j is observed to have class
ci. We have:

oj(s′, a, zj) = P (zj |p′, cj), j ≤ H (5)

where P (zj |p′, cji ) is the probability of making observation
zj from the viewpoint p′ just reached, when the underlying
class of object is cj . These probabilities are given by the sen-
sor and classification algorithm used, and can be determined
experimentally. The overall observation function O is then
defined as the joint probability distribution of observations
across all the belt positions.

To identify the observation probabilities for our particular
problem, we started by performing experiments in which
the robot observes the light bulb from the end of the
conveyor belt. After that, the number of observed positions
was extended to two. We stopped at two positions (counting
from the end of the conveyor belt), because from there on
the point clouds of the next positions did not offer useful
data to be classified.

In each type of experiment an observation probability
distribution was computed experimentally for every vertex
of the graph, where several scans were performed for each
true class of light bulb. The bulbs, segmented from each
scan, were classified, the results being recorded in tables, the
observation probability distribution being computed as the
fraction of the experiments in which each class (correct or
incorrect) was observed. Table I exemplifies a distribution for
the “elongated” object (true class), when observing the end
of the belt. It shows how likely the algorithm is to classify
the class correctly, and how likely it is to misclassify it as
a different class. Table II, show the likelihood of observing
the different combinations of bulbs on the last two positions
of the belt.

Point
Pr(o) elongated livarno mushroom standard

1 0.6 0.2 0 0.2
2 0.5 0.3 0.1 0.1
3 0.8 0.1 0.1 0

TABLE I: Observation probability distribution when ob-
serving a single bulb, when the underlying object class is
“elongated”.

The reward function is defined as follows:

R(s, a) =


rmax if a = di and c1 = ci

−rmin if a = di and c1 6= ci

−1, otherwise
(6)

For a decision action that matches the correct class of the
object from the end of the conveyor belt, a positive reward is
given, while for one that does not, a negative reward is given.
For any motion action a penalty of -1 is given, representing
the energy consumption associated with arm movement.

In our particular case, rmax has been chosen 10, while
rmin is tunable, and in the experiments we study its effect
when it takes different values.

Having defined the elements of the POMDP, we move to
defining key elements of its solution, first generally, before



Point
Pr(o) elongated p1 livarno p1 mushroom p1 standard p1 elongated p2 livarno p2 mushroom p2 standard p2

64 0.3 0.6 0.1 0 0.4 0.1 0.4 0.1
43 0.1 0.8 0 0.1 0.5 0.2 0.2 0.1
87 0.2 0.7 0 0.1 0.2 0.2 0.6 0

TABLE II: Probability distribution for two objects being observed, for a “livarno” bulb on the first position and an “elongated”
on the second one.

Fig. 2: Belief state and class vector state evolution when
propagation occurs, on the left before propagation, while on
the right after propagation.

particularizing them to sorting problems. Note that there is
no need to instantiate to our particular example; once the
POMDP elements has been defined, the objects below follow.

Belief state. Due to lack of access to the internal states,
past observations and actions have to be taken into account.
These are succinctly represented by a belief state: a proba-
bility distribution over all internal states of the POMDP. The
belief state is initially state b0, and it is updated at each step
based on the current action a and observation z:

b′(s′) =
O(s′, a, z)

P (z|s, a)
∑
s

T (s, a, s′)b(s) (7)

Note that, while O(s′, a, z) gives the probability of observing
z after reaching state s′ as a result of action a, the probability
P (z|s, a) is that of observing z after performing a in state s
(so one state earlier). The latter probability can be computed
from T and O. Denote the set of possible beliefs by B.
In the sorting problem, like for the observations, instead
of maintaining a joint belief state we factor it across belt
positions. So, at each position j, we have a belief state bj

which is a probability distribution over the possible values of
the class cj at that position; bji denotes the individual belief
(probability) that cj is equal to ci. Once the belt moves, the
beliefs across positions are propagated, see Figure 2:

∀i ≤ L , j ≤ H

b′
j
i =

{
bj+1
i , if j ≤ H − 1
1
L , if j = H

(8)

Note that the belief for the last position is initially uniform,
since nothing is known about that object yet.

Policy, value function, and optimal solution. The be-
havior of the agent (robot) in a POMDP is given by a policy
π : B → A, which dictates the choice of action for each
belief state. The expected return of such a policy from an
initial belief state b0 is called the value function, and is

formally defined as:

V π(b0) = E

{ ∞∑
k=0

γk
∑
s∈S

bk(s)R(s, π(bk))

}
(9)

Note that the next belief bk+1 obtained as a result of applying
action π(bk) in bk can be computed with (7).

An optimal policy π∗ is one that maximizes the value
function for any initial belief. For the sorting problem, due
to the way in which the reward function (6) is defined,
this optimal policy will implicitly strike a balance between
classification quality and speed in solving the task (i.e. the
number of steps after which the robot makes a decision).
Quality is evaluated by the correct decision reward rmax and
the incorrect decision penalty rmin, while speed is promoted
by the penalty −1 at each step where a decision is not made.

A wide range of algorithms to compute (in general,
approximations of) the optimal policy exists [17]. Details
of how they work are out of the scope of our paper. In
principle any of them is suitable, and the specific algorithm
used (DESPOT) is pointed out in next section.

III. HARDWARE, SOFTWARE AND APPLICATION PIPELINE

This section presents the active perception pipeline, with
its structure and function, as well as relevant hardware and
software.

The active perception pipeline has two main modules:
a detection module, with multiple submodules, and the
planning module. The detection submodule is composed of
the acquisition, preprocessing and classification submodules.
The pipeline has similarities to the one presented in [19],
with differences in the classification algorithm as well in as
the presence of the classification and planning submodules.

The objects transported on the conveyor belt (differently
shaped light bulbs), are detected from 3D scans performed
by the robot. The data is form of point clouds [20], and
their acquisition, loading, etc. are handled by the acquisition
module. The noisy acquired data, directly influences the per-
centage of misclassifications. Cleaning, filtering, clustering,
and voxelizing the data in advance helps in reducing the
percentage of misclassifications.

The input of the classification module is a prepared cloud
corresponding to a candidate bulb. The classification process
involves a training step, executed before the start of the
experiment, implying the computation of Viewpoint Feature
Histograms (VFH)[21] for each cloud. The classification is
a nearest neighbour search for the closest cloud.

The planning module has the role of finding a good
sequence of observations to improve the likelihood of a
proper sorting for a candidate light bulb. This module returns



an action to be executed by the robot platform. The POMDP
problem is solved using the DESPOT algorithm [5], in
an online manner that interleaves the planning and plan
execution stages, updating the belief state with the results
of the detection module.

Hardware and software. A Baxter research robot has
been used for both simulated and real experiments, with an
ASUS Xtion 3D sensor mounted on one of its wrists. A
conveyor belt, transporting different light bulbs, was placed
in front of it. Solvers specific to the robot platform were
used for arm motion planning tasks, while the PCL (Point
Cloud Library) was used to handle the clouds acquired by the
sensor. On the software side, the pipeline was implemented in
C++ and Python, in a ROS (Robot Operating System) com-
patible fashion. Gazebo was used for simulation purposes.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section the results of the experiments are presented
and discussed. We performed two experiments, respectively
in the single- and multiple-position cases. In both, the robot
had to sort ten light bulbs. A light bulb was considered sorted
when a decision action was taken, at which moment the last
light bulb was taken down and the conveyor belt advanced.
The experiment stopped once the ten bulbs were sorted,
meaning that ten decision actions were executed. The overall
classification percentages for the experiments were computed
manually. In the case of the multiple-position experiment,
the values from the belief state were propagated. In all the
experiments, only bulbs of the “elongated” and “livarno”
classes were used for testing (the other two classes used for
training, “mushroom” and “standard”, were not used).

Simulation results. In Figure 3, the belief state evolution
for the single-position case can be seen. The underlying state
is chosen randomly by the algorithm (e being “elongated”, l
being “livarno”). The steps at which decisions are taken are
also plotted (de for “elongated” decision and dl for “livarno”
decision). Because only the light bulb from the end of the
conveyor belt is of importance, there is no belief propagation
and after each decision the belief state is reinitialized to
uniform values.

Fig. 3: Belief state evolution for single-position type exper-
iments when sorting light bulbs.

In Figure 4, for the same experiment, we present the ratio
of positives (that is, correct classifications) to negatives (in-

correct classifications), as the incorrect classification penalty
rmin varies in absolute value from 5 to 500.

Fig. 4: Positives–negatives counts for single-position type
experiments.

Now, we focus our attention on experiments where the
robot observes multiple positions at once, propagating belief
state values and the vector of classes after each decision.
Note that if the belief state of the first position after propaga-
tion already has a clear candidate class, then decision actions
may follow one after the other, showing the advantage of
observing two positions in the same time.

Figure 5 presents the ratio of positives to negatives, for the
same range of rewards as above, but now for the multiple-
position experiment.

Figure 6 compares the total number of steps required to
sort 10 light bulbs, for the single- and multiple-position
experiments. Here, the steps counted consist of both the
motion and decision actions.

Discussion. First, we examine the effect of the reward
values. These have an important impact on the performance
of the sorting task, and must be chosen to trade off the
quality of classification against the total number of steps
required. For a small penalty, the sorting is finished fast,
within a few number of steps, however, the percentage of
false classifications is high. When the penalty is decreased, as
seen in Figures 4 and 5, the rate of the false classifications of
sorting decreases, while at the same time increasing the total
number of steps needed to carry out the sorting procedure
for the whole order of 10 light bulbs.

Next, we compare the case where one position is ob-
served with the multiple-position case, Figures 4 and 5. The
evolution of classification quality with the reward value is
similar for the two cases. However, a significant difference
arises between the total number of steps needed to finish
sorting: the multiple-position version requires a significantly
smaller number of steps to achieve the same performance as
its single-position counterpart, see details in Figures 7, 6.

Experiments on the real robot. The same type of experi-
ments were carried on the real setup as well (refer to Abstract
for a video link). The results were similar to the simulated
ones, with the actual number of positive classifications being
lower due to higher noise corruption. Considering first the
impact of the penalty, classification quality and required steps
number both grew with the magnitude of the penalty. E.g., for
rmin = 5, 50, and500, on average the number of positives
was 2, 5, and 8 respectively. The number of steps grew from



Fig. 5: Positive–negative counts when observing two posi-
tions from the conveyor belt.

Fig. 6: Comparison between the single- and multiple-position
experiments regarding the total number of steps needed to
sort 10 light bulbs.

Fig. 7: Comparison between the single and multiple-position
experiments regarding the count of positive/negative classi-
fications.

20, through 52, to 70 for the same three values of the penalty.
Secondly, for the impact of the number of observed positions
(one versus multiple), fixing e.g. rmin to 50, the number of
steps decreased from 75 to 42.

V. CONCLUSIONS

In this work the task of sorting objects transported using
a conveyor belt was handled using an active perception
approach. The proposed pipeline uses 3D data to classify
the objects and computes the actions using a planner, after
describing the problem as a POMDP. The functionality of the
pipeline was tested both in simulation and on a real Baxter
robot equipped with an Asus 3D sensor. A key point of the
approach is that it propagates information across multiple
positions of interest from the conveyor belt, thus reducing
the total number of steps needed for sorting.

In future works, tracking of the objects could be incor-
porated in the pipeline to reduce measurement errors for a
constantly moving conveyor belt. We will also investigate the
inclusion of more informative rewards, such as those based
on the expected information gain of each observation.

REFERENCES

[1] C. Militaru, A.-D. Mezei, and L. Tamas, “Object handling in cluttered
indoor environment with a mobile manipulator,” in Automation, Qual-
ity and Testing, Robotics (AQTR), 2016 IEEE International Conference
on. IEEE, 2016, pp. 1–6.

[2] C. Militaru, A. D. Mezei, and L. Tamas, “Lessons learned from a
cobot integration into MES,” in ICRA - Recent Advances in Dynamics
for Industrial Applications Workshop, Singapore, 2017.

[3] L. Tamas and L. Baboly, “Industry 4.0 – mes vertical integration use-
case with a cobot,” in ICRA - IC3 Workshop, Singapore, 2017.

[4] E. Páll, L. Tamás, and L. Buşoniu, “Analysis and a home assistance
application of online aems2 planning,” in Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE,
2016, pp. 5013–5019.

[5] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “Despot: Online pomdp
planning with regularization,” in Advances in Neural Information
Processing Systems 26, vol. 2, 2013, pp. 1772–1780.

[6] R. Bajcsy, “Active perception,” The Proceedings of the IEEE, vol. 76,
no. 8, pp. 966–1005, 1988.

[7] J. Aloimonos, I. Weiss, and A. Bandopadhay, “Active vision,” Inter-
national Journal of Computer Vision, vol. 1, no. 4, pp. 333 – 356,
1988.

[8] T. Patten, M. Zillich, R. Fitch, M. Vincze, and S. Sukkarieh, “View-
point Evaluation for Online 3-D Active Object Classification,” IEEE
Robotics and Automation Letters, vol. 1, no. 1, pp. 73–81, 2016.

[9] N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Decentralized
active information acquisition: Theory and application to multi-robot
SLAM,” 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 4775–4782, 2015.

[10] J. Aleotti, D. Lodi Rizzini, and S. Caselli, “Perception and Grasping
of Object Parts from Active Robot Exploration,” Journal of Intelligent
and Robotic Systems: Theory and Applications, vol. 76, no. 3-4, pp.
401–425, 2014.

[11] A. Cowley, B. Cohen, W. Marshall, C. J. Taylor, and M. Likhachev,
“Perception and motion planning for pick-and-place of dynamic ob-
jects,” pp. 816–823, 2013.

[12] N. Atanasov, B. Sankaran, J. Le Ny, G. J. Pappas, and K. Daniilidis,
“Nonmyopic view planning for active object classification and pose
estimation,” IEEE Transactions on Robotics, vol. 30, no. 5, pp. 1078–
1090, 2014.

[13] R. Eidenberger and J. Scharinger, “Active perception and scene mod-
eling by planning with probabilistic 6D object poses,” pp. 1036–1043,
2010.

[14] S. Candido and S. Hutchinson, “Minimum uncertainty robot navigation
using information-guided pomdp planning,” 2011 IEEE International
Conference on Robotics and Automation, pp. 6102–6108, 2011.

[15] M. Cognetti, P. Salaris, and P. Robuffo Giordano, “Optimal active
sensing with process and measurement noise,” in IEEE Int. Conf. on
Robotics and Automation, ICRA’18, Brisbane, Australia, May 2018,
pp. 2118–2125.

[16] B. T. Hinson, M. K. Binder, and K. A. Morgansen, “Path planning to
optimize wind observability in a planar uniform flow field,” 2012.

[17] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, “Online planning
algorithms for pomdps,” J. Artif. Int. Res., vol. 32, no. 1, pp. 663–
704, 2008.

[18] M. Deserno. (2004) How to generate equidistributed points on
the surface of a sphere. [Online]. Available: https://www.cmu.edu/
biolphys/deserno/pdf/sphere equi.pdf

[19] A.-D. Mezei and L. Tamas, “Active perception for object manipula-
tion,” in Intelligent Computer Communication and Processing (ICCP),
2016 IEEE 12th International Conference on. IEEE, 2016, pp. 269–
274.

[20] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl).”
[21] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition

and pose using the viewpoint feature histogram,” 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 2155–
2162, 2010.


