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Abstract— Reinforcement learning (RL) is a widely used
paradigm for learning control. Computing exact RL solutions is
generally only possible when process states and control actions
take values in a small discrete set. In practice, approximate
algorithms are necessary. In this paper, we propose an ap-
proximate, model-based Q-iteration algorithm that relies on a
fuzzy partition of the state space, and on a discretization of
the action space. Using assumptions on the continuity of the
dynamics and of the reward function, we show that the resulting
algorithm is consistent, i.e., that the optimal solution is obtained
asymptotically as the approximation accuracy increases. An
experimental study indicates that a continuous reward function
is also important for a predictable improvement in performance
as the approximation accuracy increases.

I. INTRODUCTION

REINFORCEMENT learning (RL) is a popular paradigm
for learning control, thanks to its mild assumptions

on the process (which can be nonlinear and stochastic),
and because it can work without an explicit model of the
process [1], [2]. A RL controller receives a scalar reward
signal as feedback on its immediate performance, and has to
maximize the cumulative reward obtained in the long run.
Most RL algorithms work by estimating value functions,
i.e., cumulative rewards as a function of the process state
and possibly of the control action. In general, the classical
RL algorithms only work when the state-action space of the
problem has a finite (and not too large) number of elements.
Therefore, approximate algorithms are necessary in practice,
where state-action spaces are usually large or continuous.
Two desirable properties of approximate algorithms are con-
vergence to a near-optimal solution and consistency, which
in a model-based setting means asymptotical convergence to
the optimal solution as the approximation accuracy increases.

Fuzzy Q-iteration [3], [4] is a model-based RL algorithm
that represents value functions using a fuzzy partition of
the state space, and requires a discrete action space. The
approximate value function is a linear combination of the
parameters, where the weights are the membership values.
Fuzzy Q-iteration was shown in [3], [4] to converge to an
approximate value function that lies within a bound from
the optimal value function. The practical performance of
the algorithm was illustrated on problems with four state
variables and two control inputs. Fuzzy Q-iteration was also
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compared in [4] with Q-iteration with radial basis-function
approximation.

In this paper, we study the consistency of fuzzy Q-
iteration. Under appropriate assumptions on the process
dynamics and on the reward function, it is proven that
the approximate solution of fuzzy Q-iteration asymptotically
converges to the optimal solution, as the maximum distance
between the cores of adjacent fuzzy sets, and the maximum
distance between adjacent discrete actions, decrease to 0. A
discretization procedure is used to approximate the contin-
uous (or discrete but large) action space. In contrast, the
original fuzzy Q-iteration required a small, discrete action
space from the outset. The convergence properties of the
original fuzzy Q-iteration are not affected by this discretiza-
tion procedure. Additionally, the influence of discontinuities
in the reward function is investigated in a numerical example
involving a second-order servo-system.

A number of related fuzzy approximators have been pro-
posed, mostly for model-free RL algorithms such as Q-
learning [5]–[7] and actor-critic [8]–[11]. Most of these
approaches are heuristic in nature, and their theoretical
properties have not been investigated. Notable exceptions are
the provably convergent actor-critic algorithms in [9], [10]. In
this paper, we use fuzzy approximation with a model-based
algorithm, and provide a theoretical and empirical analysis
of its consistency properties.

A rich body of literature concerns the theoretical analy-
sis of approximate RL algorithms, both in a model-based
setting [12]–[17] and in a model-free setting [18]–[22].
However, our consistency analysis for fuzzy Q-iteration is
new. Many consistency results for model-based RL can be
found for discretization-based approximators [12], [15]. Such
discretizations sometimes employ interpolation schemes sim-
ilar to the approximation formulas used by fuzzy Q-iteration.
In model-free RL, consistency is usually understood as the
convergence to a well-defined solution as the number of
samples increases [16]. Convergence to an optimal solution
as the approximation accuracy also increases is proven in
[18], [20].

The rest of this paper is structured as follows. Section II
introduces the RL problem and reviews some relevant results
from dynamic programming. Section III presents fuzzy Q-
iteration and recalls its convergence properties. The consis-
tency of fuzzy Q-iteration is proven in Section IV. Section V
uses an example to illustrate the impact of a discontinuous
reward function on the performance of fuzzy Q-iteration.
Section VI outlines several ideas for future work and con-
cludes the paper.



II. REINFORCEMENT LEARNING

In this section, the RL task is briefly introduced and its
optimal solution is characterized [1], [2].

Consider a deterministic Markov decision process (MDP)
with the state space X , the action space U , the transition
function f : X × U → X , and the reward function ρ :
X × U → R.1 As a result of the control action uk in the
state xk at the discrete time step k, the state changes to
xk+1 = f(xk, uk). At the same time, the controller receives
the scalar reward signal rk+1 = ρ(xk, uk), which evaluates
the immediate effect of action uk, but says nothing about its
long-term effects. For simplicity, we consider in this paper
only the deterministic case. A stochastic formulation is also
possible; in that case, expected returns under the probabilistic
transitions must be considered.

The controller chooses actions according to its policy h :
X → U , using uk = h(xk). The goal of the controller is
to learn a policy that maximizes, starting from the current
moment in time (k = 0) and from any initial state x0, the
discounted return:

R =
∞∑

k=0

γkrk+1 =
∞∑

k=0

γkρ(xk, uk) (1)

where γ ∈ [0, 1) and xk+1 = f(xk, uk) for k ≥ 0. The
discounted return compactly represents the reward accumu-
lated by the controller in the long run. The learning task is
therefore to maximize the long-term performance, while only
using feedback about the immediate, one-step performance.
One way to achieve this is by computing the optimal action-
value function.

An action-value function (Q-function), Qh : X ×U → R,
gives the return of each state-action pair under a policy h:

Qh(x, u) = ρ(x, u) +
∞∑

k=1

γkρ(xk, h(xk)) (2)

where x1 = f(x, u) and xk+1 = f(xk, h(xk)) for
k ≥ 1. The optimal action-value function is defined as
Q∗(x, u) = maxhQ

h(x, u). Any policy that selects for every
state an action with the highest optimal Q-value: h∗(x) =
arg maxuQ

∗(x, u), is optimal (it maximizes the return).
A central result in RL, upon which many algorithms rely,

is the Bellman optimality equation:

Q∗(x, u) = ρ(x, u) + γmax
u′∈U

Q∗(f(x, u), u′) (3)

This equation can be solved using the Q-value iteration
algorithm. Let the set of all Q-functions be denoted by
Q. Define the Q-iteration mapping T : Q → Q, which
computes the right-hand side of the Bellman equation for
any Q-function:

[T (Q)](x, u) = ρ(x, u) + γmax
u′∈U

Q(f(x, u), u′) (4)

1Throughout the paper, the standard control-theoretic notation is used: x
for state, X for state space, u for control action, U for action space, f
for process (environment) dynamics. We denote reward functions by ρ, to
distinguish them from the instantaneous rewards r and the return R. We
denote policies by h.

Using this notation, the Bellman equation (3) states that Q∗

is a fixed point of T , i.e., Q∗ = T (Q∗). It is well-known
that T is a contraction with factor γ < 1 in the infinity
norm, i.e., for any pair of functions Q and Q′, it is true that
‖T (Q) − T (Q′)‖∞ ≤ γ ‖Q−Q′‖∞.

The Q-value iteration (Q-iteration, for short) algorithm
uses an a priori model of the task, in the form of the transition
and reward functions f , ρ. The algorithm starts from an
arbitrary Q-function Q0 and in each iteration � updates the
Q-function using the formula Q�+1 = T (Q�). Because T is
a contraction, it has a unique fixed point. From (3), this point
is Q∗, so Q-iteration converges to Q∗ as �→ ∞.

III. FUZZY Q-ITERATION

In this section, the approximate, fuzzy Q-iteration algo-
rithm is introduced. The state and action spaces of the MDP
may be either continuous or discrete, but they are assumed
to be subsets of Euclidean spaces, such that the 2-norm of
the states and actions is well-defined. For the simplicity of
notation, X and U are also assumed to be closed sets.

Fuzzy Q-iteration was introduced in [3], [4] for problems
with continuous (or discrete but large) state spaces and small,
discrete action spaces. Here, the algorithm is extended to
continuous (or discrete but large) action spaces using an
explicit action discretization procedure.

The proposed approximation scheme uses a fuzzy partition
of the state space. The partition contains N fuzzy sets, each
described by a membership function (MF) ϕi : X → [0, 1],
i = 1, . . . , N . A state x belongs to each set i with a degree of
membership ϕi(x). In the sequel, the following requirements
are imposed.

Requirement 1 (Normalized partition): The fuzzy parti-
tion has been normalized, i.e.,

∑N
i=1 ϕi(x) = 1, ∀x ∈ X .

Requirement 2 (Normal fuzzy sets): All the fuzzy sets in
the partition are normal and have singleton cores, i.e., for
every i there exists a unique xi for which ϕi(xi) = 1
(consequently, ϕi′(xi) = 0 for all i′ �= i by Requirement 1).
The state xi is called the core (center value) of the i-th set.

Requirement 1 is not restrictive, because any fuzzy parti-
tion can be normalized as long as for any x, there is some
i such that ϕi(x) > 0. Requirement 2 is imposed here for
brevity in the description and analysis of the algorithms; it
can be relaxed using results of [14].

Example 1: Triangular fuzzy partitions. A simple type of
fuzzy partition that satisfies Requirements 1 and 2 can be
obtained as follows. For each state variable xd with d =
1, . . . , D, a number Nd of triangular MFs are defined as
follows:

ϕd,1(xd) = max
(

0,
cd,2 − xd

cd,2 − cd,1

)
ϕd,i(xd) = max

[
0,min

(
xd − cd,i−1

cd,i − cd,i−1
,
cd,i+1 − xd

cd,i+1 − cd,i

)]
for i = 2, . . . , Nd − 1

ϕd,Nd
(xd) = max

(
0,

xd − cd,Nd−1

cd,Nd
− cd,Nd−1

)



where cd,1 < . . . < cd,Nd
is the array of cores along

dimension d, which completely determines the shape of
the MFs, and xd ∈ [cd,1, cd,Nd

]. Adjacent MFs always
intersect at a 0.5 level. Then, the product of each combination
of (single-dimensional) MFs yields a pyramidal-shaped D-
dimensional MF in the fuzzy partition of X . �

A discrete set of actions U0 is chosen from the larger
action space:

U0 = {uj |uj ∈ U, j = 1, . . . ,M} (5)

The fuzzy approximator stores an N ×M matrix of param-
eters. Each pair (ϕi, uj) of a MF and a discrete action is
associated to one parameter θi,j .

Fuzzy Q-iteration uses the classical Q-value iteration map-
ping T (4), together with an approximation mapping and a
projection mapping. The approximation mapping F takes as
input a parameter matrix θ and outputs an approximate Q-
function. For every state-action pair (x, u), this approximate
Q-function is computed as follows:

Q̂(x, u) = [F (θ)](x, u) =
N∑

i=1

ϕi(x)θi,j

with j = arg min
j′=1,...,M

‖u− uj′‖2

(6)

This is a linear basis functions form. To ensure that F (θ) is
a well-defined function for any θ, the ties in the arg min
have to be broken consistently (e.g., always in favor of
the smallest index that satisfies the condition). For a fixed
x, the approximator is constant over the set of actions
{u ∈ U | ‖u− uj‖2 < ‖u− uj′‖2 ∀j′ �= j }. This set is the
interior of the Voronoi cell for uj (a convex polytope).

The projection mapping infers from a Q-function the val-
ues of the approximator parameters according to the relation:

θi,j = [P (Q)]i,j = Q(xi, uj) (7)

This is the solution θ to the problem:∑
i=1,...,N,j=1,...,M

|[F (θ)](xi, uj) −Q(xi, uj)|2 = 0

The (synchronous) fuzzy Q-iteration algorithm starts with
an arbitrary θ0, and approximately computes the Q-iteration
mapping. This is done using the composition of the mappings
P , T , and F :

θ�+1 = PTF (θ�) (8)

This composite mapping is applied iteratively until θ has
converged. The convergence criterion is usually approximate:
maxi,j |θ�+1,i,j − θ�,i,j | ≤ εQI. Then, an approximately op-
timal parameter matrix is θ̂∗ = θ�+1, and an approximately
optimal policy can be computed with:

ĥ∗(x) = uj∗ , j∗ = arg max
j

[F (θ̂∗)](x, uj) (9)

Of course, because the approximate Q-function is constant
inside every Voronoi cell, any action in the j∗th cell could
be used, but because the algorithm estimates the Q-values

Q∗(xi, uj), there is intuitively greater confidence that uj∗ is
optimal, rather than another action in the cell.

An asynchronous version of the algorithm can be given
that makes more efficient use of the updates, by using the
latest updated values of the parameters θ in each step of the
computation [3], [4].

Because all the approximate Q-functions considered by
fuzzy Q-iteration are constant inside every Voronoi cell, it
suffices to consider only the discrete actions when computing
the maximal Q-values in the Q-iteration mapping. This
discrete-action version of the Q-iteration mapping is defined
as follows:

[T0(Q)](x, u) = ρ(x, u) + γ max
j=1,...,M

Q(f(x, u), uj) (10)

This result is very useful in the practical implementation
of fuzzy Q-iteration. Namely, PTF can be implemented
as PT0F , using the fact that all the Q-functions that are
considered by the fuzzy Q-iteration algorithm are of the form
F (θ). The maximization over U in the original T mapping
can be replaced with a maximization over the discrete set
U0 (5), which can be solved using enumeration for moderate
M . Furthermore, no distances in U need to be computed to
implement T0F (θ).

The following results are true for the original fuzzy Q-
iteration in [3], [4], and can be easily extended to account
for the action discretization.

Proposition 1: The following statements are true about
fuzzy Q-iteration:

1.1. (Convergence) Fuzzy Q-iteration converges to a
unique, optimal parameter matrix θ∗ (both in its syn-
chronous and asynchronous versions).

1.2. (Convergence speed) Asynchronous fuzzy Q-iteration
converges at least as fast as synchronous fuzzy Q-
iteration.

1.3. (Suboptimality) Denote by FFP ⊂ Q the set of
fixed points of the mapping FP , and define ε =
minQ′∈FF P

‖Q∗ − Q′‖∞, the minimum distance be-
tween Q∗ and any fixed point of FP . The convergence
point θ∗ satisfies:

‖Q∗ − F (θ∗)‖∞ ≤ 2ε
1 − γ

(11)

The proofs rely on the fact that because P and F are non-
expansions, the composite mapping PTF is a contraction
with factor γ < 1 and with the unique fixed point θ∗.

IV. CONSISTENCY ANALYSIS

This section gives our main result: the consistency of
(synchronous and asynchronous) fuzzy Q-iteration is estab-
lished, i.e., it is shown that the approximate solution F (θ∗)
converges to the optimal Q-function Q∗, asymptotically as
the maximum distance between the cores of adjacent fuzzy
sets, and the maximum distance between adjacent discrete
actions, decrease to 0.

The state resolution step δx is defined as the largest
distance between any point in the state space and the core



that is closest to it. The action resolution step δu is defined
similarly for the discrete actions. Formally:

δx = max
x∈X

min
i=1,...,N

‖x− xi‖2 (12)

δu = max
u∈U

min
j=1,...,M

‖u− uj‖2 (13)

where xi is the core of the i-th MF, and uj is the j-th
discrete action. Smaller values of δx and δu indicate a higher
resolution. The goal is to show that limδx→0, δu→0 F (θ∗) =
Q∗. First, we require that any state value only activates
membership functions locally, in the following sense.

Requirement 3 (Local MFs): There exists a finite ν > 0
such that, regardless of N , the MFs satisfy:

max
x∈X

N∑
i=1

ϕi(x)‖x− xi‖2 ≤ νδx

This requirement is satisfied in many cases of interest. For
instance, it is satisfied by convex fuzzy sets with their cores
distributed on an (equidistant or irregular) rectangular grid in
the state space, such as the triangular partitions of Example 1.
In such cases, every point x ∈ X falls inside a hyperbox
defined by the two adjacent cores that are closest to xd on
each axis d. Some points will fall on the boundary of several
hyperboxes, in which case we can just pick any of these
hyperboxes. Given Requirement 2 and because the fuzzy sets
are convex, only the MFs with the cores in the corners of
the hyperbox can take non-zero values in the chosen point.
The number of corners is 2D where D is the dimension of
X . By the definition of δx, the largest distance between the
chosen point and any of the hyperbox corners is at most 2δx.
Therefore, we have:

max
x∈X

N∑
i=1

ϕi(x)‖x− xi‖2 ≤ 2D 2 δx

and a choice of ν = 2D+1 indeed satisfies Requirement 3.
Assumption 1: The dynamics f and the reward function

ρ satisfy are Lipschitz continuous, i.e., there exist finite
constants Lf > 0 and respectively Lρ > 0 such that:

‖f(x, u) − f(x̄, ū)‖2 ≤ Lf (‖x− x̄‖2 + ‖u− ū‖2)
|ρ(x, u) − ρ(x̄, ū)| ≤ Lρ(‖x− x̄‖2 + ‖u− ū‖2)

∀x, x̄ ∈ X,u, ū ∈ U

Furthermore, the Lipschitz constant of f satisfies: Lf < 1/γ.
The Lipschitz continuity of f and ρ is typically needed

to prove consistency of approximate RL algorithms. The
bound on Lf is more restrictive. For RL problems resulting
from the time discretization of continuous-time systems with
Lipschitz continuous dynamics, this bound can be ensured by
discretizing the continuous-time system with a sufficiently
small sampling time.2

2Consider the general continuous-time system ẋ = g(x, u), where g is
Lipschitz continuous with the Lipschitz constant Lg . The relationship of
Lf to the sample time will depend on the discretization method. Here, we
only study the Euler discretization of g: xk+1 ≈ xk + Tsg(xk, uk) =
f(xk, uk), with Ts the sampling time. Then: ‖f(x, u) − f(x̄, ū)‖2 ≤
‖x − x̄‖2 + Ts ‖g(x, u) − g(x̄, ū)‖2 ≤ ‖x − x̄‖2 + TsLg(‖x − x̄‖2 +
‖u − ū‖2). Therefore, Lf ≤ 1 + TsLg and can be made arbitrarily close
to 1 by choosing a small sampling time.

As a first step to proving consistency, the Lipschitz con-
tinuity of Q∗ is proven. This will be used later on to show
that one of the fixed points of FP can be made arbitrarily
close to Q∗ by increasing the state and action resolutions of
the approximator (decreasing δx and δu). Consistency will
then follow from (11).

Lemma 1 (Lipschitz continuity of Q∗): Under
Assumption 1, the optimal Q-function is Lipschitz
continuous with the Lipschitz constant LQ = Lρ

1−γLf
:

|Q∗(x, u) −Q∗(x̄, ū)| ≤ LQ(‖x− x̄‖2 + ‖u− ū‖2)
∀x, x̄ ∈ X,u, ū ∈ U

Proof: Define the series {Q�}�≥0, as follows: Q0 = ρ;
Q�+1 = T (Q�), � ≥ 0. It is well known that lim�→∞Q� =
Q∗ [1]. We show by induction that Q� is Lipschitz with the
Lipschitz constant LQ�

= Lρ

∑�
k=0 γ

kLf
k. Indeed, LQ0 =

Lρ because Q0 = ρ, and:

|[T (Q�)](x, u) − [T (Q�)](x̄, ū)|
=

∣∣∣ρ(x, u) + γmax
u′

Q�(f(x, u), u′) −

ρ(x̄, ū) − γmax
ū′

Q�(f(x̄, ū), ū′)
∣∣∣

≤ |ρ(x, u) − ρ(x̄, ū)|+
γ

∣∣∣max
u′

[Q�(f(x, u), u′) −Q�(f(x̄, ū), u′)]
∣∣∣

Because ρ is Lipschitz continuous, |ρ(x, u) − ρ(x̄, ū)| ≤
Lρ(‖x− x̄‖2 + ‖u− ū‖2). For the second term, we have:

γ
∣∣∣max

u′
[Q�(f(x, u), u′) −Q�(f(x̄, ū), u′)]

∣∣∣
≤ γmax

u′
LQ�

‖f(x, u) − f(x̄, ū)‖2

= γLQ�
‖f(x, u) − f(x̄, ū)‖2

≤ γLQ�
Lf (‖x− x̄‖2 + ‖u− ū‖2)

where we used the Lipschitz continuity of Q� and f . There-
fore, LQ�+1 = Lρ+γLQ�

Lf = Lρ+γLfLρ

∑�
k=0 γ

kLf
k =

Lρ

∑�+1
k=0 γ

kLf
k and the induction is complete. Taking the

limit as � → ∞, it follows that LQ = Lρ

∑∞
k=0 γ

kLf
k.

Because Lf < 1/γ, this limit is finite and equal to Lρ

1−γLf
.

Theorem 1 (Consistency): Under Assumption 1 and if Re-
quirement 3 is satisfied, synchronous and asynchronous fuzzy
Q-iteration are consistent, i.e., limδx→0,δu→0 F (θ∗) = Q∗.

Proof: We will show that limδx→0,δu→0 ε = 0, where
ε = minQ′∈FF P

‖Q∗ −Q′‖∞. Using (11), this implies that
limδx→0,δu→0 ‖F (θ∗) −Q∗‖∞ = 0, which is equivalent to
the desired result.

Define Q′ = FPQ∗, i.e.,

Q′(x, u) =
N∑

i=1

ϕi(x)Q∗(xi, uj) with j = arg min
j′

‖u−uj′‖2

This Q-function is a fixed point of FP . We now determine an
upper bound on ‖Q′ −Q∗‖∞. Take an arbitrary pair (x, u)
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Fig. 1. A projection of the quadratic, continuous reward function (17) on
the state space, for u = 0.

and let j = arg minj′ ‖u− uj′‖2. Then:

|Q∗(x, u) −Q′(x, u)|

=

∣∣∣∣∣Q∗(x, u) −
N∑

i=1

ϕi(x)Q∗(xi, uj)

∣∣∣∣∣
≤ |Q∗(x, u) −Q∗(x, uj)|+∣∣∣∣∣Q∗(x, uj) −

N∑
i=1

ϕi(x)Q∗(xi, uj)

∣∣∣∣∣
(14)

Because
∑N

i=1 ϕi(x) = 1, the second term can be written
as: ∣∣∣∣∣

N∑
i=1

ϕi(x) [Q∗(x, uj) −Q∗(xi, uj)]

∣∣∣∣∣
≤

N∑
i=1

ϕi(x) |Q∗(x, uj) −Q∗(xi, uj)|

≤
N∑

i=1

ϕi(x)LQ‖x− xi‖2 ≤ LQνδx

(15)

where the last step follows from Requirement 3, and from
the Lipschitz continuity of Q∗. Using again the Lipschitz
continuity of Q∗, and by the definition of δu, we get
|Q∗(x, u) −Q∗(x, uj)| ≤ LQ‖u− uj‖2 ≤ LQδu. Replacing
this and (15) in (14), we find:

|Q∗(x, u) −Q′(x, u)| ≤ LQ(δu + νδx)

Therefore, ‖Q∗ −Q′‖∞ ≤ LQ(δu + νδx), and because
LQ and ν are finite, limδx→0,δu→0 ‖Q∗ −Q′‖∞ = 0. Since
ε ≤ ‖Q∗ −Q′‖∞, limδx→0,δu→0 ε = 0, which completes
the proof.

V. EXPERIMENTAL STUDY: A SERVO-SYSTEM

In this section, a numerical example is used to illustrate the
practical impact of discontinuities in the reward function on
the consistency of the fuzzy Q-iteration algorithm. Consider
the second-order discrete-time model of a servo-system:

xk+1 = f(xk, uk) = Axk +Buk

A =
[
1 0.0049
0 0.9540

]
, B =

[
0.0021
0.8505

]
(16)

−2
0

2

−50

0

50
−80

−60

−40

−20

0

20

x
1

x
2

ρ’
(x

1,x
2,0

)

Fig. 2. A projection of the discontinuous reward function (18) on the state
space, for u = 0.

The sample time is Ts = 0.005 seconds. The position x1,k is
bounded to [−π, π], and the velocity x2,k ∈ [−16π, 16π].
The control input uk ∈ [−10, 10]. A linear system was
chosen because it allows for extensive simulations to be
performed with reasonable computational cost.

In the first part of our experiment, RL control was used to
solve a discounted, quadratic regulation problem, described
by the reward function (also shown in Figure 1):

rk+1 = ρ(xk, uk) = −xT
kWxk − wu2

k

W =
[
5 0
0 0.01

]
, w = 0.01

(17)

The discount factor was chosen γ = 0.95. This reward
function is smooth and has bounded support; therefore, it is
Lipschitz. The transition function is Lipschitz with constant
Lf ≤ max {‖A‖2, ‖B‖2} = 1.0001 < 1/γ. Therefore, the
problem satisfies Assumption 1.

The aim of the second part of our experiment was to study
the practical effect of a discontinuous reward function, which
does not satisfy Assumption 1. To this end, a discontinuous
reward function is required, but its choice cannot be arbitrary.
Instead, to ensure a meaningful comparison between the
solutions obtained with the original reward function (17) and
those obtained with the new reward function, the quality of
the policies must be preserved. One way to preserve it is to
add a term of the form γψ(f(xk, uk))−ψ(xk) to each reward
ρ(xk, uk), where ψ(x) is an arbitrary bounded function [23].
A discontinuous function ψ is chosen, leading to the reward
function (also shown in Figure 2):

ρ′(xk, uk) = ρ(xk, uk) + γψ(f(xk, uk)) − ψ(xk)

ψ(x) =

{
10 if |x1| ≤ π/4 and |x2| ≤ 4π
0 otherwise

(18)

The quality of the policies is preserved by this modification,
in the sense that for any policy h, Qh

ρ′ − Q∗
ρ′ = Qh

ρ − Q∗
ρ,

where Qρ is a Q-function under the reward ρ. Indeed, it is
easy to show by replacing ρ′ in the expression (2) for the Q-
function, that for any policy h, including any optimal policy,
Qh

ρ′(x, u) = Qh
ρ(x, u) − ψ(x) ∀x, u [23]. In particular, a

policy is optimal for ρ′ if and only if it is optimal for ρ.
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(a) Quadratic reward (17).
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(b) Discontinuous reward (18); evaluation with quadratic reward.
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(c) Quadratic reward, detail.
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(d) Average performance over M , for varying N ′.

Fig. 3. The performance of fuzzy Q-iteration as a function of N and M , for quadratic and discontinuous reward.

The function ψ is positive in a rectangular region around
the origin. Therefore, the newly added term rewards transi-
tions that take the state inside this rectangular region, and
penalizes transitions that take it outside.

In order to study the consistency of fuzzy Q-iteration,
a triangular fuzzy partition with N ′ equidistant cores for
each state variable was defined, leading to a total number
of N = N ′2 fuzzy sets. The value of N ′ was gradually
increased from 3 to 41. Similarly, the action was discretized
into M equidistant values, with M ranging in {3, 5, . . . , 15}
(only odd values were used because the 0 action is necessary
for a good policy). Fuzzy Q-iteration was run for each
combination of N ′ and M , and with both reward functions
(17) and (18). The convergence threshold was set to εQI =
10−5 to ensure the obtained parameter matrix is close to θ∗.

The performance of the policies obtained with fuzzy Q-
iteration is given in Figure 3. Each point in these graphs
corresponds to the return of the policy, averaged over the
grid of initial states X0 = {−π,−5π/6,−4π/6, . . . , π} ×
{−16π,−14π, . . . , 16π}. The returns are evaluated using
simulation, with a precision of εR = 0.1. The discounted
infinite-horizon return of any state can be approximated in
finite time by simulating only the first K steps and assuming
that all the subsequent rewards are 0. To guarantee that an
error of at most εR is introduced, K =

⌈
logγ

εR(1−γ)
‖ρ‖∞

⌉
where ‖ρ‖∞ = maxx,u |ρ(x, u)| is finite, and 
·� produces
the first integer larger than or equal to the argument.

Whereas the reward functions used for Q-iteration are
different, the performance evaluation is always done with the
reward (17). As explained, the change in the reward function
preserves the quality of the policies, so comparing policies
in this way is meaningful. The qualitative evolution of the
performance is similar when evaluated with (18).

Discussion

When the continuous reward is used, the performance
of fuzzy Q-iteration is close to optimal for N ′ = 10 and
remains relatively smooth thereafter – see Figures 3(a) and
3(c). Also, the influence of the number of discrete actions is
small for N ′ �= 4. However, when the reward is changed to
the discontinuous (18), the performance varies significantly
as N ′ increases – see Figure 3(b). For many values of N ′,
the influence of M also becomes significant. Additionally,
for many values of N ′ the performance is worse than with
the continuous reward function – see Figure 3(d).

An interesting and somewhat counterintuitive fact is that
the performance is not monotonous in N ′ and M . For a
given value of N ′, the performance sometimes decreases as
M increases. Similar situations occur as M is kept fixed
and N ′ varies. This effect is present with both reward
functions, but is much more significant in Figure 3(b) than
in Figure 3(a) (see also Figure 3(c)). The magnitude of the
changes decreases significantly as N ′ and M become large
in Figures 3(a) and 3(c); this is not the case in Figure 3(b).



VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed fuzzy Q-iteration, an
approximate Q-iteration algorithm that relies on a fuzzy par-
tition of the state space, and on a discretization of the action
space. The consistency of fuzzy Q-iteration was proven under
Lipschitz continuity assumptions on the system dynamics and
reward function. In an example, a continuous reward function
resulted in a more predictable performance improvement
than a discontinuous reward, as the approximation accuracy
increased. This shows that discontinuous rewards can harm
RL performance in continuous-variable control tasks. Dis-
continuous rewards are common practice due to the origins
of RL in artificial intelligence, where discrete-valued tasks
are often considered.

Consistency can be proven also without imposing the
restrictive bound Lf ≤ 1/γ on the Lipschitz constant of the
dynamics. In that case, the conditions the MFs have to satisfy
are slightly different from those in Requirement 3. This
ongoing work will be reported in a subsequent publication.

The fuzzy approximator is pre-designed in our approach,
and determines the computational complexity of fuzzy Q-
iteration, as well as the accuracy of the solution. While we
considered in this paper that the MFs were given a priori, we
suggest as a future research direction to develop techniques
that determine for a given accuracy an approximator with a
small number of MFs. Another useful research direction is
an extensive comparison of the performance (convergence,
sub-optimality, consistency) of the various types of linear
approximators that can be combined with the Q-value itera-
tion algorithm (e.g., radial basis functions, Kuhn triangula-
tions, polynomial approximation, etc.). Finally, action-space
approximators more powerful than Voronoi partitions could
be studied (e.g., approximators based on fuzzy partitions of
the action space).
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