
Decentralized Reinforcement Learning Control
of a Robotic Manipulator

Lucian Buşoniu Bart De Schutter Robert Babuška
Delft Center for Systems and Control

Delft University of Technology
2628 CD Delft, The Netherlands

Email: {i.l.busoniu,b.deschutter,r.babuska}@tudelft.nl

Abstract— Multi-agent systems are rapidly finding applications
in a variety of domains, including robotics, distributed control,
telecommunications, etc. Learning approaches to multi-agent
control, many of them based on reinforcement learning (RL),
are investigated in complex domains such as teams of mobile
robots. However, the application of decentralized RL to low-level
control tasks is not as intensively studied. In this paper, we
investigate centralized and decentralized RL, emphasizing the
challenges and potential advantages of the latter. These are then
illustrated on an example: learning to control a two-link rigid
manipulator. Some open issues and future research directions in
decentralized RL are outlined.

Keywords—multi-agent learning, decentralized control, rein-
forcement learning

I. INTRODUCTION

A multi-agent system (MAS) is a collection of interacting
agents that share a common environment (operate on a com-
mon process), which they perceive through sensors, and upon
which they act through actuators [1]. In contrast to the classical
control paradigm, that uses a single controller acting on the
process, in MAS control is distributed among the autonomous
agents.

MAS can arise naturally as a viable representation of the
considered system. This is the case with e.g., teams of mobile
robots, where the agents are the robots and the process is
their environment [2], [3]. MAS can also provide alternative
solutions for systems that are typically regarded as centralized,
e.g., resource management: each resource may be managed by
a dedicated agent [4] or several agents may negotiate access
to passive resources [5]. Another application field of MAS
is decentralized, distributed control, e.g., for traffic or power
networks.

Decentralized, multi-agent solutions offer several potential
advantages over centralized ones [2]:

– Speed-up, resulting from parallel computation.
– Robustness to single-point failures, if redundancy is built

into the system.
– Scalability, resulting from modularity.
MAS also pose certain challenges, many of which do not

appear in centralized control. The agents have to coordinate
their individual behaviors, such that a coherent joint behavior
results that is beneficial for the system. Conflicting goals, inter-
agent communication, and incomplete agent views over the
process, are issues that may also play a role.

The multi-agent control task is often too complex to be
solved effectively by agents with pre-programmed behaviors.
Agents can do better by learning new behaviors, such that
their performance gradually improves [6], [7]. Learning can
be performed either online, while the agents actually try to
solve the task, or offline, typically by using a task model to
generate simulated experience.

Reinforcement learning (RL) [8] is a simple and general
framework that can be applied to the multi-agent learning
problem. In this framework, the performance of each agent is
rewarded by a scalar signal, that the agent aims to maximize.
A significant body of research on multi-agent RL has evolved
over the last decade (see e.g., [7], [9], [10]).

In this paper, we investigate the single-agent, centralized RL
task, and its multi-agent, decentralized counterpart. We focus
on cooperative low-level control tasks. To our knowledge,
decentralized RL control has not been applied to such tasks.
We describe the challenge of coordinating multiple RL agents,
and briefly mention the approaches proposed in the literature.
We present some potential advantages of multi-agent RL. Most
of these advantages extend beyond RL to the general multi-
agent learning setting.

We illustrate the differences between centralized and multi-
agent RL on an example involving learning to control a two-
link rigid manipulator. Finally, we present some open research
issues and directions for future work.

The rest of the paper is organized as follows. Section II
introduces the basic concepts of RL. Cooperative decentralized
RL is then discussed in Section III. Section IV introduces
the two-link rigid manipulator and presents the results of RL
control on this process. Section V concludes the paper.

II. REINFORCEMENT LEARNING

In this section we introduce the main concepts of centralized
and multi-agent RL for deterministic processes. This presen-
tation is based on [8], [11].

A. Centralized RL
The theoretical model of the centralized (single-agent) RL

task is the Markov decision process.
Definition 1: A Markov decision process is a tuple

〈X,U, f, ρ〉 where: X is the discrete set of process states, U
is the discrete set of agent actions, f : X × U → X is the

1–4244–0342–1/06/$20.00 c© 2006 IEEE ICARCV 2006

state transition function, and ρ : X × U → R is the reward
function.

The process changes state from xk to xk+1 as a result of
action uk, according to the state transition function f . The
agent receives (possibly delayed) feedback on its performance
via the scalar reward signal rk ∈ R, according to the reward
function ρ. The agent chooses actions according to its policy
h : X → U .

The learning goal is the maximization, at each time step k,
of the discounted return:

Rk =
∑∞

j=0
γjrk+j+1, (1)

where γ ∈ (0, 1) is the discount factor. The action-value
function (Q-function), Qh : X × U → R, is the expected
return of a state-action pair under a given policy: Qh(x, u) =
E {Rk |xk = x, uk = u, h}. The agent can maximize its re-
turn by first computing the optimal Q-function, defined as
Q∗(x, u) = maxh Qh(x, u), and then choosing actions by the
greedy policy h∗(x) = arg maxu Q∗(x, u), which is optimal
(ties are broken randomly).

The central result upon which RL algorithms rely is that
Q∗ satisfies the Bellman optimality recursion:

Q∗(x, u) = ρ(x, u) + γ max
u′∈U

Q∗(f(x, u), u′) ∀x, u. (2)

Value iteration is an offline, model-based algorithm that
turns this recursion into an update rule:

Q`+1(x, u) = ρ(x, u) + γ max
u′∈U

Q`(f(x, u), u′) ∀x, u. (3)

where ` is the iteration index. Q0 can be initialized arbitrarily.
The sequence Q` provably converges to Q∗.

Q-learning is an online algorithm that iteratively estimates
Q∗ by interaction with the process, using observed rewards rk

and pairs of subsequent states xk, xk+1 [12]:

Qk+1(xk, uk) = Qk(xk, uk)+

α
[

rk+1 + γ max
u′∈U

Q(xk+1, u
′) − Qk(xk, uk)

]

, (4)

where α ∈ (0, 1] is the learning rate. The sequence Qk

provably converges to Q∗ under certain conditions, including
that the agent keeps trying all actions in all states with nonzero
probability [12]. This means that the agent must sometimes
explore, i.e., perform other actions than those dictated by the
current greedy policy.

B. Multi-Agent RL
The generalization of the Markov decision process to the

multi-agent case is the Markov game.
Definition 2: A Markov game is a tuple

〈A,X, {Ui}i∈A , f, {ρi}i∈A〉 where: A = {1, . . . , n} is
the set of n agents, X is the discrete set of process states,
{Ui}i∈A are the discrete sets of actions available to the agents,
yielding the joint action set U = ×i∈AUi, f : X × U → X
is the state transition function, and ρi : X × U → R, i ∈ A
are the reward functions of the agents.

Note that the state transitions, agent rewards ri,k, and thus
also the agent returns Ri,k, depend on the joint action uk =
[uT

1,k, . . . , uT
n,k]T,Uk ∈ U , ui,k ∈ Ui. The policies hi : X ×

Ui → [0, 1] form together the joint policy h. The Q-function
of each agent depends on the joint action and is conditioned
on the joint policy, Qh

i : X × U → R.
A fully cooperative Markov game is a game where the

agents have identical reward functions, ρ1 = . . . = ρn. In
this case, the learning goal is the maximization the common
discounted return. In the general case, the reward functions
of the agents may differ. Even agents which form a team
may encounter situations where their immediate interests are
in conflict, e.g., when they need to share some resource. As the
returns of the agents are correlated, they cannot be maximized
independently. Formulating a good learning goal in such a
situation is a difficult open problem (see e.g., [13]–[15]).

III. COOPERATIVE DECENTRALIZED RL CONTROL

This section briefly reviews approaches to solving the
coordination issue in decentralized RL, and then mentions
some of the potential advantages of decentralized RL.

A. The Coordination Problem
Coordination requires that all agents coherently choose their

part of a desirable joint policy. This is not trivial, even if the
task is fully cooperative. To see this, assume all agents learn in
parallel the common optimal Q-function with, e.g., Q-learning:

Qk+1(xk,uk) = Qk(xk,uk)+

α
[

rk+1 + γ max
u′∈U

Q(xk+1,u
′) − Qk(xk,uk)

]

. (5)

Then, in principle, they could use the greedy policy to
maximize the common return. However, greedy action selec-
tion breaks ties randomly, which means that in the absence
of additional mechanisms, different agents may break a tie
in different ways, and the resulting joint action may be
suboptimal.

The multi-agent RL algorithms in the literature solve this
problem in various ways.

Coordination-free methods bypass the issue. For instance,
in fully cooperative tasks, the Team Q-learning algorithm [16]
assumes that the optimal joint actions are unique (which will
rarely be the case). Then, (5) can directly be used.

The agents can be indirectly steered toward coordination.
To this purpose, some algorithms learn empirical models of
the other agents and adapt to these models [17]. Others use
heuristics to bias the agents toward actions that promise to
yield good reward [18]. Yet others directly search through the
space of policies using gradient-based methods [11].

The action choices of the agents can also be explicitly
coordinated or negotiated:

– Social conventions [19] and roles [20] restrict the action
choices of the agents.

– Coordination graphs explicitly represent where coordi-
nation between agents is required, thus preventing the
agents from engaging in unnecessary coordination activ-
ities [21].

– Communication is used to negotiate action choices, either
alone or in combination with the above techniques.

B. Potential Advantages of Decentralized RL

If the coordination problem is efficiently solved, learning
speed might be higher for decentralized learners. This is
because each agent i searches an action space Ui. A centralized
learner solving the same problem searches the joint action
space U = U1 × · · · × Un, which is exponentially larger.

This difference will be even more significant in tasks where
not all the state information is relevant to all the learning
agents. For instance, in a team of mobile robots, at a given
time, the position and velocity of robots that are far away from
the considered robot might not be interesting for it. In such
tasks, the learning agents can consider only the relevant state
components and thus further decrease the size of the problem
they need to solve [22].

Memory and processing time requirements will also be
smaller for smaller problem sizes.

If several learners solve similar tasks, then they could gain
further benefit from sharing their experience or knowledge.

IV. EXAMPLE: TWO-LINK RIGID MANIPULATOR

A. Manipulator Model

The two-link manipulator, depicted in Fig. 1, is described
by the nonlinear fourth-order model:

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) = τ (6)

where θ = [θ1, θ2]
T, τ = [τ1, τ2]

T. The system has two control
inputs, the torques in the two joints, τ1 and τ2, and four
measured outputs – the link angles, θ1, θ2, and their angular
speeds θ̇1, θ̇2.

The mass matrix M(θ), Coriolis and centrifugal forces

m
1

m
2

l
2

l
1

motor
1

motor
2

Fig. 1. Schematic drawing of the two-link rigid manipulator.

matrix C(θ, θ̇), and gravity vector G(θ), are:

M(θ) =

[

P1 + P2 + 2P3 cos θ2 P2 + P3 cos θ2

P2 + P3 cos θ2 P2

]

(7)

C(θ, θ̇) =

[

b1 − P3θ̇2 sin θ2 −P3(θ̇1 + θ̇2) sin θ2

P3θ̇2 sin θ2 b2

]

(8)

G(θ) =

[

−g1 sin θ1 − g2 sin(θ1 + θ2)
−g2 sin(θ1 + θ2)

]

(9)

The meaning and values of the physical parameters of the
system are given in Table I.

Using these, the rest of the parameters in (6) can be
computed by:

P1 = m1c
2
1 + m2l

2
1 + I1 P2 = m2c

2
2 + I2

P3 = m2l1c2

g1 = (m1c1 + m2l1)g g2 = m2c2g

(10)

In the sequel, it is assumed that the manipulator operates
in a horizontal plane, leading to G(θ) = 0. Furthermore, the
following simplifications are adopted in (6):

1) Coriolis and centrifugal forces are neglected, leading to
C(θ, θ̇) = diag[b1, b2];

2) θ̈1 is neglected in the equation for θ̈2;
3) the friction in the second joint is neglected in the

equation for θ̈1.
After these simplifications, the dynamics of the manipulator
can be approximated by:

θ̈1 =
1

P2(P1 + P2 + 2P3 cos θ2)
·

[

P2(τ1 − b1θ̇1) − (P2 + P3 cos θ2)τ2

]

θ̈2 =
τ2

P2

− b2θ̇2

(11)

The complete process state is given by x = [θT, θ̇T]T.
If centralized control is used, the command is u = τ ; for
decentralized control with one agent controlling each joint
motor, the agent commands are u1 = τ1, u2 = τ2.

TABLE I
PHYSICAL PARAMETERS OF THE MANIPULATOR

Symbol Parameter Value
g gravitational acceleration 9.81 m/s2
l1 length of first link 0.1 m
l2 length of second link 0.1 m
m1 mass of first link 1.25 kg
m2 mass of second link 1 kg
I1 inertia of first link 0.004 kgm2

I2 inertia of second link 0.003 kgm2

c1 center of mass of first link 0.05 m
c2 center of mass of second link 0.05 m
b1 damping in first joint 0.1 kgs−1

b2 damping in second joint 0.02 kgs−1

τ1,max maximum torque of first joint motor 0.2 Nm
τ2,max maximum torque of first joint motor 0.1 Nm
θ̇1,max maximum angular speed of first link 2π rad/sec
θ̇2,max maximum angular speed of second link 2π rad/sec

B. RL Control
The control goal is the stabilization of the system around

θ = θ̇ = 0 in minimum time, with a tolerance of ±5 · π/180
rad for the angles, and ±0.1 rad/sec for the angular speeds.

To apply RL in the form presented in Section II, the time
axis, as well as the continuous state and action components of
the manipulator, must first be discretized. Time is discretized
with a sampling time of Ts = 0.05 sec; this gives the discrete
system dynamics f . Each state component is quantized in
fuzzy bins, and three torque values are considered for each
joint: −τi,max (maximal torque clockwise), 0, and τi,max

(maximal torque counter-clockwise).
One Q-value is stored for each combination of bin centers

and torque values. The Q-values of continuous states are then
interpolated between these center Q-values, using the degrees
of membership to each fuzzy bin as interpolation weights. If
e.g., the Q-function has the form Q(θ2, θ̇2, τ2), the Q-values
of a continuous state [θ2,k, θ̇2,k]T are computed by:

Q̃(θ2,k, θ̇2,k, τ2) =
∑

m=1,...,Nθ2

n=1,...,N
θ̇2

µθ2,m(θ2,k)µθ̇2,n(θ̇2,k) · Q(m,n, τ2), ∀τ2 (12)

where e.g., µθ̇2,n(θ̇2,k) is the membership degree of θ̇2,k in
the nth bin. For triangular membership functions, this can be
computed as:

µθ̇2,n(θ̇2,k) =



























max(0,
cn+1−θ̇2,k

cn+1−cn
), if n = 1

max
[

0,min(
θ̇2,k−cn−1

cn−cn−1
,

cn+1−θ̇2,k

cn+1−cn
)
]

,

if 1 < n < Nθ̇2

max(0,
θ̇2,k−cn−1

cn−cn−1
), if n = Nθ̇2

(13)

where cn is the center of the nth bin – see Fig. 2 for an
example.

µ

0.5

2θ

[rad/sec]

1

c =-21 π c =27 πc2 c3 c4 c5 c6

µ
Θ2,6

Fig. 2. Example of quantization in fuzzy bins with triangular membership
functions for θ̇2.

Such a set of bins is completely determined by a vector
of bin center coordinates. For θ̇1 and θ̇2, 7 bins are used,
with their centers at [−360,−180,−30, 0, 30, 180, 360]·π/180
rad/sec. For θ1 and θ2, 12 bins are used, with their centers at
[−180,−130,−80,−30,−15,−5, 0, 5, 15, 30, 80, 130] ·π/180
rad; there is no ‘last’ or ‘first’ bin, because the angles evolve
on a circle manifold [−π, π). The π point is identical to −π,
so the ‘last’ bin is a neighbor of the ‘first’.

Algorithm 1 Fuzzy value iteration for a SISO RL controller
1: Q0(m,uj) = 0, for m = 1, . . . , NX , j = 1, . . . , NU

2: ` = 0
3: repeat
4: for m = 1, . . . , NX , j = 1, . . . , NU do

5:

Q`+1(m,uj) = ρ(cm, uj)

+ γ

NX
∑

m̃=1

µx,m̃(f(cm, uj))max
ũj

Q`(m̃, ũj)

6: end for
7: ` = ` + 1
8: until ‖Q` − Q`−1‖ ≤ δ

The optimal Q-functions for both the centralized and decen-
tralized case are computed with a version of value iteration (3)
which is altered to accommodate the fuzzy representation of
the state. The complete algorithm is given in Alg. 1. For easier
readability, the RL controller is assumed single-input single-
output, but the extension to multiple states and / or outputs is
straightforward. The discount factor is set to γ = 0.98, and
the threshold value to δ = 0.01.

The control action in state xk is computed as follows
(assuming as above a SISO controller):

uk = h(xk) =

NX
∑

m=1

µx,m(xk) arg max
ũj

Q(m̃, ũj) (14)

Centralized RL. The reward function ρ for the centralized
learner computes rewards by:

rk =















0 if |θi,k| ≤ 5 · π/180 rad
and

∣

∣

∣
θ̇i,k

∣

∣

∣
≤ 0.1 rad/sec, i ∈ {1, 2}

−0.5 otherwise
(15)

The centralized policy for solving the two-link manipulator
task must be of the form:

[τ1, τ2]
T = h(θ1, θ2, θ̇1, θ̇2) (16)

Therefore, the centralized learner uses a Q-table of the form
Q(θ1, θ2, θ̇1, θ̇2, τ1, τ2).

The policy computed by value iteration is applied to the
system starting from the initial state x0 = [−1,−3, 0, 0]T.
The resulting command, state, and reward signals are given in
Fig. 3(a).

Decentralized RL. In the decentralized case, the rewards
are computed separately for the two agents:

ri,k =















0 if |θi,k| ≤ 5 · π/180 rad
and

∣

∣

∣
θ̇i,k

∣

∣

∣
≤ 0.1 rad/sec

−0.5 otherwise
(17)

For decentralized control, the system (11) creates an asym-
metric setting. Agent 2 can choose its action τ2,k by only
considering the second link’s state, whereas agent 1 needs to
take into account θ2,k and τ2,k besides the first link’s state. If
agent 2 is always the first to choose its action, and agent 1

0 0.5 1 1.5 2 2.5 3
-3

-2

-1

0
Li

nk
 a

ng
le

s[
ra

d]

0 0.5 1 1.5 2 2.5 3
0
1
2
3
4
5

Li
nk

 v
el

oc
itie

s[
ra

d/
se

c]

0 0.5 1 1.5 2 2.5 3
-0.2
-0.1

0
0.1
0.2

Cm
d

to
rq

ue
 jo

in
t 1

[N
m

]

0 0.5 1 1.5 2 2.5 3
-0.2
-0.1

0
0.1
0.2

Cm
d

to
rq

ue
 jo

in
t 2

[N
m

]

0 0.5 1 1.5 2 2.5 3

-0.4

-0.2

0

Re
wa

rd
 [-

]

t [sec]

(a) Centralized RL (thin line–link 1, thick line–link 2)

0 0.5 1 1.5 2 2.5 3
-3

-2

-1

0

Li
nk

 a
ng

le
s[

ra
d]

0 0.5 1 1.5 2 2.5 3
0
1
2
3
4
5

Li
nk

 v
el

oc
itie

s[
ra

d/
se

c]

0 0.5 1 1.5 2 2.5 3
-0.2
-0.1

0
0.1
0.2

Cm
d

to
rq

ue
 jo

in
t 1

[N
m

]

0 0.5 1 1.5 2 2.5 3
-0.2
-0.1

0
0.1
0.2

Cm
d

to
rq

ue
 jo

in
t 2

[N
m

]

0 0.5 1 1.5 2 2.5 3

-0.4

-0.2

0

Re
wa

rd
 [-

]

t [sec]

(b) Decentralized RL (thin line–link / agent 1, thick line–link / agent 2)

Fig. 3. State, command, and reward signals for RL control.

can learn about this action before it is actually taken (e.g., by
communication) then the two agents can learn control policies
of the following form:

τ2 = h2(θ2, θ̇2)

τ1 = h1(θ1, θ2, θ̇1, τ2)
(18)

Therefore, the two agents use Q-tables of the form
Q2(θ2, θ̇2, τ2), and respectively Q1(θ1, θ2, θ̇1, τ2, τ1). Value
iteration is applied first for agent 2, and the resulting policy is
used in value iteration for agent 1.

The policies computed in this way are applied to the
system starting from the initial state x0 = [−1,−3, 0, 0]T.
The resulting command, state, and reward signals are given in
Fig. 3(b).

C. Discussion
Value iteration converges in 125 iterations for the cen-

tralized case, 192 iterations for agent 1, and 49 iterations
for agent 2. The learning speeds are therefore comparable
for centralized and decentralized learning in this application.
Agent 2 of course converges relatively faster, as it state-action
space is much smaller.

Both the centralized and the decentralized policies stabilize
the system in 1.2 seconds. The steady-state angle offsets are
all within the imposed 5 degrees tolerance bound. Notice
that in Fig. 3(b), the first link is stabilized slightly faster
than in Fig. 3(a), where both links are stabilized at around
the same time. This is because decentralized learners are
rewarded separately (17), and have an incentive to stabilize
their respective links faster.

The form of coordination used by the two agents is

TABLE II
COMPUTATIONAL REQUIREMENTS

Q-table size CPU time [sec]
Centralized (12 × 7 × 3)2 = 63504 ≈ 18300
Agent 1 12 × 7 × 12 × 3 × 3 = 9072 ≈ 1.7
Agent 2 12 × 7 × 3 = 252 ≈ 1000
Agent 1 + Agent 2 9324 ≈ 1000

indirect. The second agent can safely ignore the first (18).
The first agent includes θ2 and τ2 in its state signal, and
in this fashion accounts for the second agent’s influence on
its task. This is visible in Fig. 3(b) around t = 0.8s, when
the first link is pushed counterclockwise (‘up’) due to the
negative acceleration in link 2. Agent 1 counters this effect
by accelerating clockwise (’down’). A similar effect is visible
around t = 1s in Fig. 3(a).

The memory and processing time requirements1 of value
iteration for the two learning experiments are summarized in
Table II. Both memory and CPU requirements are more than
an order of magnitude higher for the centralized case. This is
mainly because, as discussed in Section III, in the decentralized
case the two agents were able to disregard state components
that were not essential in solving their task, and thus reduce
the size of their search space.

V. CONCLUSION AND FUTURE RESEARCH

We have pointed out the differences between centralized
and multi-agent cooperative RL, and we have illustrated these
differences on an example involving learning control of a two-
link robotic manipulator. The decentralized solution was able
to achieve good performance while using significantly less
computational resources than centralized learning.

As can be seen in Table II, the memory (column 2) and
time complexity (column 3) of the solutions scale poorly
with the problem size. The multi-agent RL literature has not
yet focused on the problem of scalability, although solutions
for the centralized case exist (based mainly on generalization
using function approximation to learn the value function). Such
solutions might be extended to the decentralized case.

Another issue is that RL updates assume perfect knowledge
of the task model (for model-based learning, e.g., value iter-
ation (3)), or perfect measurements of the state (for online,
model-free learning, e.g., Q-learning (4)). Such knowledge
is often not available in real life. Studying the robustness
of solutions with respect to imperfect models or imperfect
observations is topic for future research.

ACKNOWLEDGEMENT

This research is financially supported by Senter, Ministry
of Economic Affairs of the Netherlands within the BSIK-ICIS
project “Interactive Collaborative Information Systems” (grant
no. BSIK03024).

1The CPU times were recorded on a Centrino Dual Core 1.83 GHz machine
with 1GB of RAM. Value iteration was run on Matlab 7.1 under Windows
XP.

REFERENCES

[1] N. Vlassis, “A concise introduction to multiagent systems and distributed
AI,” University of Amsterdam, The Netherlands, Tech. Rep., September
2003, URL: http://www.science.uva.nl/˜vlassis/cimasdai/cimasdai.pdf.

[2] P. Stone and M. Veloso, “Multiagent systems: A survey from the machine
learning perspective,” Autonomous Robots, vol. 8, no. 3, pp. 345–383,
2000.

[3] M. J. Matarić, “Learning in multi-robot systems,” in Adaptation and
Learning in Multi–Agent Systems, G. Weiß and S. Sen, Eds. Springer
Verlag, 1996, pp. 152–163.

[4] R. H. Crites and A. G. Barto, “Elevator group control using multiple
reinforcement learning agents,” Machine Learning, vol. 33, no. 2–3, pp.
235–262, 1998.

[5] A. Schaerf, Y. Shoham, and M. Tennenholtz, “Adaptive load balancing: A
study in multi-agent learning,” Journal of Artificial Intelligence Research,
vol. 2, pp. 475–500, 1995.

[6] S. Sen and G. Weiss, “Learning in multiagent systems,” in Multia-
gent Systems: A Modern Approach to Distributed Artificial Intelligence,
G. Weiss, Ed. MIT Press, 1999, ch. 6, pp. 259–298.

[7] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of
the art,” Autonomous Agents and Multi-Agent Systems, vol. 11, no. 3,
pp. 387–434, November 2005.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, US: MIT Press, 1998.

[9] G. Chalkiadakis, “Multiagent reinforcement learning: Stochastic games
with multiple learning players,” Dept. of Computer Science, Uni-
versity of Toronto, Canada, Tech. Rep., 25 March 2003, URL:
http://www.cs.toronto.edu/˜gehalk/DepthReport/DepthReport.ps.

[10] K. Tuyls and A. Nowé, “Evolutionary game theory and multi-agent
reinforcement learning,” The Knowledge Engineering Review, vol. 20,
no. 1, pp. 63–90, 2005.

[11] M. Bowling and M. Veloso, “Multiagent learning using a variable
learning rate,” Artificial Intelligence, vol. 136, no. 2, pp. 215–250, 2002.

[12] C. J. C. H. Watkins and P. Dayan, “Technical note: Q-learning,” Machine
Learning, vol. 8, pp. 279–292, 1992.

[13] Y. Shoham, R. Powers, and T. Grenager, “Multi-agent reinforcement
learning: A critical survey,” Computer Science Dept., Stanford Univer-
sity, California, US, Tech. Rep., 16 May 2003.

[14] R. Powers and Y. Shoham, “New criteria and a new algorithm for
learning in multi-agent systems,” in Advances in Neural Information
Processing Systems 17 (NIPS-04), Vancouver, Canada, 2004, pp. 1089–
1096.

[15] M. Bowling, “Convergence and no-regret in multiagent learning,” in
Advances in Neural Information Processing Systems 17 (NIPS-04), Van-
couver, Canada, 13–18 December 2004, pp. 209–216.

[16] M. L. Littman, “Value-function reinforcement learning in Markov
games,” Journal of Cognitive Systems Research, vol. 2, pp. 55–66, 2001.

[17] C. Claus and C. Boutilier, “The dynamics of reinforcement learning in
cooperative multiagent systems,” in Proc. 15th National Conference on
Artificial Intelligence and 10th Conference on Innovative Applications of
Artificial Intelligence (AAAI/IAAI-98), Madison, US, 26–30 July 1998,
pp. 746–752.

[18] S. Kapetanakis and D. Kudenko, “Reinforcement learning of coor-
dination in cooperative multi-agent systems,” in Proc. 18th National
Conference on Artificial Intelligence and 14th Conference on Innovative
Applications of Artificial Intelligence (AAAI/IAAI-02), Menlo Park, US,
28 July – 1 August 2002, pp. 326–331.

[19] C. Boutilier, “Planning, learning and coordination in multiagent decision
processes,” in Proc. Sixth Conference on Theoretical Aspects of Rational-
ity and Knowledge (TARK-96), De Zeeuwse Stromen, The Netherlands,
17–20 March 1996, pp. 195–210.

[20] M. T. J. Spaan, N. Vlassis, and F. C. A. Groen, “High level coordination
of agents based on multiagent Markov decision processes with roles,”
in Workshop on Cooperative Robotics, 2002 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS-02), Lausanne,
Switzerland, 1 October 2002, pp. 66–73.

[21] C. Guestrin, M. G. Lagoudakis, and R. Parr, “Coordinated reinforcement
learning,” in Proc. Nineteenth International Conference on Machine
Learning (ICML-02), Sydney, Australia, 8–12 July 2002, pp. 227–234.

[22] L. Buşoniu, B. De Schutter, and R. Babuška, “Multiagent reinforcement
learning with adaptive state focus,” in Proc. 17th Belgian-Dutch Confer-
ence on Artificial Intelligence (BNAIC-05), Brussels, Belgium, October
17–18 2005, pp. 35–42.

