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Abstract: Power-assisted wheelchairs (PAW) are an efficient mean of transport for disabled 

persons. As a human-machine system, several unknown parameters are present such as the 

mass of users or the ground adhesion. Moreover, the human torque signals produced are 

required for elaborating a robust assistive strategy and the torque sensors increase 

significantly the cost of the system. To solve these issues, we propose a robust observer-

based controller using a polytopic representation. The closed-loop control design is 

composed of two steps: a state feedback controller with full state available and in a second 

step, an unknown input observer to estimate human torques and feed them into the obtained 

controller. To obtain the predefined performance, the observer gains are computed by solving 

a LMI problem. The goal is to guarantee the 𝓗∞ estimation performance while achieving 

reference tracking. Finally, simulation results validate the control design. The methodology 

follows patent WO2015173094 issued in 2015 (Mohammad et al. 2015). 

Keywords: Disabled persons, Power-assisted wheelchair, Lyapunov function, Linear matrix 

inequality (LMI), Unknown input observer (UIO). 

 

1. INTRODUCTION 

In modern societies, rapid population aging increases 

considerately the number of disabled people. To enhance 

their mobility, power-assisted wheelchairs (PAWs) provide 

an efficient solution. One important advantage of PAWs is 

that users supply a propulsion according to their 

physical/metabolic constraints and the electrical motor 

provides a corresponding assistance to perform the driving 

task. This hybrid propulsion, for example the motorisation kit 

Duo designed by AutoNomad Mobility, start-up issued from 

the Lab (Mohammad et al. 2015, https://www.autonomad-

mobility.com/), allows users to have a desired physical 

exercise.  

Recently, different studies have been done for improving 

the manoeuvrability, safety and efficiency of PAWs. The 

investigations (Seki et al. 2009, Seki et al. 2011) have 

elaborated advanced assistive strategies to deal with the 

impact of different road conditions.  In (Feng et al. 2018 B), 

a control based on optimal control theory has been designed. 

The objective is to enable users to have a desired fatigue 

variation for a predefined driving task. The experimental 

results have shown the efficiency of the applied model-free 

learning approach. However, the control strategy provided by 

any learning method does not guarantee formally neither the 

performances nor the stability of the closed loop system. 

The present study relies on the patent WO2015173094 

(Mohammad et al. 2015). In the present paper, a robust 

observer-based tracking control is proposed for the uncertain 

human-wheelchair system. The mass of users and the viscous 

friction coefficient are supposed unknown and bounded in a 

fixed-interval. It represents different real-time situations such 

that different persons using the same PAW or a varying 

ground profile etc. The goal is to guarantee performances for 

the whole set of conditions via robust control design. 

Moreover, users push a PAW depending on their will and 

their pushing techniques may not be robustly stable for the 

uncertain human-wheelchair system (Sehoon et al. 2014). 

Unstable situations are, of course, to be completely avoided 

in order to prevent user injuries and/or wheelchair damages. 

Therefore, a robust assistive strategy is required. Knowing 

that human input cannot be enforced, to avoid the instable 

situations created by users’ pushing, the proposed controller 

needs first to compensate the influence of human torques. In 

particular, to remove torque sensors, the estimated human 

inputs computed by an unknown input observer (Guerra et al. 

2015) are used directly for the human torque compensation. 

In addition, the controller should also guarantee a whole 

closed-loop stability and achieve the reference tracking 

objective. 

Using a polytopic Takagi-Sugeno representation, the 

control design is formulated as a two-steps LMI optimization 

problems. Compared to computing the control gains and the 

observer gains simultaneously, the investigation (Bennani et 

al. 2017) shows that the two-steps LMI observer-based 

control design may reduce the conservativeness. In this 

approach, the first step is to design a state feedback robust PI 

(Proportional-Integral) tracking control by considering that 

the human torques are measured. The control gains 

calculated at this first step are fixed for the second step. 

Assuming a null 𝑛𝑝  derivative of human torques, the 

observer gains are obtained by solving a LMI constraint 

https://www.autonomad-mobility.com/
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problem. The goal is to guarantee the closed-loop stability 

and an 𝓗∞ attenuation performance.  

Since the human torques are compensated fully by the 

motors, the way for users to manipulate the wheelchair is to 

change reference signals (Feng et al. 2018 A). These 

references depend on the users’ intention derived from the 

estimated torque signals. Consequently, an accurate torque 

estimation is not only important for tracking performance but 

also crucial for the manoeuvrability of the wheelchair. The 

observer design is part of the second step to have more 

flexibility to improve the performances. For the reference 

generation, more details can be found in (Feng et al. 2018 A). 

This paper is organized as follows. In Section 2, we 

introduce the mathematical model of the wheelchair. Section 

3 gives the control objective, the robust PI controller design 

and the observer-based tracking control design Section 4 

provides simulation results. Section 5 gives our conclusions. 

2. WHEELCHAIR MODELING 

The studied wheelchair is modelled as a two-wheeled 

transporter, see Fig. 1. The system nomenclature used in this 

paper is given in Table. 1. The two-wheeled PAW is 

described by the dynamics (Shibata et Murakami 2008, Tsai 

et Hsueh 2012): 

 𝛼�̇�𝑅 + 𝛽�̇�𝐿 = 𝑇𝑚𝑟 + 𝑇ℎ𝑟 − 𝐾𝜃𝑅 

𝛼�̇�𝐿 + 𝛽�̇�𝑅 = 𝑇𝑚𝑙 + 𝑇ℎ𝑙 − 𝐾𝜃𝐿 

(1) 

where the inertial parameters α and β are: 

 
𝛼 =

𝑚𝑟2

4
+

𝐼𝐶𝑟2

𝑏2
+ 𝐼0 

𝛽 =
𝑚𝑟2

4
−

𝐼𝐶𝑟2

𝑏2
 

(2) 

The left angular velocity and the right angular velocity are 

respectively 𝜃𝐿  and 𝜃𝑅 . The total torques consists of the 

human torques 𝑇ℎ𝑟 , 𝑇ℎ𝑙  and the assistive torques 𝑇𝑚𝑟 , 𝑇𝑚𝑙  

given by the electrical motors. Using Euler’s approximation 

�̇�(𝑡) = (𝑥+ − 𝑥)/𝑇𝑒, the nominal system (1) can be rewritten 

in the following discrete-time descriptor form: 

 𝐸𝑑𝑥+ = 𝐴𝑑𝑥 + 𝐵𝑑𝑢ℎ + 𝐵𝑑𝑢𝑚 

𝑦 = 𝐶𝑥 

(3) 

with the state vector 𝑥𝑇 = [𝜃𝑅, 𝜃𝐿], the human torques 𝑢ℎ
𝑇 =

[𝑇ℎ𝑟 , 𝑇ℎ𝑙] , the motor torques 𝑢𝑚
𝑇 = [𝑇𝑚𝑟 , 𝑇𝑚𝑙]  and the 

outputs 𝑦𝑇 = [𝜃𝑅, 𝜃𝐿]. The corresponding matrices are:  

𝐸𝑑 = [
𝛼 𝛽
𝛽 𝛼

], 𝐴𝑑 = [
𝛼 − 𝑇𝑒𝐾 𝛽

𝛽 𝛼 − 𝑇𝑒𝐾
], 

𝐵𝑑 = 𝑇𝑒𝐼2×2, 𝐶𝑑 = 𝐼2×2. 

Considering that both the mass and the viscous friction 

coefficient are unknown and possibly time varying, 

uncertainties are introduced in the nominal system (3) to get 

the discrete-time uncertain system as follows: 

 𝐸𝑑(𝑚)𝑥+ = 𝐴𝑑(𝑚, 𝐾)𝑥 + 𝐵𝑑𝑢ℎ + 𝐵𝑑𝑢𝑚 

𝑦 = 𝐶𝑑𝑥 

(4) 

As usual, the uncertainties are supposed norm bounded and 

sector nonlinearity applies with 𝑚 < 𝑚 < 𝑚 and 𝐾 < 𝐾 <

𝐾. Then, the uncertain system (4) can be represented by a 

fuzzy T-S model, i.e. a convex sum of linear models whose 

weights are unknown. We rewrite the system as the following 

polytopic representation: 

 

 ∑ 𝜑𝑗(𝑚)2
𝑗=1 𝐸𝑑𝑗

𝑥+ =

∑ ∑ 𝜑𝑗(𝑚)2
𝑖=1 𝜗𝑖(𝐾)2

𝑗=1 𝐴𝑑𝑖𝑗
𝑥 + 𝐵𝑑𝑢ℎ + 𝐵𝑑𝑢𝑚  

𝑦 = 𝐶𝑑𝑥 

(5) 

 

where 𝜑𝑗  are unknown convex sum weights fulfilling the 

conditions: 𝜑𝑗 ∈ [0, 1]  ∑ 𝜑𝑗(𝑚)2
𝑗=1 = 1 and 

∑ ∑ 𝜑𝑗(𝑚)2
𝑖=1 𝜗𝑖(𝐾)2

𝑗=1 = 1. The known matrices 𝐸𝑑𝑗
 and 

𝐴𝑑𝑗
 are the vertices of the polytope such that:  

 

𝐸𝑑1
= 𝐸𝑑(𝑚), 𝐸𝑑2

= 𝐸𝑑(𝑚), 

𝐴𝑑11
= 𝐴𝑑(𝑚, 𝐾), 𝐴𝑑12

= 𝐴𝑑(𝑚, 𝐾), 

𝐴𝑑21
= 𝐴𝑑(𝑚, 𝐾), 𝐴𝑑22

= 𝐴𝑑(𝑚, 𝐾). 

 

Using this polytopic representation and LMI techniques, we 

aim to provide a robust analysis for the proposed observer-

based control. 

Note that keeping a descriptor form, the uncertainties do not 

affect the input matrix 𝐵𝑑  thus reducing the number of LMI 

constraints (5) (Estrada-Manzo et al. 2015). Moreover, the 

inversion of the non-singular matrix 𝐸𝑑(𝑚)  is avoided. 

These properties are interesting to get LMI solutions using 

uncertainties described in (5). 

3. CONTROL DESIGN 

The main issue of the problem is not to measure some of 

the inputs of the model, i.e. the torques produced by the 

human. Thus, in order to estimate them to ensure a good 

control of the PAW, an unknown input observer is designed. 

Thus, from these estimations, a control law can be derived. 

Nevertheless, the problem we are faced to is not convex if the 

Lyapunov function the observer gains and the controller 

gains are searched all-in-one. Therefore, we decompose the 

problem into two steps with a guarantee of performances of 

the whole closed-loop. 

 

 

Figure 1: Simplified top view of the wheelchair 

 
TABLE I 

SYSTEM NOMENCLATURE  

Symbol Description Value 

r Wheel radius [m] 0.33 
b Distance between two wheels [m] 0.6 

c centre of gravity of the wheelchair with the 

human 

/ 

𝑚 mass of wheelchair including the human [kg] 10 

𝐾 Viscous friction coefficient [N.m.s] 5 

𝐼𝐶  Inertia of the wheelchair with respect to the 
vertical axis through c 

40 

𝐼0 Inertia of each driving wheel around the 

wheel axis [kg.m2] 

0.25 

𝑇𝑒 Sampling time [s] 0.5 

 



A. Control objective  

Step 1 consists in designing a robust state feedback PI-like 

controller assuming the states and the inputs are perfectly 

known. Step 2 consists in designing the observer to estimate 

the human torques and guaranteeing the closed-loop 

performances, i.e. the observer design uses a LMI constraints 

problem such that the uncertain system (4) with the proposed 

observer-based tracking controller satisfies the following 

requirements: 

• When the reference signal 𝑥𝑟𝑒𝑓 = 0 , the state of the 

uncertain system (4) and the estimation error 𝑒𝑜𝑏𝑠 

converge asymptotically to the origin. 

• When the reference signal 𝑥𝑟𝑒𝑓 ≠ 0, under null initial 

conditions (state and estimation error), the ℒ2-norm of 

the estimation error is bounded as follows: 

∑ 𝑒𝑜𝑏𝑠
𝑇 𝑒𝑜𝑏𝑠

∞

𝑘=0
< 𝛾 ∑ 𝑥𝑟𝑒𝑓

𝑇 𝑥𝑟𝑒𝑓

∞

𝑘=0
 

 

B. Step 1: Robust feedback PI-like controller 

In this section, states and inputs are perfectly known and 

we propose to design a robust PI-like controller for the 

uncertain system (𝟒) via a LMI constraints problem. Let us 

recall first the classical Finsler’s lemma. 

 

Lemma 1. (De Oliveira et Skelton 2001). Let 𝑋𝜖ℝ𝑛, 𝑄 =
𝑄𝑇𝜖ℝ𝑛×𝑛 , and 𝑊𝜖ℝ𝑚×𝑛  such that rank(𝑊) < 𝑛 ; the 

following expressions are equivalent: 

a) 𝑋𝑌𝑄𝑋 < 0, ∀𝑋𝜖{ 𝑋𝜖ℝ𝑛: 𝑋 ≠ 0,𝑊𝑋 = 0 } 
b) ∃𝑀𝜖ℝ𝑛×𝑚 ∶ 𝑀𝑊 + 𝑊𝑇𝑀𝑇 + 𝑄 < 0 

The control law corresponds to: 

 

 
{
𝑢𝑚 = 𝐿𝑀−1 [

𝑥
𝑥𝑖

] − 𝑢ℎ

𝑥𝑖
+ = 𝑥𝑖 − 𝐶𝑑𝑥

 
(6) 

 
where 𝑥𝑖  corresponds to the integrator state. With the 

controller (6) and the uncertain system (4), the closed loop 

dynamic can be written as the following equality constraint: 

 

 
∑ 𝜑𝑗(𝑚)

2

𝑗=1
�̅�𝑐𝑗

�̅�𝑐

= [∑ ∑ 𝜑𝑗(𝑚)
2

𝑗=1
𝜗𝑖(𝐾)

2

𝑗=1
�̅�𝑐𝑖𝑗

+ �̅�𝑐𝐿𝑀−1] �̅�𝑐
− 

(7) 

With: �̅�𝑐 = [𝑥 𝑥𝑖]𝑇  and the matrices: 

 

�̅�𝑐𝑗
= [

𝐸𝑑𝑗
02×2

02×2 𝐼2×2

], �̅�𝑐𝑖𝑗
= [

𝐴𝑑𝑖𝑗
02×2

−𝐶𝑑 𝐼2×2

], 

�̅�𝑐 = [
𝐵𝑑

02×2
].  

Moreover, 

 

 
�̅�𝑐(𝑚) = ∑ 𝜑𝑗(𝑚)

2

𝑗=1
�̅�𝑐𝑗

 

�̅�𝑐(𝑚, 𝐾) = ∑ ∑ 𝜑𝑗(𝑚)
2

𝑖=1
𝜗𝑖(𝐾)

2

𝑗=1
�̅�𝑐𝑖𝑗

 

(8) 

Consider the following Lyapunov function candidate: 

 

 𝑉(�̅�𝑐) = �̅�𝑐
𝑇 ∑ ∑ 𝜑𝑗(𝑚)

2

𝑗=1
𝜗𝑖(𝐾)

2

𝑗=1
𝑃𝑐𝑖𝑗

�̅�𝑐 (9) 

 

The symmetric matrices 𝑃𝑐𝑗
∈ ℝ4×4 , 𝑗 ∈ {1,2} ,  𝑖 ∈

{1,2}, ℎ ∈ {1,2} are positive-definite, 𝑃𝑐𝑗
= 𝑃𝑐

𝑇
𝑗
> 0 as well 

as the matrix: 

 

 

𝑃𝑐 = 𝑃𝑐
𝑇 = ∑ ∑ 𝜑𝑗(𝑚)

2

𝑗=1
𝜗𝑖(𝐾)

2

𝑗=1
𝑃𝑐𝑖𝑗

 

𝑃𝑐
− = 𝑃𝑐

−𝑇 = ∑ ∑ 𝜑𝑗(𝑚)
2

ℎ=1
𝜗ℎ(𝐾

−)
2

𝑗=1
𝑃𝑐ℎ𝑗

 

(10) 

 

Notice that only the friction is time varying, the mass even if 

unknown is, of course, constant for a given trial. 

Theorem 1. The uncertain system (4) with the controller (6) 

is asymptotically stable if there exist symmetric positive-

definite matrices 𝑋𝑗 ∈ ℝ4×4, 𝑗 ∈ {1,2}, 𝑖 ∈ {1,2}, ℎ ∈ {1,2}, 

a matrix 𝐿 ∈ ℝ2×4 and a regular matrix 𝑀 ∈ ℝ4×4 such that: 

 

 
[

−𝑋ℎ𝑗 (∗)

�̅�𝑐𝑖𝑗
𝑀 + �̅�𝑐𝐿 𝑋𝑖𝑗 − �̅�𝑐𝑗

𝑀 − (∗)
] < 0 

(11) 

 

Proof: the variation of the Lyapunov function (9) can be 

written as the following inequality constraint: 

 

 ∆𝑉(�̅�𝑐) = [
�̅�𝑐

−

�̅�𝑐
]
𝑇

[
−𝑃𝑐

− 04×4

04×4 𝑃𝑐
] [

�̅�𝑐
−

�̅�𝑐
] < 0 (12) 

   

From Lemma 1, the inequality (12) under the constraint (7) 

is equivalent to the inequality: 

 

 
𝑄[�̅�𝑐(𝑚, 𝐾) + �̅�𝑐𝐿𝑀−1 −�̅�𝑐(𝑚)] + (∗)

+ [
−𝑃𝑐

− 04×4

04×4 𝑃𝑐
] < 0 

(13) 

 

As usual an asterisk (∗) represents a matrix transpose. When 

it is 𝑊 + (∗)  it stands for 𝑊 + 𝑊𝑇 , inside a matrix it 

represents the transpose of the entry in the symmetric 

position. By choosing 𝑄 = [04×4 𝑀−1]𝑇  and using the 

property of congruence with 𝑑𝑖𝑎𝑔(𝑀𝑇 , 𝑀𝑇), the inequality 

(13) is equivalent to: 

 

 
[

−𝑀𝑇𝑃𝑐
−𝑀 (∗)

�̅�𝑐(𝑚, 𝐾)𝑀 + �̅�𝑐𝐿 𝑀𝑇𝑃𝑐𝑀 − �̅�𝑐(𝑚)𝑀 − (∗)
]

< 0 

(14) 

Since (8), (10) and ∑ ∑ ∑ 𝜑𝑗(𝑚)2
ℎ=1

2
𝑗=1 𝜗𝑖(𝐾)𝜗ℎ(𝐾

−)2
𝑗=1 =

1, the inequality (14) holds if: 

 

 [
−𝑀𝑇𝑃𝑐ℎ𝑗

𝑀 (∗)

�̅�𝑐𝑖𝑗
𝑀 + �̅�𝑐𝐿 𝑀𝑇𝑃𝑐𝑖𝑗

𝑀 − �̅�𝑐𝑗
𝑀 − (∗)

] (15) 

   

Let 𝑋ℎ𝑗 = 𝑀𝑇𝑃𝑐ℎ𝑗
𝑀 and 𝑋𝑖𝑗 = 𝑀𝑇𝑃𝑐𝑖𝑗

𝑀, we obtain directly 

the linear matrix inequality (11). 

 

C. Step 2: Observer-based tracking control design 

In the previous section, we designed the controller (6) 

assuming the human input 𝑢ℎ is measured. To get rid of this 

assumption, we use unknown input observer to estimate the 



human torque. The objectives of this step are twofold; 

designing the observer and guaranteeing the whole closed-

loop stability and performances. 

A reasonable assumption for torques 𝑇ℎ𝑟  and 𝑇ℎ𝑙  

estimation is to suppose that they can be approximated by a 

𝑛𝑝th degree polynomial function in time, i.e.: 𝑑𝑛𝑝𝑇/𝑑𝑡𝑛𝑝 =

0, thus in discrete, the input torques are supposed to satisfy: 

 (1 − 𝑧−1)𝑛𝑝𝑇ℎ𝑟(𝑘) = 0 (16) 

 

Further, (16) can be expressed as: 

 

 𝑇ℎ𝑟(𝑘) = −∑(
𝑛𝑝

𝑖
) (−1)𝑛𝑝𝑇ℎ𝑟(𝑘 − 𝑖)

𝑛𝑝

𝑖=1

 

 

(17) 

 

where (
𝑛𝑝

𝑖
)  corresponds to the binomial coefficient. 

Consider the unknown input vector 𝑇
ℎ𝑟

𝑛𝑝(𝑘) =

[𝑇ℎ𝑟(𝑘), 𝑇ℎ𝑟(𝑘 − 1), … , 𝑇ℎ𝑟(𝑘 − 𝑛𝑝 + 1)]
𝑇
𝜖ℝ𝑛𝑝 . The 

dynamic (17) of the vector 𝑇
ℎ𝑟

𝑛𝑝
 can be written as: 

 𝑇
ℎ𝑟

𝑛𝑝(𝑘 + 1) = Γ𝑛𝑃
𝑇
ℎ𝑟

𝑛𝑝(𝑘) (18) 

where: 

  

Γ𝑛𝑃
= [

−(−1)1 (
𝑛𝑝

1
) −(−1)2 (

𝑛𝑝

2
) … −(−1)𝑛𝑝 (

𝑛𝑝

𝑛𝑝

)

                          𝐼𝑛𝑝−1                          0(𝑛𝑝−1)×1

] 

The same reasoning is applied for the left wheel, the 

dynamic of the vector 𝑇ℎ𝑙

𝑛𝑝(𝑘) = [𝑇ℎ𝑙(𝑘), 𝑇ℎ𝑙(𝑘 −

1), … , 𝑇ℎ𝑙(𝑘 − 𝑛𝑝 + 1)]
𝑇
𝜖ℝ𝑛𝑝 is: 

 

 𝑇ℎ𝑙

𝑛𝑝(𝑘 + 1) = Γ𝑛𝑃
𝑇ℎ𝑙

𝑛𝑝(𝑘) (19) 

 

Defining an extended state vector as �̅�𝑜𝑏𝑠 =

[𝑥,  𝑇ℎ𝑟

𝑛𝑝𝑇
, 𝑇ℎ𝑙

𝑛𝑝𝑇
]
𝑇

𝜖ℝ2𝑛𝑝+2, the uncertain system (4) can be 

rewritten as: 

 

 
∑ 𝜑𝑗(𝑚)

2

𝑗=1
�̅�𝑜𝑏𝑠𝑗

�̅�𝑜𝑏𝑠
+

= ∑ ∑ 𝜑𝑗(𝑚)
2

𝑖=1
𝜗𝑖(𝐾)

2

𝑗=1
�̅�𝑜𝑏𝑠𝑖𝑗

�̅�𝑜𝑏𝑠 + �̅�𝑜𝑏𝑠𝑢𝑚 

𝑦 = 𝐶�̅�𝑏𝑠�̅�𝑜𝑏𝑠 

(20) 

 

where: 

�̅�𝑜𝑏𝑠𝑗
= [

𝐸𝑑𝑗
02×2𝑛𝑝

02𝑛𝑝×2 𝐼2𝑛𝑝

], 𝐶�̅�𝑏𝑠 = [𝐶𝑑 02×2𝑛𝑝
 ], 

�̅�𝑜𝑏𝑠𝑖𝑗
= [

𝐴𝑑𝑖𝑗
 

0𝑛𝑝×2

0𝑛𝑝×2

𝐵1

Γ𝑛𝑃

0𝑛𝑝×𝑛𝑝

𝐵2

0𝑛𝑝×𝑛𝑝

Γ𝑛𝑃

], �̅�𝑜𝑏𝑠 = [
𝐵𝑑

02𝑛𝑝×2
], 

𝐵1 = [[
𝑇𝑒

0
] 02×(𝑛𝑝−1)], 𝐵2 = [[

0
𝑇𝑒

] 02×(𝑛𝑝−1)]. 

 

Based on the nominal system (3), the observer is considered 

as follows: 

 �̅�𝑜𝑏𝑠
∗ �̂̅�𝑜𝑏𝑠

+ = �̅�𝑜𝑏𝑠
∗ �̂̅�𝑜𝑏𝑠 + �̅�𝑜𝑏𝑠𝑢𝑚 + 𝐺−1𝑊(𝑦 − �̂�) (21) 

�̂� = 𝐶�̅�𝑏𝑠�̂̅�𝑜𝑏𝑠 

where the nominal system matrices are:  

�̅�𝑜𝑏𝑠
∗ = [

𝐸𝑑 02×2𝑛𝑝

02𝑛𝑝×2 𝐼2𝑛𝑝

], 

�̅�𝑜𝑏𝑠
∗ = [

𝐴𝑑  
0𝑛𝑝×2

0𝑛𝑝×2

𝐵1

Γ𝑛𝑃

0𝑛𝑝×𝑛𝑝

𝐵2

0𝑛𝑝×𝑛𝑝

Γ𝑛𝑃

] 

The estimation error is 𝑒𝑜𝑏𝑠 = �̅�𝑜𝑏𝑠 − �̂̅�𝑜𝑏𝑠 and its dynamic is 

given by: 

 

 

�̅�𝑜𝑏𝑠
∗ 𝑒𝑜𝑏𝑠

+ + [
∑ 𝜑𝑗(𝑚)

2

𝑗=1
𝐸𝑑𝑗

− 𝐸𝑑

02𝑛𝑝×2

] 𝑥+ 

= (�̅�𝑜𝑏𝑠
∗ − 𝐺−1𝑊𝐶�̅�𝑏𝑠)𝑒𝑜𝑏𝑠 +

[
∑ ∑ 𝜑𝑗(𝑚)2

𝑖=1 𝜗𝑖(𝐾)2
𝑗=1 𝐴𝑑𝑖𝑗

− 𝐴𝑑

02𝑛𝑝×2
] 𝑥  

(22) 

 

The observer-based control law is computed as follows: 

 

{
𝑢𝑚 = 𝐿𝑀−1 [

𝑥
𝑥𝑖

] − �̂�ℎ

𝑥𝑖
+ = 𝑥𝑖 − 𝐶𝑑𝑥 + 𝑥𝑟𝑒𝑓

 

(23) 

 

where 𝑥𝑟𝑒𝑓  is the reference velocity and �̂�ℎ is the estimated 

human torques. The uncertain system (4) with the observer-

based controller (21)-(23) gives the following closed loop 

dynamic: 

 

[
 
 
 
 
 ∑ ∑ 𝜑𝑗(𝑚)

2

𝑖=1
𝜗𝑖(𝐾)�̃�𝑖𝑗

2

𝑗=1

∑ 𝜑𝑗(𝑚)
2

𝑗=1
�̃�𝑗

−�̃� ]
 
 
 
 
 
𝑇

[

�̃�−

�̃�
𝑥𝑟𝑒𝑓

] = 0 

(24) 

where �̃� = [�̅�𝑐
𝑇 𝑒𝑜𝑏𝑠

𝑇
]
𝑇
 and the matrices are: 

 

�̃�𝑗 = [

�̅�𝑐𝑗
04×(2𝑛𝑝+2)

[
𝐸𝑑𝑗

− 𝐸𝑑 02×2

02𝑛𝑝×4
] �̅�𝑜𝑏𝑠

∗
], �̃� = [

02×2

𝐼2×2

0(2𝑛𝑝+2)×2

], 

 �̃�𝑖𝑗 =

[
 
 
 
 �̅�𝑐𝑖𝑗

+ �̅�𝑐𝐿𝑀−1 [04×2
𝐵1 𝐵2

02×2 02×2
]

[
𝐴𝑑𝑖𝑗

− 𝐴𝑑 02×2

02𝑛𝑝×4
] �̅�𝑜𝑏𝑠

∗ − 𝐺−1𝑊𝐶�̅�𝑏𝑠
]
 
 
 
 

. 

 

Consider the following Lyapunov function candidate: 

 

𝑉(�̃�) = �̃�𝑇 ∑ ∑ 𝜑𝑗(𝑚)
2

𝑖=1
𝜗𝑖(𝐾)

2

𝑗=1
�̃�𝑖𝑗�̃� 

 

𝑉(�̃�−) = �̃�−𝑇 ∑ ∑ 𝜑𝑗(𝑚)
2

ℎ=1
𝜗ℎ(𝐾

−)
2

𝑗=1
�̃�ℎ𝑗�̃�

− 

(25) 

The symmetric matrix �̃� ∈ ℝ(6+2𝑛𝑝)×(6+2𝑛𝑝)  is positive-

definite, so �̃� = �̃�𝑇 > 0 , �̃� = ∑ ∑ 𝜑𝑗(𝑚)2
𝑖=1 𝜗𝑖(𝐾)2

𝑗=1 �̃�𝑖𝑗 

and �̃�− = ∑ ∑ 𝜑𝑗(𝑚)2
ℎ=1 𝜗𝑖(𝐾

−)2
𝑗=1 �̃�ℎ𝑗. 

Theorem 2. Given matrices 𝐿 and 𝑀, if there exist positive 

definite matrices �̃� ∈ ℝ(2𝑛𝑝+6)×(2𝑛𝑝+6) , 𝑗 ∈ {1,2} ,  𝑖 ∈

{1,2}, ℎ ∈ {1,2} and matrices 𝑊 ∈ ℝ(2𝑛𝑝+2)×2 , 𝐺1 ∈ ℝ4×4 , 



𝐺2 ∈ ℝ6×4 , a regular matrix 𝐺 ∈ ℝ(2𝑛𝑝+2)×(2𝑛𝑝+2)  and a 

positive scalar 𝛾 such that: 

 

 Π̃ = Π̃1 + Π̃2 + Π̃2
𝑇 < 0 (26) 

where 

  

Π̃1 = [

−�̃�ℎ𝑗 + �̃�𝑇�̃� 0(2𝑛𝑝+6)×(2𝑛𝑝+6) 0(2𝑛𝑝+6)×2

0(2𝑛𝑝+6)×(2𝑛𝑝+6) �̃�𝑖𝑗 010×2

02×(2𝑛𝑝+6) 02×(2𝑛𝑝+6) −𝛾𝐼2×2

], 

Π̃2 = [

𝜖�̃��̃�𝑖𝑗 −𝜖�̃��̃�𝑗 −𝜖�̃��̃�

�̃��̃�𝑖𝑗 −�̃��̃�𝑗 −�̃��̃�

02×(2𝑛𝑝+6) 02×(2𝑛𝑝+6) 02×2

], 

�̃� = [
𝐺1 04×(2𝑛𝑝+2)

𝐺2 𝐺
], �̃� =

[0(2𝑛𝑝+2)×4 𝐼
(2𝑛𝑝+2)×(2𝑛𝑝+2)

]. 

and  

 

𝐺�̃�𝑖𝑗 = [
𝐺1 04×(2𝑛𝑝+2)

𝐺2 𝐼(2𝑛𝑝+2)×(2𝑛𝑝+2)
]

[
 
 
 
 �̅�𝑐𝑖𝑗

+ �̅�𝑐𝐿𝑀−1 [04×2
𝐵1 𝐵2

02×2 02×2
]

𝐺 [
𝐴𝑑𝑖𝑗

− 𝐴𝑑 02×2

0(2𝑛𝑝+2)×2
] 𝐺�̅�𝑜𝑏𝑠

∗ − 𝑊𝐶�̅�𝑏𝑠
]
 
 
 
 

 

 

Then the observer-based tracking controller solves the 

control objective stated in Section 3.A. 

 

Proof: The inequality (26) can be rewritten as follows: 

 Π̃1 + �̃�∗[�̃�𝑖𝑗 −�̃�𝑗 −�̃�] + (∗) < 0 (27) 

where �̃�∗ = [𝜖�̃�
𝑇 �̃�𝑇 02×(2𝑛𝑝+6)

𝑇
]
𝑇

. From (27) and 

∑ ∑ ∑ 𝜑𝑗(𝑚)2
ℎ=1

2
𝑗=1 𝜗𝑖(𝐾)𝜗ℎ(𝐾

−)2
𝑗=1 = 1, we obtain: 

 

 
∑ ∑ ∑ 𝜑𝑗(𝑚)

2

ℎ=1

2

𝑗=1
𝜗𝑖(𝐾)𝜗ℎ(𝐾

−)
2

𝑗=1
Π̃1

+ �̃�∗

[
 
 
 
 
 ∑ ∑ 𝜑𝑗(𝑚)

2

𝑖=1
𝜗𝑖(𝐾)�̃�𝑖𝑗

2

𝑗=1

∑ 𝜑𝑗(𝑚)
2

𝑗=1
�̃�𝑗

−�̃� ]
 
 
 
 
 
𝑇

+ (∗) < 0 

(28) 

Using Lemma 1 and the constraint (21), we have: 

 

 

[

−�̃�− + �̃�𝑇�̃� 0(2𝑛𝑝+6)×(2𝑛𝑝+6) 0(2𝑛𝑝+6)×2

0(2𝑛𝑝+6)×(2𝑛𝑝+6) �̃� 010×2

02×(2𝑛𝑝+6) 02×(2𝑛𝑝+6) −𝛾𝐼2×2

]

< 0 

(29) 

 

Pre- and post-multiplying (29) with the vector 

[�̃�−𝑇 �̃�𝑇 𝑥𝑟𝑒𝑓
𝑇 ]

𝑇
, we derive the following inequality: 

 ∆𝑉(�̃�−) + 𝑒𝑜𝑏𝑠
𝑇 𝑒𝑜𝑏𝑠 − 𝛾𝑥𝑟𝑒𝑓

𝑇 𝑥𝑟𝑒𝑓 < 0 (30) 

 

1. When 𝑥𝑟𝑒𝑓 = 0, we can conclude that: 

∆𝑉(�̃�−) < 0 

The closed loop trajectory converges asymptotically to the 

origin. 

 

2. When  𝑥𝑟𝑒𝑓 ≠ 0 and 𝑉(�̃�(0)) = 0, we obtain: 

∑ 𝑒𝑜𝑏𝑠
𝑇 𝑒𝑜𝑏𝑠

∞

𝑘=0
< 𝛾 ∑ 𝑥𝑟𝑒𝑓

𝑇 𝑥𝑟𝑒𝑓

∞

𝑘=0
 

The ℒ2-norm of the estimation error is bounded.∎ 

 

Remark 1. The inequalities (26) are LMI conditions for a 

given scalar 𝜖. A numerical search for 𝜖 is carried out in a 

prescribed interval.  

4. SIMULATION RESULTS 

In this section, we will validate first the robust PI control 

designed in Section 3.B and then the robust observer-based 

control presented in Section 3.C. All the LMI conditions are 

solved with the Yalmip toolbox. To carry out the simulations, 

the nominal parameters in Table 1 are used. A second-degree 

polynomial is applied for the human torque approximation 

(16). The mass of users varies between 80kg and 120kg and 

the viscous friction coefficient changes between 40N.m.s and 

60N.m.s. 

Solving the LMI conditions in Theorem 1, the following 

control gains are obtained: 

𝐿𝑀−1 = [
−315.25 180.95
180.95 −315.28

69.36 −38.57
−38.57 69.36

] 

As shown in Fig. 2, the proposed PI-like controller is able to 

track well the given reference trajectory even the 

uncertainties on the mass of users and the viscous friction 

coefficient are present. 

Solving the LMI conditions in Theorem 2, the following 

observer gains are obtained: 

𝐺−1𝑊 =

[
 
 
 
 
 

20.58 −11.50
−12.51 20.30
135.52 −63.53
152.37 −68.56
−69.00 131.04
−75.60 145.22]

 
 
 
 
 

 

As shown in Fig. 3, the proposed observer-based controller 

has nearly the tracking performance as the previous PI-like 

controller. The wheelchair follows the given reference 

 

Figure 2: Obtained trajectories with the proposed robust PI-like 
controller 



trajectory despite of the uncertainties on the mass of users 

and the viscous friction coefficient. Moreover, as shown in 

Fig. 4, the observer provides a satisfying estimation of human 

torques without using any torque sensor. These estimated 

signals are crucial for generating desired reference signals 

(Feng, et al. 2018 A). These simulation results confirm the 

advantage of the proposed observer-based controller. 

5. CONCLUSION 

A robust observer-based tracking controller was proposed for 

PAWs. Using a polytopic representation, the control design 

is formulated as a two-steps LMI optimization problems. The 

first step is to design PI-like control assuming human torques 

are measured. Using the obtained control gain, the observer 

gains are derived by solving the proposed LMIs such that the 

stability of the closed-loop system and the estimation 

performance are guaranteed. Finally, the simulation results 

show that the observer-based controller has almost the same 

tracking performance as the PI-like controller. Moreover, we 

can successfully estimate human torques without using 

torque sensor. For future works, the proposed observer-based 

controller will be implemented to the PAW prototype 

designed by AutoNomad Mobility. 
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Figure 4: Obtained estimation of human torques 

 

 

 
Figure 3: Simulation results with the proposed observer-based 
controller 

 


