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Abstract: We consider dual switched systems, in which two switching signals act simultaneously
to select the dynamical mode. The first signal is controlled and the second is random, with
probabilities that evolve either periodically or as a function of the dwell time. We formalize both
cases as Markov decision processes, which allows them to be solved with a simple approximate
dynamic programming algorithm. We illustrate the framework in a problem where the random
signal is a delay on the control channel that is used to send the controlled signal to the system.

1. INTRODUCTION

Switched systems toggle their dynamics in a discrete
set of modes (Liberzon, 2003; Lin and Antsaklis, 2009;
Zhu and Antsaklis, 2015). They model practical systems
subject to known or unknown abrupt parameter changes.
We focus on systems with two simultaneous switching
signals, which occur in e.g. smart grids (Saad et al.,
2012), networks (Zheng and Castañon, 2012), or networked
control systems. Bolzern et al. (2016) called such dynamics
dual switched systems.

In particular, we consider a discrete-time setting where
the first switching signal — which we denote σ — is
controlled, and the second switching signal — denoted by
τ — evolves randomly, with time-varying probabilities.
Each combination of σ and τ selects one autonomous
dynamical mode according to which the system state
evolves. We solve an optimal control problem where σ
must be selected (near-) optimally so that a discounted
sum of rewards (negative costs) must be maximized, in
expectation over the random signal τ . We consider two
scenarios for the evolution of the probabilities of τ . In
the first, the probabilities change periodically, and in the
second, they change depending on the dwell time that
signal τ has spent at its current value.

For both scenarios of probability evolution, our approach
is to represent the problem as a Markov decision process,
by appropriately augmenting the state of the underlying
system with information that allows the next-state prob-
abilities to be predicted. This information is the index of
the current time step in the period for the first scenario,
and for the second scenario, it consists of the last mode
and the dwell time of the random signal. Then, we use
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an approximate dynamic programming algorithm to find
a near-optimal solution to either of these Markov decision
processes.

A key motivation for the type of problems we address
can be found in wireless network control systems, where
control is performed over a wireless network in which
transmissions only succeed with some subunitary proba-
bility that changes with the transmission power (Gatsis
et al., 2014; Varma et al., 2017). It is often desirable to
save energy, thereby decreasing the success probability.
In a similar networked controlled setting, we show in our
experiments how the framework can be applied when there
is a random delay on the transmission channel that is
used to send the controlled mode to the system. In this
setting, we first exemplify the two scenarios (periodic and
dwell-time dependent probabilities). Then, in the dwell-
time-dependent case, we study the performance impact
of incorrectly measuring the last value of τ , and of the
expected dwell-time that τ stays at a given value before
switching.

Our prior paper (Buşoniu et al., 2017) studied optimal
control in switched problems where there is a single switch-
ing signal, either controlled or random. Subsequently, in
(Rejeb et al., 2017) we considered the case of two switching
signals, but without exploiting any knowledge about τ ,
which was therefore treated conservatively in a minimax
fashion. Here, we consider a more refined case when infor-
mation about the probability distribution of τ is known.
Compared to (Bolzern et al., 2016), where stabilization
was studied, here we focus on optimal control instead.

The remainder of this paper is organized as follows. In
Section 2, the problem formulation is presented, and
Section 3 explains how to formalize and solve the problem
as a Markov decision process. Section 4 presents our
simulation study, and Section 5 concludes.



2. PROBLEM STATEMENT

Consider a switched system in which there are two switch-
ing signals, σ ∈ S and τ ∈ T , where S and T are finite
discrete sets. Signal σ is controlled, while τ is uncontrolled
and random, but we have additional information about it.
Specifically, τ is drawn at each discrete time step k ≥ 0
from a distribution pk(τ), so that pk(τ) ∈ [0, 1] ∀τ and∑

τ∈T
pk(τ) = 1. The state of the switched system is

x ∈ X ⊂ R
n, and at each step k, it evolves in a mode

that depends on σ and τ :

xk+1 = f(xk, σk, τk) (1)

We may interpret f : X × S × T → X as selecting from
a collection of autonomous dynamics corresponding to the
combination of modes σ and τ active at k. Such a problem
is called a dual switched system (Bolzern et al., 2016).

Furthermore, a reward (negative cost) is assigned:

ρ(xk, σk, τk) (2)

where ρ : X × S × T → R. Given an initial state x0,
the objective is to find an (in principle, infinitely long)
sequence of controlled modes σ so that the discounted sum
of rewards is maximized, in expectation over the sequence
of random modes τ :

sup
(σ0,σ1,... )∈S∞

Eτ0,τ1,...

{
∞∑

k=0

γkρ(xk, σk, τk)

}
(3)

where γ ∈ (0, 1) is the discount factor. When it can be
achieved, this supremum is called the optimal value from
x0; in the specific cases that we consider, optimal values
can be achieved by generating σ with some relatively
simple feedback policies, see Section 3.

Note that many works in control use discounting, e.g.
Katsikopoulos and Engelbrecht (2003), and discounting
is also typical in AI methods for optimal control, such
as reinforcement learning (Sutton and Barto, 2018). The
key advantage of discounting is that it ensures a contrac-
tion property of certain dynamic programming operators,
which helps with existence and uniqueness of solutions,
as well as with algorithm convergence. A drawback is
that stability is challenging to ensure when discounting
is present, see e.g. Postoyan et al. (2017); in this paper we
will not aim for stability guarantees.

We will leave the problem in its full generality where
it concerns the dynamics f , rewards ρ, and controlled
mode σ; for instance, we do not impose linearity of
f or a quadratic form of ρ, which would be typical
in switched systems, see e.g. Zhu and Antsaklis (2015).
Regarding τ , we will be interested in two practically
relevant scenarios for the evolution of pk. In the first
scenario, the distribution evolves periodically, and in the
second, the distribution changes with the dwell time that
τ has spent at its current value after its last change.
Specifically, define the dwell time of τ at step k, denoted by
dk, to be the integer for which τk−dk

6= τk−dk+1 = . . . = τk.

We formalize these two scenarios in the following standing
assumption, which is taken to hold throughout the paper.

Standing Assumption 1. The probabilities pk according to
which the uncontrolled mode signal τ evolves satisfy one
of the following two sets of conditions:

(per) There exists an integer K > 0 called the period, as
well as a function P per : {0, 1, . . . ,K−1}×T → [0, 1]
that satisfies

∑
τ∈T

P (t, τ) = 1 ∀t, so that pk(τ) =
P per(t, τ) with t = k mod K.

(dwell) There exists an integer δ > 0, as well as a function
P dwell : {1, . . . , δ} × T × T → [0, 1] that satisfies∑

τ∈T
P (d, τk−1, τ) = 1 ∀d, τk−1, so that pk(τ) =

P dwell(min{dk−1, δ}, τk−1, τ). Furthermore, signal τ is
measurable a posteriori, i.e., at step k knowledge of
τk−1 is available.

Some remarks are in order about the second scenario.
We have that d ≥ 1, meaning that the signal spends at
least 1 step at a given value, which is natural since the
formalism is discrete-time. Moreover, the conditions also
imply that the probability distribution remains constant
for any dwell time above δ, so that the probabilities can
be represented with a finite list in P dwell. Finally, function
P dwell effectively gives rise to a (possibly noninteger)
expected dwell time of each value of τ , i.e., the average
number of time steps for which τ stays equal to this value
after switching to it.

3. POSING AND SOLVING THE PROBLEM AS A
MARKOV DECISION PROCESS

Next, we will show how the dynamics f above, which
due to the changing distributions of τ are time-varying,
can be rewritten as time-invariant stochastic dynamics by
augmenting the state. It will follow that the problem can
be solved as a Markov decision process (Puterman, 1994),
or MDP for short.

For the periodic scenario, it suffices to augment the state
with t, leading to x

per
k = [xk, t]⊤ ∈ Xper := X ×

{0, 1, . . . ,K − 1}. Then the probability of the state chang-
ing from s

per
k to s

per
k+1 as a result of mode σk (called

transition function in the MDP literature) is:

T per(xper
k , σk, x

per
k+1) = P per(t, τk)

where t is the last component of x
per
k , and x

per
k+1 =

[f(xk, σk, τk), t + 1 mod K]⊤. Furthermore, define the ex-
pected reward function:

Rper(xper
k , σk) =

∑

τk∈T

P per(t, τk)ρ(xk, σk, τk)

All the information necessary to compute the transition
function T per and the rewards Rper is available in the
signals x

per
k and σk, which implies that x

per
k has the Markov

property and that the tuple 〈Xper,S, T per, Rper〉 is an
MDP.

Consider now the second scenario, where probabilities de-
pend on the dwell-time. Due to our standing assumption,
knowledge of τk−1 is available at step k, and from this,
the dwell time dk−1 can be found. Then, define the aug-
mented state sdwell

k = [xk, dk−1, τk−1]
⊤ ∈ Xdwell := X ×

{1, . . . , δ} × T . The transition function is therefore:

T dwell(xdwell
k , σk, xdwell

k+1 ) = P dwell(dk−1, τk−1, τk)

where dk−1 and τk−1 are extracted from sdwell
k , and:



xdwell
k+1 =









f(xk, σk, τk)

min{dk−1 + 1, δ}

τk



 if τk+1 = τk




f(xk, σk, τk)

1

τk



 if τk+1 6= τk

The expected reward function is defined as:

Rdwell(xdwell
k , σk) =

∑

τk∈T

P dwell(dk−1, τk−1, τk)ρ(xk, σk, τk)

We have again obtained an MDP 〈Xdwell,S, T dwell, Rdwell〉.

Formalizing both scenarios as MDPs provides several key
advantages. Firstly, it becomes clear that (3) exists un-
der mild conditions and can be achieved by applying
an optimal augmented-state feedback σ = hper(sper

k ) or

σ = hdwell(sdwell
k ), respectively (Bertsekas and Shreve,

1978). Note that, when interpreted as a function of the
initial state, objective (3) is known as the optimal value
function V . Secondly, while the exact optimal solution is
in general impossible to compute (unless e.g. X is also a
discrete finite set), a huge array of computational tools be-
comes available to compute near-optimal approximations
thereof, including e.g. model-based approximate dynamic
programming algorithms, sample-based (offline or online)
model-free methods called reinforcement learning, and so
on, see e.g. Sutton and Barto (2018); Bertsekas (2007).

Here, we will choose a simple version of model-based,
offline approximate dynamic programming. This version
performs multilinear interpolation over the state space,
and is given in Algorithm 1 generically for either of the two
MDPs above. To implement this algorithm, the state space
must be included in a hyperrectangle, and an interpolation
grid is defined over this hyperrectangle, e.g. equidistantly
on each state variable. We denote points on the grid by si

with i = 1, . . . , N the point index. A parameter matrix θ
is computed by the algorithm, one parameter θi,σ for each
combination of grid point and controlled mode. Note that
here σ is interpreted as an index in the parameter vector,
which can be done due to its discrete and finite nature.
Furthermore, in the main update on line 4, the sum over
the next states s′ can indeed be written in that fashion
because there is one outcome s′ for each value of τ , and
τ is again discrete and finite (in practice, the summation

will be implemented over τ ∈ T ). Finally, Q̂(s′, σ′; θℓ) is
computed by selecting the row corresponding to σ′ from
the parameter matrix θℓ, and then interpolating between

Algorithm 1 Interpolative dynamic programming.

Input: transition function P , reward function R, discount
γ, interpolation grid si, i = 1, . . . , N , threshold ε

1: initialize parameter matrix: θ0,i,σ = 0
2: repeat at every iteration ℓ = 0, 1, 2, . . .
3: for i = 1, . . . , N, σ ∈ S do
4: θℓ+1,i,σ =

R(si, σ)+γ
∑

s′ T (si, σ, s′)maxσ′ Q̂(s′, σ′; θℓ)
5: end for
6: until ‖θℓ+1 − θℓ‖ ≤ ε

Output: θℓ+1

these parameter values using the state grid and state s′ as
a query point.

The notation Q̂ is not accidental; recall first that V (s)

is the optimal value function, then Q̂(s, σ; θ) is an ap-
proximation of the so-called optimal Q-function Q(s, σ) =
R(s, σ)+γ

∑
s′ T (s, σ, s′)V (s′), which is the optimal value

achievable after applying mode σ in state s. The optimal
Q-function is a key ingredient in many algorithms for
solving MDPs, because it can be used to compute the
optimal policy (state-feedback control law) in a simple,
model-free fashion:

h(s) = arg max
σ

Q(s, σ)

Since the algorithm only provides an approximate version
of Q(s, σ), we will similarly apply an approximate policy:

ĥ(s) = arg max
σ

Q̂(s, σ; θℓ+1) (4)

using the parameter output by Algorithm 1. Is is impor-
tant to note that this policy never has to be computed in
closed form, but is instead applied in an on-demand fash-
ion, for each state s where it is required, by implementing
the arg max using enumeration over σ ∈ S.

A final remark is that since the extra state components
t for sper and d, τ for sdwell are discrete and finite, we
do not actually need to interpolate over those dimensions
of s. This can easily be solved by simply setting the
interpolation grid for those variables identical to their sets
of possible values, which effectively means that we repre-
sent Q-function values separately for each combination of
discrete variable values, and we only truly interpolate over
the continuous dimensions of the state.

While this interpolative algorithm has not been provided
before in the specific variant above, which is adapted to the
stochastic dynamics of our dual switched problem, such a
variant has been briefly mentioned in e.g. (Buşoniu et al.,
2010), where the algorithm was called fuzzy Q-iteration.
While that paper is dedicated to the deterministic-MDP
version of the algorithm, it also points out that the
stochastic variant inherits the convergence properties from
the deterministic case: the algorithm is convergent to
a fixed point θ∗, which corresponds to a near-optimal
Q-function and resulting policy. Roughly speaking, the
infinity-norm distances between the optimal Q-function
and (i) the approximate Q-function found as well as (ii)
the Q-function of the resulting policy, are both within a
multiple of ε, where ε is the distance between the optimal
Q-function and the closest Q-function representable by
the interpolative approximator chosen. Moreover, ε can
be reduced by making the interpolation grid finer. For
additional details about the analytical properties of the
algorithm, we refer the reader to (Buşoniu et al., 2010).

4. APPLICATION TO SWITCHED CONTROL WITH
RANDOM DELAYS ON THE CONTROL CHANNEL

As a particular example of the dual switched framework we
address, consider here an architecture where the controller
sends modes σ over a network affected by random delays τ
that are multiples of the sampling time. While we already
considered such problems in (Rejeb et al., 2017), there the
delay τ was treated conservatively in a minimax fashion,



while here we aim to exploit the knowledge about its
changing probability distribution by placing the problem
in the framework of Section 2.

The underlying, deterministic system evolves with:

yk+1 = g(yk, σk−τk
) (5)

where yk ∈ R
ny represents the system state at time

k ≥ 0, and τk is the number of steps by which controlled
mode σ is delayed at step k, which takes integer values in
T = {0, 1, . . . ,m},m ≥ 0. The underlying reward function
r(yk, σk−τk

) uses the delayed input, which means that it
is generated at the system side. We will transform the
problem in the standard form of Section 2, by defining
a standard state x that along the underlying system
state y also memorizes the last m values of σ: xk =
[yk, σk−1, σk−2, . . . , σk−m]⊤. Then, the standard dynamics
f in (1) that represent delayed dynamics (5), and the
standard reward function ρ in (2), are respectively:

f(xk, σk, τk) = [g(yk, σk−τk
), σk, σk−1, . . . , σk−m+1]

⊤

ρ(xk, σk, τk) = r(yk, σk−τk
)

Note that all the information necessary to compute these
functions is available at their inputs. In particular, if
τk = 0 then σk is taken directly from the input argument,
otherwise σk−τk

is extracted from the appropriate position
on the input memory part of x. Moreover, f shifts the
input memory to the right by one step, forgetting σk−m

(since at the next step it would fall beyond the maximal
range of the delay), and inserts σk at the beginning.

The simulations below use the same problem as in Rejeb
et al. (2017). The main changes are in the random behavior
of the delay signal, and in reducing the sampling period
to half since the more challenging delay types we consider
are too difficult to handle at the lower sampling rates.
We recall the details next. The underlying system is an
inverted pendulum driven by a DC motor, with the state
y composed of the angle α and angular velocity α̇, and
a voltage input u. The continuous-time dynamics are
discretized via numerical integration with Ts = 0.025 s,
thereby obtaining g. The goal is bring the mass pointing
upwards (around angle α = 0), and the maximum voltage
(3 V) is sometimes insufficient to achieve this in one
go; instead a swingup may be necessary, e.g. when the
pendulum is initially at rest and pointing down. The
reward is taken quadratic, −(5α2 + 0.1α̇2 + u2). State
bounds α ∈ [−π, π] rad and α̇ ∈ [−15π, 15π] rad/s are
enforced by wrapping and saturation, respectively. We
take discount factor γ = 0.95. There are 3 controlled
modes: modes 1 and 3 correspond to the maximum-
magnitude voltage levels, namely −3 and 3 V, while mode
2 is a linear state feedback K · [α, α]⊤ saturated to
±1.5 V. The gains K are designed with discounted LQR
on the linearized dynamics around zero, see Chapter 3 of
Bertsekas (2007). Note that this lower-level feedback is
applied on the system side, so it is delay-free.

We start our experiments by illustrating the two scenarios,
in which the probabilities are periodic or dwell-time depen-
dent, in Section 4.1 and Section 4.2 respectively. Then, in
Section 4.3, we study the robustness of the MDP solution
when the signal τ is measured inaccurately. Finally, in
Section 4.4, we vary the probabilities in such a way as to
alter the expected dwell time of τ , and study the impact
this has on performance.

P per(t, τ)
t = 0 0.7, 0.2, 0.1
t = 1 0.5, 0.3, 0.2
t = 2 1/3, 1/3, 1/3
t = 3 0.2, 0.3, 0.5
t = 4 0.1, 0.2, 0.7

Table 1. Periodic delay probabilities. Each ta-
ble cell records the probabilities that the delay

will be 0, 1, or 2 respectively.

0 0.5 1 1.5 2 2.5 3
−5

0

5

α
 [
ra

d
]

0 0.5 1 1.5 2 2.5 3
−10

0

10

20

α
’ 
[r

a
d
/s

]

0 0.5 1 1.5 2 2.5 3
−5

0

5

u
 [
N

m
]

0 0.5 1 1.5 2 2.5 3
−100

−50

0

r 
[−

]

t [s]

Fig. 1. An example controlled trajectory for the periodic
case. The graphs show, from top to bottom, the angle,
the angular velocity, the control voltage (thicker gray
line when the PD mode is applied), and the rewards.

4.1 Periodic probabilities

We will first study the case when the probabilities are
periodic. We take m = 2, period T = 5, and the
distribution changes so that small delays are more likely at
the start of the period, and large delays more likely at the
end, see Table 1. We use an interpolation grid of 21 × 21
points for α and α̇, and run Algorithm 1 until the difference
in the infinity norm between two consecutive parameter
vectors drops below the threshold 0.001. Figure 1 shows
one of the worse-performing trajectories of the system
controlled from the pointing-down position with the policy
(4) obtained (recall that the delay is random so the results
will change at every run). In general the policy manages to
keep the pendulum up after a single swing, although the
time to reach close to the pointing-up position varies.

4.2 Dwell-time dependent probabilities

Secondly, we consider the case of dwell-time dependent
probabilities. To keep things easy to understand, we take
m = 1 in this case, and δ = 4. The grid and threshold
mentioned above are left unchanged. The probabilities
evolve so that when the dwell time is small, the delay
is more likely to remain unchanged, but eventually the
distribution becomes uniform, see Table 2. Note that the
average dwell time induced by these probabilities is of
about 3 steps. A representative trajectory is given in
Figure 2. It appears that this scenario is more challenging



τk−1 = 0 τk−1 = 1
dk−1 = 1 0.8, 0.2 0.2, 0.8
dk−1 = 2 0.7, 0.3 0.3, 0.7
dk−1 = 3 0.6, 0.4 0.4, 0.6
dk−1 = 4 0.5, 0.5 0.5, 0.5

Table 2. Dwell-time dependent probabilities.
For row dk−1 and column τk−1, the table cell
records the probabilities P dwell(dk−1, τk−1, τk)
that the delay τk will be 0 or 1, respectively.
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Fig. 2. Example trajectory for the dwell-time case.

than the first, as the pendulum is more difficult to swing
and keep pointed up. This may be due to the longer ranges
where the delays stays nonzero.

4.3 Robustness to inaccurate measurements of τ

A restrictive assumption of our framework for dwell-time
dependent probabilities is that the previous mode τk−1

can be measured accurately at step k. So, we next study
empirically the robustness of the algorithm to incorrect
delay measurements. Specifically, at each step k the correct
previous delay τk−1 is observed with probability q, and
with probability 1 − q the other value of the delay is
observed (recall that m = 1 in this example). Note
that, because the algorithm relies on τ measurements to
compute the dwell times d, the latter will also sometimes
be incorrect.

In our experiment, using the problem of Section 4.2, and its
solution that was computed under the assumption that τ is
correctly observed, we take q = 0.1, 0.2, . . . , 0.9, 1, and for
each value we run 250 controlled trajectories. The effects
are subtle and are not easy to assess on the trajectory
itself; e.g. Figure 3 shows an example trajectory for the
smallest probability q = 0.1 of correct measurements.
We therefore investigate also the returns obtained by the
policy, i.e. a sum of discounted rewards similar to that
inside the expectation in (3), but truncated at 120 steps
(which given the sampling time 0.025 s corresponds to the
trajectory length of 3 s). Figure 4 shows the mean return
across the 250 experiments, together with 95 % confidence
intervals on this mean. Clearly larger probabilities q lead
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Fig. 3. Example trajectory when τ is measured incorrectly
with high probability.
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Fig. 4. Return variation with the probability q of measur-
ing τ correctly. Larger return is better. The center line
represents the mean return, with the markers showing
for which values of q the experiments were run, and
the shaded region is the 95% confidence interval on
the mean.

to better results; roughly below q = 0.5, performance
plateaus, so apparently the measurements are so unreliable
that the extent to which they are wrong is no longer too
important.

4.4 Influence of average dwell time

Finally, we study the influence of the average dwell-time
on performance. Since we cannot control the dwell time
directly, we will instead vary its probability distribution.
Take δ = 1 in the dwell-time dependent setting, so that the
probability distributions P dwell(1, τk−1, τk) are constant
for each τk−1. We choose P dwell so that τk = τk−1 with
probability c. That means that for larger c, the expected
dwell time is larger. For each setting, we run Algorithm 1,
and then simulate 250 controlled trajectories from the
pointing-down position.

Figure 5 shows the results, which are quite surprising.
Returns are largest when the signal τ changes with uniform
probabilities (c = 0.5). Returns decrease both to the left
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Fig. 5. Return variation with the probability c of τ staying
constant.

of this value, for c < 0.5, i.e. when τ changes more quickly,
and to the right, for c > 0.5, when τ changes more
slowly. Among these two options, returns are generally
worse if c is larger. We hypothesize that as c grows larger,
the longer stretches where the delay is nonzero may be
detrimental; while for small c, the system could simply
be less predictable; thus c = 0.5 could be the sweet spot
where both effects are small.

5. CONCLUSIONS

We have proposed and evaluated a solution technique
based on Markov decision processes for dual switched
problems in which two switching signals, one controlled
and one random, act in tandem on the system.

The dynamic programming algorithm that we used is
not very scalable, since it relies on interpolation grids.
However, once the problem has been written as an MDP,
a swathe of more scalable algorithms from approximate
dynamic programming (Bertsekas, 2007) and reinforce-
ment learning (Sutton and Barto, 2018) can be tried in
future work. Moreover, the case where τ is not accurately
observed can be handled algorithmically in the framework
of partially observable Markov decision processes (Ross
et al., 2008), if the measurement probabilities are known.
Stability guarantees may also be pursued by applying
and extending the framework of Postoyan et al. (2017).
It would also be interesting to study whether the perfor-
mance peak for uniform probabilities of τ in Figure 5 is
specific to the example in this paper, or a more general
phenomenon.
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