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Abstract— Unmanned aerial vehicles (UAVs) have gained spe-
cial attention in recent years, among others in monitoring and
inspection applications. In this paper, a less explored application
field is proposed, railway inspection, where UAVs can be used
to perform visual inspection tasks such as semaphore, catenary,
or track inspection. We focus on lightweight UAVs, which can
detect many events in railways (for example missing indicators
or cabling, or obstacles on the tracks). An outdoor scenario
is developed where a quadrotor visually detects a railway
semaphore and flies around it autonomously, recording a video
of it for offline post-processing. For these tasks, we exploit object
detection methods from literature, and develop a visual servoing
technique. Additionally, we perform a thorough comparison of
several object detection approaches before selecting a preferred
method. Then, we show the performance of the presented
filtering solutions when they are used in servoing, and conclude
our experiments with evaluating real outdoor flight trajectories
using an AR.Drone 2.0 quadrotor.

Index Terms— UAV, quadrotor, object inspection, visual ser-
voing, object detection

I. INTRODUCTION

Lightweight unmanned aerial vehicles (UAVs) are becom-

ing widespread in various fields such as aerial imaging [1],

entertainment, or inspection and monitoring [2], [3], [4].

They are in the focus of many research groups, companies

and governmental institutions.

We focus on visual inspection applications that require the

observation of objects, an application domain where UAVs

can present a significant benefit. Some of the common visual

inspection fields are bridge [5], power line [6], pipeline [7]

or building façade [8] inspection, where UAVs have already

been shown to be useful tools. Traditionally, inspection tasks

commonly require considerable expenses and might need to

be performed in difficult-to-access or dangerous areas. In

many situations, UAVs can take over the visual inspection

part of the tasks, reducing the need for human intervention,

and therefore save a significant amount of resources.

A less explored application field is railways, where various

components of the railway infrastructure must be inspected,
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including tracks, catenary, poles, semaphores, etc. Here, a

further advantage of using UAVs is that traffic does not have

to be stopped, unlike in the case of inspection by humans.

Working with lightweight platforms does not present safety

issues for traffic [9], as the UAV can get off the tracks

depending on the schedule or by visually detecting an

incoming train, and if the UAV is light enough (under 5 kg)

a potential collision is non-damaging to the train.

The objective is to use UAVs to autonomously record

videos of targets such as poles, tracks, etc. with a given

amount of details. In this paper, we focus on inspecting

semaphores, a target for which details captured at several

meters already provide significant data (for example lamps

not working, or missing indicators). The detection of such

details does not require precise navigation, instead the target

only has to be kept in the field of view from a rough

distance. Therefore, even lightweight platforms, despite their

sensitivity for example to wind gusts, are suitable for such

inspection tasks.

Fig. 1. Inspection scenario: fly-around

We select the AR.Drone quadrotor [10] and consider a

scenario where the quadrotor autonomously navigates from

a startup location to a railway semaphore. After detecting it,

the quadrotor flies around the target and records a video of it

for offline post-processing. We consider the last two stages

of this scenario, namely visual detection of the target and the

inspection flight, and assume that the application starts with

the target in the neighborhood of the quadrotor. Flying to

the target can be solved by GPS-based navigation, assuming

no dynamic, unmapped obstacles have to be avoided. The

inspection flight consists of recording a video of the target

while keeping a reference distance to it and flying on

an arc of ±45° around it. The entire flight is performed

autonomously.

The key parts of the approach are object detection and

servoing. For detection, several methods can be used, such as

feature detectors [11], classifiers [12] or template matching

[13]. This paper focuses on detailed comparison of these

detection methods in order to select the approach that per-

forms the best in our scenario. On the servoing side, a simple



control strategy is developed that computes distances based

on the object image and applies linear and extended Kalman

filtering on the distances to obtain accurate values for the

flight commands. The quadrotor keeps then a constant lateral

velocity and, based on visual object detection, centers the

target in the image frame and corrects the distance to it.

The entire algorithm runs on a ground station that sends

high-level velocity commands via Wi-Fi to the quadrotor.

All these methods are tested in real, outdoor flights, using

our experimental setup.

Plenty of works exist that use visual servoing for UAVs

[2], [14], [15]. We do not intend to compete with these works,

but rather focus on providing experimental results for a less

explored application field, namely railway inspection. As

also overviewed in our recent survey [16], UAV inspection

applications mainly focus on power line inspection [3], [17],

[6] and building monitoring [8], [18], whereas the area of

railways is currently mainly discussed by companies [19],

[5], [20]. Although the knowledge base is partly transferable

between these application domains, experimental results are

required to convincingly demonstrate the benefits of UAVs

in a new domain. This is important as application results are

subject to numerous conditions such as the sensor kit used

and other platform parameters, or whether the tests were

conducted indoors or outdoors. Except for our preliminary

work [21], we found one single article [22] that deals with

UAV experiments in railways. Both of these papers present

only simulation results, without real flight experiments. Other

articles such as [23], [24] deal only with the vision tasks

from railway inspection, without using UAVs as inspection

tools. In this context, making public our real outdoor flight

tests and evaluations for railway inspection purposes will be

useful for both the research and industrial communities.

The paper is structured as follows. Section II presents

in general the methods used in the application. Section III

discusses our method selection and provides implementation

details. Section IV presents the experimental setup and test

results and evaluation, and Section V concludes the paper.

II. BACKGROUND: OBJECT DETECTION,

VISUAL SERVOING, AND FILTERING METHODS

This section introduces the methods used in the applica-

tion. Several existing object detection techniques are briefly

presented, namely feature detection, edge detection, machine

learning and template matching-based approaches. We then

briefly outline visual servoing concepts and the principles of

signal filtering by probabilistic estimators.

A basic solution for object detection is the use of feature

detectors in combination with descriptors, matching methods

and transformation identifiers. A reference image (cropped

to the object to be detected) is taken and features from it

are matched to features from the scene image. Based on the

set of matched features, the transformations between them

can be determined to find the position and orientation of

the reference image in the scene image. For this approach,

one of the most common feature detectors is the method

called features from accelerated segment test (FAST) [11].

For most feature types, the detected features require a

description method that then enables the matching of the

features. For feature descriptor creation, a preferred solution

is the scale-invariant feature transform (SIFT) [25]. Then,

feature matching is commonly achieved using the fast library

for approximate nearest-neighbor (FLANN) [26] method.

Finally, transformation identification can be performed with

homography transforms [27]. Object detection with feature

detectors offers accurate results, however it usually requires

longer processing time than, for example, the classifier or

template matching methods presented below. Also, the detec-

tion rate highly depends on proper tuning, and the methods

are known to be sensitive to changes in, for example, light

conditions or object pattern.

The above approach can be further combined with pre-

processing. For example, the images can be transformed to

edges before the features are detected. For this purpose, it is

possible to use the Canny edge detectors [28]. Working with

edges is most suitable for clear background scenarios (e.g.

sky background or objects on a desk).

Feature detection can be combined with machine learning,

which offers the possibility of taking a set of training data

(features, in our case) and obtaining a better description

of reference objects through optimization methods. Here,

a well-known approach that can also be applied to online

processing comes from Viola and Jones [12], and works with

a cascade of weak feature classifiers. Two common feature

types used with these classifiers are the Haar-like features

[29] and linear binary pattern (LBP) [30], where the latter

is known to be faster than the Haar-like features, though

offering less precise detection. After an offline training of the

classifiers with positive (containing the object to detect) and

negative (background) examples, these cascade classifiers

can be applied in online detection. Classifiers are primarily

meant for detecting the presence of an object, and, compared

for example to feature detection-based object detection, are

less precise in correctly determining the size of the object.

A different approach is template matching [13], [31] where

the entire reference image (template) is sought in the new

frame based on various matching metrics. The template is

slid over the scene image, similarity metrics such as the

sum of squared differences or correlation coefficients are

calculated, and the region with the best score is selected as

the matching region. Template matching is usually employed

when the template is significantly smaller than the scene

image. Also, the basic form of the method will not rescale the

template. Scale- and rotation-invariant adaptations already

exist, like those from [32], [33], though a simple imple-

mentation of multi-scale matching is to run the algorithm

multiple times for manually rescaled scene images. Template

matching is known to be fast compared to the above methods,

as it uses less sophisticated comparisons.

Visual servoing deals with controlling the displacement

of the vehicle based on visual information, so as to obtain

a desired trajectory. It requires some source of distance or

position information from the environment. Based on them,

geometric transformations are applied in order to determine



the position of the vehicle or of other objects. Then, various

control techniques guide the vehicle through a desired flight

trajectory. Classic approaches are position-based and image-

based visual servoing [34], [35]. Also, plenty of object

tracker methods and implementations exist [36], [37], which

can be used for UAV visual servoing. We implement a

simple servoing logic, using the principles of image-based

visual servoing, selecting a method from the object detection

approaches presented before.

Distance information can be gathered from object de-

tection results. However, these distance measurements are

usually noisy. As this signal is the input of the flight control,

it should be filtered in order to avoid chattering inputs. In

general, not all interesting states are directly accessible via

sensors, and unmeasured states must be estimated from the

measured data. Kalman filters [38] are popular methods that

estimate the signal evolution accounting for the dynamics of

the system, and for noises influencing both the system evo-

lution and the measurements. In its basic form, the Kalman

filter (KF) accounts for linear system dynamics, while the

extended Kalman filter (EKF) accepts nonlinear models as

well, and linearizes the model at every estimation step. In

our application, these filters can be used for integrating

the distance calculation formulae and obtaining a smooth

distance signal, filtering out noise and mitigating faulty

measurements.

III. PROPOSED APPROACH

This section lists the object detection methods that will be

evaluated, and details the visual servoing approach proposed

by us based on these alternatives.

A. Selected object detection methods

The four object detection approaches presented in Sec-

tion II are evaluated based on image sets from our ap-

plication. All the selected methods come with OpenCV

implementations [39]. The parameter settings and evaluation

results are presented in Section IV-A. The evaluation is

performed in order to select a suitable method for our appli-

cation, rather than to achieve an exhaustive comparison of

the discussed detection methods. Nevertheless, a discussion

is provided on the performance of the different algorithms as

a function of different parameters, as presented in Section IV-

B. The method having the best overall results will be used

in visual servoing.

For feature matching-based detection, our earlier results

from [16] are used, where the experimental setup had similar

scenes to the ones from the current application. Based on the

method evaluations from [16], we select the FAST feature

detector in combination with the SIFT descriptor creator,

FLANN matching and homography-based transformation

detection.

For edge detection preprocessing for feature matching,

the Canny algorithm is selected, one of the most popular

methods, which can be quickly and easily tuned.

Classifier-based detection is performed using both Haar-

like and LBP features. The classifier methods may find

multiple matches in an image. The cascade search process

evaluates these matches in multiple stages, discarding at each

stage several matches. At the end, the match that reached

the furthest stage is selected. Although the correctness of

this criterion is not formally proven, experiments show that

it provides good selection of the best match.

Template matching is tested with all the available similar-

ity metrics, namely: sum of squared differences, correlation,

and correlation coefficients. We develop a simple scale-

invariant version of the method from an existing imple-

mentation that does not rescale the images. Scale-invariant

detection is obtained by running the matching with the scene

image resized at several scales, and selecting the best match

from all the iterations.

The detection methods provide a bounding rectangle

around the detected object, which defines its size and po-

sition in the scene image. This information is then used in

performing visual servoing, as described next.

B. Visual servoing: distance calculation and trajectory

tracking

Once the target object is detected, control is implemented

based on a simple servoing logic: the quadrotor flies with a

constant lateral velocity while rotating and keeping a desired

distance to the detected target. The resulting trajectory is

an arc with the target in its center. This is achieved by the

following steps: raw distances are computed using the result

of detection; the distances are filtered to eliminate noise; and

the filtered distances are compared with the desired distances

and fed to a proportional (P) controller that calculates the

required velocity commands.

hscene

dx dy

cscene

d

Fig. 2. Distance measurement

The first component of visual servoing is the distance cal-

culation. Using the detection methods presented in Section II,

a bounding rectangle is calculated around the detected object.

Then, two parameters of this rectangle are used: its height

in the image frame (in pixels), denoted hscene, and its lateral

distance (in pixels) from the center of the image, denoted

cscene. Denote the distance between the quadrotor and the

plane of the inspected target as dx. Also, denote the lateral

distance (to the right from the center of the image frame) as

dy . Both dx and dy are measured in meters, and are used in

obtaining the real-world distance between the quadrotor and



the target, denoted d. Distances dx and dy are obtained from

hscene and cscene as:

dxraw =
href

hscene
· dref = ax

hscene

dyraw =
href

hscene
·

dref·cscene

432
=

ay·cscene
hscene

(1)

where href and dref denote the height (in pixels) of the

reference image, and respectively the real-world distance at

which the reference image was taken. The logic behind these

formulae is simple: if hscene = href, the quadrotor is at the

same dx distance as at which the reference image was taken,

i.e. dxraw = dref. The distance decreases as hscene increases.

A similar logic applies to the lateral distance dyraw , where

the scaling factor 432 results from empirical tuning and is

used for obtaining the real-world lateral distance from cscene

and dref.

The obtained distances are filtered as presented in Sec-

tion III-C. Filtering is discussed separately as it is not

mandatory for the servoing logic, however it improves the

accuracy of distance estimation.

Finally, a P controller takes as input the filtered distances

and some reference distances dxref and dyref and calculates

control velocities to reach the reference values:

vx = Px · (
√

dx
2 + dy

2
− dxref)

vrotz = Py · (dy − dyref)/dx

(2)

with Px and Py controller parameters. While P controllers

may cause steady state errors if used exclusively, the ref-

erence values calculated by the controller above are inputs

for the onboard control unit of the quadrotor, which applies

further control loops to meet the reference values. Thus, this

simple controller is sufficient to obtain proper velocities.

Note that the rotational velocity is influenced by the dx

distance, reducing the applied rotational command as the

quadrotor moves further from the target. We have observed

in our experiments that this offers more stable operation.

Besides the above controller used to correct the position

and orientation of the quadrotor, a constant lateral velocity

is applied to the vehicle. Also, the flight altitude is kept at

a constant reference value by the internal controllers of the

platform. In this manner, the quadrotor is expected to follow

an arc path around the target object, continuously keeping

it in the center of the field of view. The flight direction is

changed based on angle measurements obtained from the

inertial measurement unit of the vehicle: when the quadrotor

reaches a turning of 45° compared to its takeoff position, the

sign of the applied lateral velocity is changed.

This visual servoing can be used for UAV platforms that

have a frontal camera, can receive high-level linear and

rotational velocity setpoints as commands, and can provide

navigation data such as velocities read on linear and rota-

tional axes. We select the AR.Drone 2.0 quadrotor [10] that

supports all these features, and use it in our experiments. The

precision of the distance calculations and the performance of

the resulting controller are evaluated in Section IV-B.

C. Signal filtering

The raw distances are filtered in order to mitigate noise

and wrong measurements resulting from incorrect detections.

Here two filtering alternatives are proposed, both of them

based on Kalman filters: one solution, that we call 2-KF,

where the dx and dy distances are filtered separately, using

linear Kalman filters (KF); and another approach where the

measurement model from (1) is integrated into an extended

Kalman filter (EKF), i.e. taking into account the coupling

between the evolution of the two distances.

The linear models used for the 2-KF take both the state

x and the measurement y as the distance on the given axis

(dx or dy), and have the following form:

{

d+ = d + v · Ts + z
y = d + w

(3)

where d+ marks the new discrete state of the process, d
the distance on the given axis, v the corresponding velocity

input, and Ts the sampling time of the process. Variables z
and w are the process and measurement noises, described by

normal distributions N (0, Q) and N (0, R), with Q and R
as tuning parameters.

The EKF filter is based on (1), taking as state variables

the two distances, X = [dx, dy]T , as measurement variables

Y = [hscene, cscene]
T , the height and lateral position of the

object in the scene image, and as input the velocities on

the two axes, U = [vx, vy]T . Then, EKF uses the following

nonlinear model:


















[

dx+

dy+

]

=

[

dx

dy

]

+ Ts ·

[

vx

vy

]

+ z

[

hscene

cscene

]

=

[

ax/dx

ax · dy/(ay · dx)

]

+ w

(4)

where ax = href · dref and ay = href · dref/432 are con-

stants from (1). This model combines the evolution of both

distances, and is thus expected to provide a more realistic

filtering.

The tuning parameters of the filters are Q and R, the pro-

cess and measurement noise covariances; and the sampling

time of the process, Ts. The selected parameter values are

presented in Section IV-B.

If no distance measurement is available, the filters work

in prediction mode, estimating the distances from the model

and from the velocity inputs.

IV. METHOD EVALUATION AND FLIGHT TESTS

In the sequel, we first evaluate offline, on test images, the

detection methods presented, and use a sequence of images

taken during a flight to analyze the distance measurement and

filtering. Then, the online performance of the proposed visual

servoing is tested with both filtering methods. The experi-

ments are performed using the AR.Drone 2.0 quadrotor [10]

and a laptop with a Core i7-4702MQ 2.2GHz processor and

8GB RAM. All processing is run on the laptop while sending

high-level commands to the quadrotor for the flight tests.



A. Evaluating object detectors

The four detection approaches presented in Section II are

evaluated using two sets of images. The first set consists

of 100 different photos of a standard railway semaphore,

see Fig. 3, a typical object that has to be inspected in the

railway infrastructure. The target appears at distances varying

from around 10 to 30 m, mostly in frontal view. This allows

for checking the scale-invariant property of the methods. A

second set of 200 frames is taken from our yard setup where

only the panel of a semaphore is used, see Figs. 4 and 9.

The light conditions and the background are different. Also,

the target object has fewer interesting features. In this set,

the target appears at distances between around 3 and 5 m,

viewed from various side angles (but having the camera

mostly parallel to the Earth). The different side views also

check the rotation-invariant detection ability of the methods.

Both sets contain 15 frames of true negatives, i.e. images

in which the target object is not present, but the background

is similar to those in which it is. The first set contains

640 × 360 px images, whereas the frames from the second

set are resized to 320 × 180 px size. All the frames are

grayscale.

The above two image sets are useful as they present frame

sequences from real scenarios. The detectors are evaluated

on these sets, selecting a method that ensures overall good

performance in real flights. Additionally, the detectors are

tested based on different parameters, namely scale, light,

view angle, and background invariance, as presented at the

end of Section IV-A.

Fig. 3. Station setup: reference image (left) and sample scene image
processed with template matching (right)

Fig. 4. Yard setup: sample reference image (left) and sample scene image
processed with classifiers (right)

We use OpenCV 2.4.9 implementations [39] of the dis-

cussed methods, see the documentation of OpenCV for

detailed description of the meaning of the parameters. The

parameter settings result from preliminary tuning experi-

ments conducted with each approach:

• For feature matching-based detection, the FAST feature

detector is used with threshold 31, enabling non-max

suppression; and using default parameters for the SIFT

descriptor, FLANN matching and homography-based

transformation detection.

• For edge detection-based object detection, the Canny

algorithm is selected with hysteresis thresholds 100 and

200, and kernel size 3.

• The classifiers use different settings for the two types

of objects. In both cases, the parameters presented next

are used in the classifier training process [40]. For

the station semaphore, the settings from [41] are used,

creating 1500 positive samples of 30× 120 px size with

arbitrary rotations on the x, y and z axes up to 1.1, 1.1
respectively 0.5 rad, and a maximum intensity deviation

of 40. The classifiers are created over 20 training stages,

searching for Haar-like features and using 1500 positive

and 279 negative samples, a minimum hit rate of 0.999

and a maximum false alarm rate of 0.5. For the yard

panel, 800 positive samples of 32 × 21 px are created

with the same parameter settings. The best performance

is obtained by training with linear binary pattern (LBP)

feature types over 20 stages, working with 800 positive

and 800 negative samples, a hit rate of 0.99 and a false

alarm rate of 0.5.

• After several tests on the similarity metrics, template

matching is performed using the correlation coefficient

similarity evaluation method. A detection score thresh-

old is manually set for each test, where, based on

the reference image and the current light conditions,

it is possible to determine a value below which the

detections are false positives. For the station semaphore,

this threshold is set to 450000, whereas for the yard

panel the value 160000 is used.

Using these settings, the methods are evaluated on the

two image sets. True distance information is collected by

taking each frame and manually reading the height and the

horizontal position of the target, if it is present in the image.

Note that the manual readings may have errors, but these

errors are small compared to those made by the detectors.

Then, the detection methods are run and compared to the

true distances. Tables I and II collect the results. For each

method, the following indicators are checked:

• the average size error in percentage, which collects the

detection height error relative to the true height. The

average is calculated as the sum of the modulus of the

distance errors over the number of image frames;

• the average centering error in pixel distance that re-

presents the horizontal position error of the center of

the detected object;

• the number of false positives indicating the number of

frames in which the target was detected although it

was not present in the frame, or had an error in the

horizontal position compared to the true position. The



Size Pos. False True Detect. Time
Method err. (%) err. (px) pos. neg. rate (%) (ms)

Feature 7.0 1.98 1 15 51 85.6

Edge 9.9 2.45 1 14 41 62.0

Classifier 11.7 1.63 0 14 99 35.0

Template 6.5 1.80 0 11 96 7.1

TABLE I

PERFORMANCE OF DETECTORS – STATION SETUP

position error tolerance is set to 80% of the width of

the target for the station semaphore, and respectively

50% in the case of the yard panel, below which the

detections are accepted as true positives;

• the number of true negatives identified correctly;

• the detection rate as a percentage, including true nega-

tives;

• and the average execution time in milliseconds of a

given method for processing a single frame. Note that,

unlike the other methods, the classifiers require a long

offline training (can last several hours), however this

does not influence the online detection time.

Tables I and II show results when accurate size detection

is not considered as a constraint, i.e the correctness of the

detection is evaluated based only on the presence and the

position of the target, and no sample is declared false positive

based on size error.

Size Pos. False True Detect. Time
Method err. (%) err. (px) pos. neg. rate (%) (ms)

Feature 0.8 0 0 15 8 33.1

Edge 7.5 3.10 0 15 10 23.4

Classifier 18.9 3.23 3 4 93 12.1

Template 14.4 7.41 0 15 68 8.1

TABLE II

PERFORMANCE OF DETECTORS – YARD SETUP

Looking at Table I, it can immediately be seen that the

classifier and template matching methods outperform the

other two. The former two detect almost all targets in the

correct position. Also, the negative samples are almost all

correctly identified, 14 out of 15 for classifiers and 11 out

of 15 for template matching. In general, all of the methods

have a low positioning error (below 3 px). This says that all

the methods are able to correctly detect the position of the

target, if detection is successful. The size error also reflects

that, on average, all the methods detect the size of the target

correctly, up to at most 12% error.

Table II confirms the previous results for the yard setup.

One immediate observation is that, except for template

matching, all the methods are faster, due to the smaller

images used. The size detection and positioning errors are

somewhat greater, however still acceptable. The target object

has fewer interesting features, which determines the lower

overall detection rate. The lower detection rate appears also

due to the fact that the target is captured from various side

views, and the methods are meant primarily for detecting

Scale Light View angle Background

Method (a) (b) (c) (d) (e) (f) (g) (h)

Feature 0 90 0 10 0 0 0 0

Edge 0 65 20 10 5 0 10 0

Classifier 100 100 100 100 100 100 100 100

Template 100 100 100 100 100 50 100 100

TABLE III

DETECTION RATE (%) OF OBJECT DETECTORS: (A) SMALL OR (B)

LARGE SCALE TARGET; (C) BRIGHT OR (D) SHADOW TARGET; TARGET

FROM (E) FRONTAL OR (F) LATERAL VIEW; AND (G) BUILDING OR (H)

SKY BACKGROUND

Scale Light View angle Background

Method (a) (b) (c) (d) (e) (f) (g) (h)

Feature – 8.3 – 12.9 – – – –

Edge – 13.4 22.4 22.2 39.7 – 22.2 –

Classifier 19.8 7.2 19 34.2 23.3 18.5 29.7 13.9

Template 11.3 6.6 19.1 32.1 20.4 10.1 28.5 10.8

TABLE IV

SIZE ERROR (%) OF OBJECT DETECTORS: (A) SMALL OR (B) LARGE

SCALE TARGET; (C) BRIGHT OR (D) SHADOW TARGET; TARGET FROM (E)

FRONTAL OR (F) LATERAL VIEW; AND (G) BUILDING OR (H) SKY

BACKGROUND

the objects from the frontal view. However, the classifier and

template matching methods still have a very good detection

rate. An important remark is that in this second set the

classifier method detects only four true negatives whereas

the template matching method is able to identify all of them

correctly. Also, template matching has less false positive

detections. The perfect true negative detection in the case

of the other two methods can be explained with the very

low detection rate: the edge and feature matching methods

are almost unable to detect the target in this set of images,

therefore they have no detection even in the case of true

negatives.

The detectors are further compared for scale, light, view

angle and background invariance using subsets of the two

image sets. Table III presents the detection rate of the

methods, while Table IV shows the detection size errors in

percentage. Both tables contain four pairs of columns, one

for each tested parameter. For each parameter, 20 to 40 image

frames are taken to test the performance of the methods

in two extremes: for example, we evaluate the detectors

using frames with the target appearing in frontal and in

lateral view separately. Therefore, the column pairs tell how

sensitive each method is to a given parameter, and which is

the preferred parameter setting. The evaluation is performed

based on a small number of samples, therefore limited – but

still useful – conclusions can be drawn.

Table III indicates that with the chosen subsets of images

the feature detectors and edge detectors fail to detect the

target most of the time. On the other hand, classifiers and

template matching almost always succeed. An exception is

template matching for targets in lateral view, where the

detection rate is only 50%. This indicates that using only



frontal reference images, template matching is not able to

perform rotation-invariant detection.

Summarizing the results from Table IV, in our setting,

most of the methods have a more precise detection when

the target appears at a large scale, is brighter, appears

in lateral view, and has a more distinguishable sky back-

ground. Nevertheless, classifiers and template matching have

good performance in less favourable detection circumstances

as well.

Returning to the overall results of the two best-performing

detectors, template matching is clearly faster than the clas-

sifiers, as can be seen from Table I. This is due to the fact

that it requires only some matrix operations compared to the

more complex classification procedure. However, in the case

of the second set where the scene image size was reduced,

the processing time of the classifiers becomes comparable,

as presented in Table II. Both methods perform faster than

the 30 Hz rate at which the frames are received in online

flights. The more important indicator is the detection rate.

While for the station setup the detection rates of the two

methods are similar, the template matching performs worse

with the second set. This is due to the varying appearance of

the target, which is viewed also laterally. As also confirmed

by Table III, template matching will fail often in lateral

view. Therefore, due to the overall better detection rate, the

classifier-based detection is selected to be used in visual

servoing.

B. Distance estimation and trajectory tracking results

Based on the experimental evaluation from Section IV-

A, classifier-based detection is selected for obtaining visual

distance information. Then, the servoing logic discussed in

Section III-B is used in performing inspection flights. The

two distance filtering methods are evaluated offline on a set

of recorded measurements from a real flight trajectory. Later,

both filtering methods are applied online, in separate flights,

in combination with control, and the flight performances

achieved are compared.

The distance calculation is performed as presented in

Section III-B, based on the detection results for each sample.

For the 2-KF approach, the dx filter uses Q = 0.048, R = 20,

while the dy filter has set Q = 0.43, R = 6. Both filters

use a sampling time of Ts = 0.04 s, which is selected to

be greater than the processing time required for the object

detection and distance calculation. The EKF filter is tuned

with Q = σ · [δ3/3, δ2/2; δ2/2, δ], R = [10, 0; 0, 10] with

σ = 10 and δ = 0.02, and Ts = 0.02 s. The sampling time

is set according to the rate at which the velocity readings are

obtained. For both filters, Q and R are empirically tuned.

Figs. 5 and 6 show raw data and filtering results for a set of

372 samples taken from a real flight.

Looking at Fig. 5, the raw measurements contain a 0

measurement at about sample 300, indicating that the target

was not found, and some false positives with distances above

8 m. These outliers and all the noises are correctly filtered

out by both filters. Also, it may be noticed that the EKF filter

offers a smoother signal. The figure shows the true distance
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Fig. 5. Distance filtering on x axis

as well, recorded manually from the image samples. The

filtered signals are well aligned with the true distances: the

2-KF-filtered signal has an average error of 0.20 m, while

the EKF filter has 0.24 m average error.
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Fig. 6. Distance filtering on y axis

For the lateral distance shown in Fig. 6, the average errors

are 0.12 m for the 2-KF filter and 0.05 m for the EKF filter.

The difference appears mainly due to the slight delay of the

2-KF-filtered signal, which implies more errors. Also in this

figure, the true distances are well estimated. However, the

EKF filter has a lower filtering effect, as can also be seen

from the false positive from at around sample 125.

The proposed visual servoing is evaluated in outdoor

flights, showing repeatable, successful flights. Fig. 7 shows

true flight paths (reconstructed from the image frames saved

during the flight by calculating the distances to the target and

taking into account the turning angle measurements) in the

case of two flights, one with 2-KF filtering and another with

EKF distance filtering applied. Both flights start at about 5 m

in front of the target (coordinates (−5, 0)) and aim at keeping

a 4 m distance to the target while flying back and forth on

a ±45° arc. The terminal positions of the trajectories are

marked in green. Some further flights are shown in Fig. 8,

confirming the repeatability of the autonomous inspection

flights. Overall, tens of experiments were performed, with

around 75% successful flights using the best settings.

Focusing on the trajectories shown in Fig. 7, the average

distance-keeping error compared to the desired distance is

0.66 m when the EKF filter was used, and 0.71 m for

the 2-KF-filtered measurements. Nevertheless, the difference
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Fig. 8. Further online flight tests

between the true distance and the filter outputs is below

0.25 m for both filters. This means that, although the filters

determine the true distance with a precision of 0.25 m,

the controls applied by the quadrotor do not immediately

correct the position and thus add further distance errors.

For example, the used platform was tested and we observed

that it has limitations in its internal controller regarding

applying a precise control velocity, due to which a de-

sired commanded trajectory will have further errors. Also,

distance errors may appear due to the outdoor operating

conditions as well, where small wind disturbances influence

the flight trajectory. On the other hand, further errors may

appear due to the internal sensing system of the low-cost

quadrotor, and due to the manual true distance calculation.

Taking into account these issues, the obtained trajectories

are reasonable. The differences between the two trajectories

are not significant, both methods offering similar results

that are suitable for the discussed application. Fig. 9 shows

sample frames captured during the inspection flight, with

the detected target marked by a bounding rectangle. A

video of a typical flight can be downloaded from here

(please use an offline player): http://rocon.utcluj.

ro/files/semaphore_inspection_flight.mp4.

V. CONCLUSIONS

In this paper, we presented implementation and evaluation

results for a railway inspection scenario, where a quadrotor

must perform visual detection of a target object and inspect it

by flying around it on an arc. Four detection approaches were

evaluated and a classifier-based object detection was selected

to be used in visual servoing. Distances were obtained

from image data. Two filtering approaches were used to

smoothen the obtained distances, one that accounts for the

target plane distance and the lateral distance of the target

Fig. 9. Sample image frame sequence with target detection, captured during
an autonomous flight of the quadrotor

separately, using simple Kalman filters, and another that

combines the distances in an extended Kalman filter. Finally,

online flight tests were conducted to evaluate the solution,

using both distance-filtering methods. The resulting distance

keeping and trajectories perform sufficiently well for the

given application.

The most important open issue is obstacle avoidance for

safer navigation. Also, we will work on improving object

detection by obtaining better classifiers, and also by testing

template matching with multiple reference images, so as to

make the detection work from multiple view angles of the

target. Additionally, we will also complete the scenario with

GPS waypoint navigation.
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