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Abstract: We propose an algorithm to search for parametrized policies in continuous state
and action Markov Decision Processes (MDPs). The policies are represented via a number
of basis functions, and the main novelty is that each basis function corresponds to a small,
discrete modification of the continuous action. In each state, the policy chooses a discrete action
modification associated with a basis function having the maximum value at the current state.
Empirical returns from a representative set of initial states are estimated in simulations to
evaluate the policies. Instead of using slow gradient-based algorithms, we apply cross entropy
method for updating the parameters. The proposed algorithm is applied to a double integrator
and an inverted pendulum problem, with encouraging results.
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1. INTRODUCTION

In recent years, reinforcement learning (RL) has been
increasingly studied in machine learning and control the-
ory. RL is the problem faced by an agent that should
learn optimal sequential behavior through trial and er-
ror interaction with a dynamic environment (Kaelbling
et al., 1996; Van Hasselt et al., 2016; Sutton and Barto,
2018). RL problems are usually formalized as Markov
decision processes (MDPs). Traditional RL approaches ap-
proximate the value functions (long-term expected return)
by functional approximators with given architectures and
a manageable number of adjustable parameters (Sutton
and Barto, 2018). Instead of basing the policy updates
on the approximate value function, policy approximation
methods search in the policy space directly (Beitelspacher
et al., 2006). In both value and policy approximation,
there are both local and global optimization methods for
adjusting the parameters. In value approximation dynamic
programming provides a global method; while e.g. De Boer
et al. (2005) introduce an algorithm that approximates
value functions by the gradient-based method. Actor-critic
algorithms, viewed as a hybrid of value function approx-
imation and policy search, have been shown to be more
effective than either of these options (Xu et al., 2014).
The actor-critic update strategy relies on local gradient-
based methods and requires an approximate value function
(Melo and Lopes, 2008; Lillicrap et al., 2015). Although
many policy search algorithms focus on gradient-based op-
timization methods, the key disadvantage associated with
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these methods is they risk getting stuck in local optima.
Global optimization methods such as cross entropy (CE)
optimization overcome this shortcoming, see e.g. Mannor
et al. (2003).

Considering now the problem of solving MDPs with con-
tinuous actions, most existing approaches rely on various
forms of continuous-action value function approximators,
see e.g. Strösslin and Gerstner (2003); Sallans and Hinton
(2004); Gaskett et al. (1999).

In particular, the Binary Action Search (BAS) method
presented by Pazis and Lagoudakis (2009) searches the
entire continuous action range for increment and decre-
ment modifications to the values of the action variables,
according to an internal binary policy defined over an
augmented state space. This approach is coupled with
Least-Squares Policy Iteration, which uses a weighted sum
of basis functions (BFs) to approximate the value function.

In the different class of direct policy search methods,
Busoniu et al. (2010) introduced an algorithm that applies
global cross entropy optimization on the parameters of
policy. It looks for the best policy represented by a number
of tunable BFs, where discrete actions are assigned to the
BFs. This algorithm is designed for MDPs with a discrete
or discretized action space.

Here, we propose an algorithm that directly searches in
the policy space with global cross entropy optimization,
like the method of Busoniu et al. (2010), but differently
from that method, it searches for the best discrete action
modification (DAM) to the current continuous action. This
change is the key contribution of the paper. It is inspired
by the BAS method of Pazis and Lagoudakis (2009), and



similar ideas have been used in model-predictive control
(Mayne et al., 2000). The magnitude of the action modifi-
cations is a small fraction of the magnitude of the original
actions. A prespecified number M of possible DAMs are
chosen. Then, a number of parametrized BFs are defined,
with tunable centers and shapes. A mapping between the
BFs and the possible DAMs is also defined. For any state,
the policy chooses the DAM associated to the BF that
takes the largest value in that state. CE optimization is
applied to search for both the best parameters of the BFs,
and for their mapping to DAMs. In this way, we mix
the advantages of continuous action policies in (Pazis and
Lagoudakis, 2009) with those of global cross entropy opti-
mization in (Busoniu et al., 2010). The resulting algorithm
for CE optimization of parametrized policies is evaluated
in a double integrator and an inverted pendulum problem.

The rest of the paper is organized as follows. Section 2
provides the necessary background. Section 3 introduces
the CE policy optimization method for continuous actions.
Section 4 reports our numerical study. Finally, Section
5 concludes and provides several directions for future
research.

2. TECHNICAL BACKGROUND

2.1 Markov decision processes

In this section Markov decision processes are briefly de-
scribed, focusing on the deterministic variant. For more
details see Puterman (2014). A deterministic continuous-
state and action MDP is defined by a 5-tuple {X,U, f, r, λ},
where X is the continuous state space of the system, U is
the continuous action space, f : X ×U → X is the transi-
tion function (xk+1 = f(xk, uk) denotes the transition to
xk+1 when taking action uk in state xk), r : X × U → R
is a reward function (r(xk, uk) is the reward for taking
action uk in state xk) and λ ∈ (0, 1] is the discount factor
for future rewards. At each discrete time step k, in state
xk, the controller takes an action uk according to a control
policy π. A deterministic policy π for an MDP is a mapping
from states to actions π : X → U ; π(x) denotes the action
chosen by policy π in state x.

The infinite-horizon discounted return for an initial state
x0 under a policy π is:

Rπ(x0) =

∞∑
k=0

λkr(xk, π(xk)) (1)

where xk+1 = f(xk, π(xk)).

The action-value, or Q-value Qπ(x, u) of a state action pair
(x, u) under a policy π is defined as the discounted return
when the process begins in state x, action u is taken and
after that all decisions are made according to policy π:

Qπ(x, u) = r(x, u) + λRπ(f(x, u)) (2)

The optimal Q-function Q∗(x, u) = maxπ Q
π(x, u) is

the maximal Q-function across all policies. The goal of
the decision maker is to find an optimal policy π∗ that
maximizes the expected reward. If the optimal Q-function
is known, the optimal policy can be found as follows:

π∗(x) = arg max
u

Q∗(x, u) (3)

2.2 The cross-entropy method

The cross entropy (CE) is an information theoretic mea-
sure that quantifies the difference between two probability
distributions (Zhu, 2002). The CE method was originally
developed for rare event simulation (Rubinstein, 1997). It
was later extended to optimization in (Rubinstein, 1999);
it can be used to find near-optimal solutions of combinato-
rial and continuous multi-extremal optimization problems.
The main idea behind the CE method is to associate each
optimization problem with a rare event estimation prob-
lem, and solve the latter by an adaptive CE procedure. In
this manner a random sequence of solutions is generated,
which in practice often converges to the optimal or near-
optimal solution.

The CE method employs the following two phases itera-
tively (De Boer et al., 2005):

(1) Generate a sample of random solutions according to
a parametrized probability distribution.

(2) Update the parameters of the distribution based on
the best samples generated in the previous step, so as
to produce a better sample in the next generation.

A simple form of CE optimization is shown in Algorithm 1,
adapted from (De Boer et al., 2005). We aim to maximize
a function S(Y ) across the values of Y ∈ Y. We denote
the maximum as follows:

γ∗ = max
Y ∈Y

S(Y ) (4)

We start by converting the deterministic problem into
stochastic one. Define a family of distributions F (.; v)
parametrized by v, with support equal to the set Y. Prob-
lem (4) corresponds to an associated stochastic problem
of estimating the probability that the function S will be
larger than some level γ when applied to random samples
from such a distribution F (·, v):

`(γ) = Pv(S(Y ) ≥ γ) = EvI{S(Y ) ≥ γ} (5)

where I{·} is the indicator function, equal to 1 when
the argument is true. The event S(Y ) ≥ γ is rare, so
estimating ` is nontrivial.

The CE method solves the optimization problem by gener-
ating a sequence of pairs (γt, vt), which should converge to
a small neighborhood of an optimal pair (γ∗, v∗). Given the
previous iterate vt−1 of the distribution parameter, a level
γt is set by drawing random samples Y1, Y2, ..., Yn from
F (.; vt−1), sorting these samples by the ascending value of
the objective function, and evaluating the (1− ρ)-quantile
of the sample performances:

γ̂t = S(Yd(1−ρ)ne) (6)

where ρ ∈ (0, 1) is a chosen fraction of elite samples. Note
that:

Pvt−1
(S(Y ) ≥ γt) ≥ ρ (7)

The next iterate vt is derived as the solution of the
program:

max
v

Ev−1I{S(Y ) ≥ γt} lnF (Y ; v) (8)

which provides a good importance sampling distribution,
l.e. one that increases the probability of the interesting
event S(Y ) ≥ γt. The empirically sampled version of (8)
is:



max
v

1

n

n∑
l=1

I{S(Yl) ≥ γ̂t} lnF (Yl; v) (9)

Note that for many types of distributions used in practice,
including those from the natural exponential family, (9)
has a closed-form solution. We will use in our methods
Gaussian densities parametrized by their mean and stan-
dard deviation, for which the solution is simply the mean
and standard deviation of the elite samples; and Bernoulli
distributions parametrized by their mean, for which the
solution is the mean of the elite samples.

Instead of setting the next parameter directly to the
solution of (9), the following smoothed version is often
used:

vt = αv̂t + (1− α)vt−1, (10)

where v̂t is the solution of (9) and α is the smoothing
parameter, with 0.7 < α ≤ 1. It is clear that for α = 1
the parameter is fully replaced. Smoothing reduces the
chance that v degenerates in a way that assigns probability
mass 0 to some parts of the solution space, thereby
eliminating those parts from the search and possibly
leading to suboptimal solutions.

Algorithm 1 Cross-Entropy Optimization

1: Choose some initial v0
2: repeat at each iteration t = 1, 2, . . .
3: Generate samples Y1, Y2, ..., Yn from F (.; vt−1)
4: Compute the (1− p)-quantile γ̂t with (6)
5: Use the samples to solve the stochastic program (8)
6: Apply (10) to obtain vt
7: until a stopping criterion is met

3. CROSS-ENTROPY SEARCH OF DISCRETE
ACTION MODIFICATION POLICIES

This section describes the proposed algorithm, CE opti-
mization of parametrized policies for finding continuous
actions. First, the policy parametrization is discussed.
Then, it is explained how CE optimization is applied to
search for a good parametrized policy.

A notable class of representations in the policy search
literature is based on Radial Basis Functions (RBFs).
Here, we define N Gaussian RBFs over the state space,
with parametrized centers and radii:

φl(x; p) = exp

[
−

D∑
d=1

(xd − cl,d)2

b2l,d

]
, l = 1, ..., N (11)

Here, D is the dimension of RBFs, equal to the number
of state variables x, cl,d is d-th dimension center of l-th
function, bl,d is d-th dimension radius of the l-th RBF,
and xd is value of state variable in d-th dimension. All the
RBF centers and radii are collected in an RBF parameter
vector p. The centers of the RBFs should stay inside the
state space X. The radii must be strictly positive.

Our algorithm works for MDPs with continuous actions
in which the successive near-optimal actions only have a
local change across time steps. For instance, this holds
when the dynamics and optimal solutions are continuous
over the states (it does not, however, hold in all cases:
consider for instance time-optimal bang-bang solutions,

 

 

 

Fig. 1. Illustration of our DAM policy representation.

which are known to be discontinuous over time). Using
this property, the policy can modify the current action by
a small amount, instead of searching for an absolute action
magnitude. We choose M discrete such possible modifica-
tions, where the best M is obtained from experiment. Let
δ denote a DAM.

The algorithm looks for the best policy that can be
represented using N RBFs that are associated with the
M DAMs by a mapping (function) j : {1, . . . , N} →
{1, . . . ,M}, as illustrated in Figure 1. For given RBFs and
a given mapping, the policy chooses the DAM associated
to RBF that has maximum value in x:

πδ(x) = δj(l∗), l
∗ = max

l
φl(x; p) (12)

Here, l is the RBF index, l∗ is the RBF that has maximum
value in x, j(l∗) is the index of the DAM associated to this
RBF by the current RBF-DAM mapping j, and δj(l∗) is
the actual DAM. In the example of Figure 1, the number
of RBFs is N = 3 and the number of DAMs is M = 8.
Note that we use a binary representation of the mapping
(indices) j, which requires dlogMe = 3 bits per RBF; these
binary representations are also illustrated in the figure.

It is important to understand that applying DAMs with
a policy that is only a function of the state x makes
the problem non-Markov (since the next state is not
directly predictable anymore). Nevertheless, policy search
methods are known to exhibit some resilience to non-
Markov problems. Adding the previous value of the action
to the state signal is a version that we will explore in future
work.

Our policy updating strategy searches for the optimal RBF
parameters p and mapping j that maximize the following
score function:

S(Y ) =
∑
x0∈X0

RY (x0) (13)

where Y is the concatenation of p and the binary represen-
tation of j, and X0 is a finite set of representative initial
states. Moreover, RY is estimated return of one such state
under the DAM policy πδ parametrized by Y :

RY (x0) =

K∑
k=0

λkr(xk, uk) (14)

Crucially, uk = uk−1 + πδ(xk), and u−1 may be initialized
e.g. to 0. Here, K is the length of the episodes used to
estimate the return.

For CE optimization the deterministic problem of max-
imizing (13) must be converted to a stochastic one. To



make the problem stochastic, Gaussian densities Fp are
selected for the centers and radii p of all the RBFs, and
Bernoulli mass functions Fj are selected for the binary
representations of the DAM assignments j to RBFs. The
Gaussian density for each center cl,d is parametrized by
the mean mc

l,d and the standard deviation scl,d ; and
similarly, the density for each radius bl,d is parametrized
by the mean mb

l,d and the standard deviation sbl,d. Each

bit with index J = 1, . . . , N · dlogMe is extracted from
its Bernoulli distribution parametrized by its mean βJ .
Thus, the overall distribution parameter v contains all the
means and standard deviations for all the RBF centers
and radii (4DN parameters); and the means of all the
bits (N · dlogMe parameters). The overall parameter v is
initialized in the beginning of the algorithm and updated
using the elite samples of Y (p and j).

The initialization of means and standard deviations for
centers and radii of all the RBFs is done as follows (for all
BFs l in first CE iteration):

mc
l =

xmax + xmin

2
, scl =

xmax − xmin

2
,

mb
l = sbl =

xmax − xmin

N

(15)

where xmax and xmin are the bounds of the state space,
and vector assignments are interpreted elementwise. The
Bernoulli distributions are initialized uniform.

The proposed method is summarized in Algorithm 2. The
inputs into the algorithm are the transition function f and
reward function r; the discount factor λ; the percentile ρ
of elite samples to use in the updates; the representative
states X0; the number of RBFs N ; and the number of
DAMs M .

Algorithm 2 CE search for DAM policies

Initialize density parameters v0
for t = 1, . . . , tmax do

for l = 1, . . . , n do
Generate pl from density Fp(·, vt−1)
Generate jl from distribution Fj(·, vt−1)
Initialize sample score, sl = 0
for each x0 ∈ X0 do

k = 0, u−1 = 0
repeat

δk = πδ(xk)
uk = uk−1 + δk
sl = sl + λkr(xx, uk)
xk+1 = f(xk, uk)
k = k + 1

until k > K
end for

end for
Reorder such that s1 < s2 < ... < sn
Find parameters v̂t from elite samples pl and jl,
l = 1, 2, ..., d(1− ρ)ne
vt = αv̂t + (1− α)vt−1

end for
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4. NUMERICAL STUDIES

We apply the algorithm proposed for two popular control
problems: a double integrator (selected because it provides
a simple linear baseline) and an inverted pendulum (se-
lected to provide a more involved, nonlinear example).

4.1 Double integrator

The double integrator can model the control of an ob-
ject along a line, such as a car moving on a road. The
problem has two-dimensional continuous states x = (p, v),
consisting of the position p and the velocity v, and a one-
dimensional continuous action u = a, the acceleration. 1

The continuous-time dynamics are:

ṗ = v, v̇ = a (16)

which we discretize in time with a sampling period of 0.1 s.
States are bounded so that |p| ≤ 1 and |v| ≤ 1.

The objective is optimal control of the car acceleration to
bring it to the zero position. This objective is expressed by
a reward function that penalizes deviations from the goal
position, as well as acceleration magnitude:

r(x, u) = p2 + a2 (17)

To apply our algorithm, the following set X0 of initial
states (p0, v0) is considered:

{(−0.8, 0), (−0.7, 0), ..., (0.8, 0)}
All these states are zero-velocity, i.e. the car starts moving
from the respective positions. The discount factor is γ =
0.95, and the parameter settings for the algorithm are:
ρ = 0.1, α = 0.95, K = 500, n = 100, tmax = 50. These
values were chosen with minimal or no tuning.

Since the car acceleration is restricted in the range [−1, 1],
any fraction of this interval can be selected to cover with
DAMs; here, we select [−0.1, 0.1], a small 10% fraction. We
discretize this interval into M equidistant DAMs which are
assigned to the RBFs.

Figure 2 shows the scores (13) during tmax = 25 CE
iterations, with n = 100 samples at each CE iteration,

1 For a more natural notation in the examples, we allow the reuse
of some symbols from the algorithmic development.
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Fig. 3. Double integrator: Performance (top) and execution
time (bottom) with varying number of RBFs

for N = 20 RBFs and M = 8, 16, 32 DAMs. Each curve
is the mean of 25 runs of the experiment. The algorithm
generally obtains better performance with a larger M , of
course at larger computational cost per iteration. Since
the problem is simple, after around 15 iterations the
performance does not increase much.

Note that the number N of RBFs is taken 20 since
larger values bring no benefit: performance plateaus while
computational cost keeps increasing, see Figure 3.

4.2 Inverted pendulum

Consider the problem of balancing a pendulum in the
upright position, by applying forces to a cart to which the
pendulum is attached (Zheng et al., 2006). The problem
has a two-dimensional continuous state space including
the vertical angle θ and the angular velocity θ̇ of the
pendulum; and a one-dimensional continuous action space
– the force F . The dynamics are:

θ̈ =
(M +m)(q sin θ − θ̇)− (lmθ̇2 sin θ + F ) cos θ

l(M +m(1− cos2 θ))
(18)

where g = 9.8 m/s2 is the gravitational acceleration,
m = 2 kg is the mass of the pendulum, M = 8 kg is
the mass of the cart, and l = 0.5 m is the length of
pendulum (Pazis and Lagoudakis, 2009). The dynamics
are discretized with a sampling period of 0.1 s.

The goal is to bring the pendulum to the upright position,
θ = 0, with zero angular velocity. This goal is expressed
by the reward function:

r =

−
[(

2θ

π

)2

+ θ̇2 +

(
F

50

)2

)

]
if |θ| ≤ π

2

−1000 otherwise

(19)
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To apply CE optimization, a set X0 of representative
initial states is taken for which all angular velocities are
zero, and the angles vary in:

{±(
π

2
− ε),±2π

5
,±3π

10
,±π

5
,± π

10
}

In all initial states the angular velocity is zero. Since θ = π
2

and θ = −π2 are right at the edge of the allowed state
space, they are shifted inside with a small value ε = 0.005.

The parameters of the algorithm are the same as for the
continuous double integrator, γ = 0.95, ρ = 0.1, n = 100
and K = 500. We run the algorithm for N = 20 and
M = 8, 16, 32. Figure 4 shows that scores increase with
M , and as before, Figure 5 shows that N = 20 is a good
choice.



5. CONCLUSION AND FUTURE WORK

This paper proposed an algorithm for direct policy search
in continuous state and action MDPs. The policy applies
increments to the current action, where the increment
chosen is the one associated to the largest basis function
at the current state. Cross-entropy optimization is used to
find the location and shape of the basis functions, as well
as the mapping between these and the action increments.
Encouraging simulation results for a linear and nonlinear
problem were reported.

Besides augmenting the state by the current action in order
to recover the Markov property, another idea that might
improve the algorithm is to search for a simple linear com-
bination of continuous-valued action modifications. CE
optimization is able to search for such a parametrization.
It will also be important to compare the algorithm to
alternative methods for continuous-valued MDPs.
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