Control Delay in Reinforcement Learning for Real-Time Dynamic
Systems: A Memoryless Approach

Erik Schuitema, Lucian Busoniu, Robert Babuska and Pieter Jonker

Abstract— Robots controlled by Reinforcement Learning
(RL) are still rare. A core challenge to the application of RL
to robotic systems is to learn despite the existence of control
delay — the delay between measuring a system’s state and
acting upon it. Control delay is always present in real systems.
In this work, we present two novel temporal difference (TD)
learning algorithms for problems with control delay. These
algorithms improve learning performance by taking the control
delay into account. We test our algorithms in a gridworld,
where the delay is an integer multiple of the time step, as
well as in the simulation of a robotic system, where the delay
can have any value. In both tests, our proposed algorithms
outperform classical TD learning algorithms, while maintaining
low computational complexity.

I. INTRODUCTION

Reinforcement Learning (RL) is a promising approach to
adding autonomous learning capabilities to robotic systems.
However, examples of real dynamic systems controlled in
real-time by RL are still rare; most work on RL is done
in simulation. An important difference between such real
systems and their simulations is the presence of time delay
between observation and control action: control delay. Every
such real system that runs on-line RL will have a non-zero
control delay due to transporting measurement data to the
learning agent, computing the next action, and changing the
state of the actuator. The delay is illustrated in Fig. 1. In this
paper we show that besides negatively influencing the final
solution, control delay can be particularly detrimental to the
learning process itself, if it remains unaccounted for.

i) | i) |
< <
7 I k7 ! I
I | I ! I
! 1 L 1 1
SK Sk Sk+2 Sk Skt Sk+2 .
| time — T control time —
- 4‘— < delay —L
2 2
S S
DY oy iz A1 a Bt . k2
time — time —
() (b)
Fig. 1. Schematic illustration of control delay between measuring state sy,

and acting accordingly with action ay. a. No delay. b. With control delay.

E. Schuitema and P.P. Jonker are with the Delft Biorobotics Lab, and
L. Busoniu and R. Babuska are with the Delft Center for Systems and
Control. Delft University of Technology, Mekelweg 2, 2628CD, Delft, The
Netherlands. {e.schuitema, i.l.busoniu, r.babuska,
p.p.Jjonker}@tudelft.nl

The influence of control delay on RL has received little
attention in the RL literature. Currently, there are two state-
of-the-art approaches. In the first approach, the state space
of the learning agent is augmented with the actions that
were executed during the delay interval [1]. While this
approach works well, the state space increase can cause a
large increase in learning time and memory requirements.
The second approach is to learn a model of the underlying
undelayed process, and use this model to base control actions
on the future state after the delay, predicted by the model
[2]. This adds the extra burden of acquiring a model of
the system, while the added computational complexity may
actually increase the delay itself.

As opposed to methods that augment the state space or
estimate an explicit model, memoryless methods form an
alternative approach. Such methods base the next control
action only on the most recent observation. A memoryless
method that is known empirically to produce good results is
SARSA(M) [3], [2]. The downside of memoryless approaches
is that they are likely to perform suboptimally, because
they have no means of predicting the state in which the
control action will take effect. Furthermore, SARSA()\) does
not take the presence of delay into account in its learning
updates. However, memoryless methods do not have the
added complexity of learning a model or enlarging the state
space, and may perform acceptably, especially when the
delay is small.

In this work, we introduce two new memoryless, on-
line algorithms — dSARSA()\) being the most important
one. While their complexity remains comparable to that of
SARSA(M), they exploit the knowledge about the length of
the delay to improve their performance. In addition, we
present an extension to these algorithms which is, under
certain conditions, applicable to systems in which the delay
is not an integer multiple of the time step. While this is most
likely to be true for real robotic systems, this case has not
been considered in previous literature on RL with delay.

This paper is organized as follows. In Sec. II, we discuss
existing approaches to RL for systems with and without
delay. In Sec. III, we present our main contribution. In
Sec. IV, we compare our approaches to existing methods on
two simulation problems, a gridworld problem and a robotic
system. We end with conclusions in Sec. V.

II. PRELIMINARIES

In this section, we define the Markov Decision Process
framework for Reinforcement Learning, as well as an exten-
sion of this framework that models control delay.

A. The Markov Decision Process

The common approach in RL is to model the learning
system as a Markov Decision Process (MDP) with discrete
time steps labeled k¥ = 0,1,.. € Z with sampling period
h. The dynamic systems that we are interested in - robotic
systems - will have a continuous state space S and a
continuous action space A. The MDP is defined as the
4-tuple (S, A, T, R), where S is a set of states and A is
a set of actions. The state transition probability function
T:8xAxS — [0,00) defines the probability that the
next state spy; € S belongs to a region Sipy; C S as
fSk+1 T(sk,ax, s’)ds’, when executing action a; € A in
state s, € S. The reward function R : S x A x S — R
is real valued and defines the reward of a state transition as
Tk+1 = R(Sk, ak, Sk+1). An MDP has the Markov property,
which means that transitions only depend on the current
state-action pair and not on past state-action pairs nor on
information excluded from s.

The goal of the learner is to find an optimal control policy
m* : S — A that maps states to actions and that maximizes,
from every initial state sg, the return, i.e., the long-term sum
of discounted rewards ‘R :

R(s0) = Y Vres (1)
k=0

in which + is the discount factor. The action-value function
or Q-function Q(s, a) gives the estimated return of choosing
action aj in state s; and following the control policy
afterwards: Q(sk, ar) = E{rg41 + 7R (sk+1)}-

Online RL implies that the system learns from interaction
with the real world. The state transition probability function
T can be either unknown to the learning agent (model-
free RL), learned while learning the task (model-learning
RL), or provided a priori (model-based RL). Although there
are multiple classes of online RL algorithms, in this paper
we will focus on the class of (online) Temporal Difference
learning algorithms.

B. Temporal Difference learning

Temporal Difference (TD) learning methods mostly aim
at directly estimating the Q-function Q(s,a), from which
the policy is derived by selecting the control action for
which Q(s,a) is maximal. Popular on-line algorithms in
this category are Q-learning and SARSA. After every state
transition, these algorithms update Q(sy, ax) as follows:

Q(sk,ar) <+ Q(sk,ar) + adrp i
O0TDsarsa k= Tht1 + YQ(Skt1, Ak+1) — Q(Sk, ar)
0TDq,k =Tg41 + ’YIT}I@XQ(SkJrha/) — Q(sk, ax)

2)
where « is the learning rate, v the discount factor and érp
the temporal difference (TD) error. While SARSA uses the
Q-value of the actually selected action in its update rule,
Q-learning uses the maximum achievable Q-value, which
does not depend on the executed policy. This makes SARSA
an on-policy and Q-learning an off-policy algorithm. In
on-policy methods, Q(s,a) is based on the policy that is

used during action selection, while in off-policy methods,
Q(s,a) is based on a different (usually the optimal) policy,
independent of the action selection policy.

To speed up convergence, SARSA and Q-learning can
be combined with eligibility traces (see, e.g., [3]), thereby
forming SARSA()A) and Q(\), respectively. With eligibility
traces, learning updates are applied not just to the previously
visited state-action pair (s, ax), but also to pairs that were
visited earlier in the episode. In this process, more recently
visited (s, a)-pairs receive a stronger update than pairs visited
longer ago. The update rules become

Qr+1(s,a)= Qk(s,a) + adrpey(s,a)
1 ,if s=spand a =ar (3)

ex(s, a) YAek—1(s,a) , otherwise.

which are now executed for all s € S,a € A. At the start
of a new episode, e is reset to 0. For Q()\), the eligibility
of preceding states is only valid while the greedy policy is
being followed. Thus, for Q()\), e should also be reset after
an exploratory action.

For Q-learning and SARSA, the greedy policy selects
actions Gy greedy according to

Ok, greedy — aI'g maXQ(Ska a/) “4)
a/

which becomes a computationally costly operation when the
action space is large (e.g. multidimensional). Therefore, these
algorithms are likely to create delay in the online setting.
The delay becomes larger when a computationally expensive
function approximator is used to represent the Q-function.

A widely used action selection policy that includes ex-
ploratory actions is the e-greedy policy, which selects actions
Ak e—greedy according to

Ak greedy , with prob. 1 — ¢

random(A) , with prob. e ©)

Ak e—greedy = {

C. Control delay in MDPs

We now consider MDPs with control delay. We define
control delay as the time delay between the moment of
observing the state and the moment when acting upon that
state takes effect. Control delay, which we will refer to
simply as delay, can be caused both by delayed observation,
e.g., due to transportation of the measured data, and by
delayed actuation, e.g., due to lengthy computations. In this
paper, we only consider constant delays'. We define the
relative delay 7,4 as

Ty
h
with Ty the absolute delay and h the sampling period.

In [1], it is shown that from the point of view of the
learning agent, there is no functional difference between
observation delay and action delay; both add up to the delay
between the moment of measurement and the actual action.

From (2), we can see that the Q-function is adjusted every
time step according to a supposedly Markovian (stochastic)

(6)

Td

Variable delays in real robotic systems (interesting for future work) can
be made (nearly) constant by adding artificial delay to ’fast samples’.

state transition based on state s; and action ay; the agent
learns the effect of executing action ay. In the delayed case,
the action that is executed in s; is not a. If 74 is an
integer, i.e., the delay is an integer multiple of h, the actually
executed action is ay_r,. If 74 is not an integer, a state
transition is influenced by rwo actions selected in the past.

The fact that state transitions become dependent on actions
selected in the past, which are not part of the input of
the learning agent, results in a violation of the Markov
property. This relates the problem of delay to the framework
of Partially Observable MDPs, or POMDPs.

D. Existing approaches to MDPs with delay

Delay implies that decisions take effect in future states.
When the future state (distribution) can be predicted from
the most recent observation and the upcoming actions, e.g.
by an explicit state transition model, optimal action selection
becomes possible again. From [1], it is known that when
the state space of the MDP is expanded with the actions
taken in the past during the length of the delay, forming the
augmented state space I, = .S x A™ with 7,4 integer-valued,
a constant delay MDP can be reduced to the regular MDP
(I;,,A,T,R). This formulation makes it possible to use
existing RL techniques to solve the delayed case. However,
since the state space dimensionality grows with the number
of delay steps, learning time and memory requirements will
rapidly increase with this approach.

In [2], an approach called Model Based Simulation is
presented, in which a state transition model of the underlying
undelayed MDP is learned by matching actions with the
states in which they actually took place. Model-based RL
is then used to estimate the optimal (action-)value function.
However, such an approach has the additional burden of
learning an explicit model of the system.

A memoryless policy is a policy that only bases its actions
on the current state s, despite the delay. This means that
it does not take into account the future state in which the
action takes effect. Therefore, it is likely to perform worse
than methods that use a model for state prediction. From [4],
it is known that the best memoryless policy of a POMDP
can be arbitrarily suboptimal in the worst case. However,
this does not mean that a memoryless policy cannot achieve
an acceptable level of performance in a given problem.
In [5], it is argued that SARSA(\) performs very well in
finding memoryless policies for POMDPs, compared to more
sophisticated and computationally much more expensive
methods. In [2], Model Based Simulation is also compared
with SARSA()), which performs surprisingly well, but not
as well as their model-based approach.

In our main contribution, we will use the knowledge on
the source of the partial observability - the delay, and its
length - to create memoryless algorithms that outperform
SARSA()\), while having similar complexity. They do not
enlarge the state space and they are model-free.

In all the aforementioned work, only delays of an integer
multiple of the time step were considered, while in real-time

dynamic systems, this is usually not the case. Therefore, we
also present an extension to our algorithms that make them,
under certain conditions, applicable to the case where 7; can
have any non-integer value.

III. TD LEARNING WITH CONTROL DELAY: DSARSA
AND DQ

We now present our main contribution: modified versions
of SARSA and Q-learning that exploit knowledge about
the delay. In these versions, instead of updating Q(sk, ax),
updates are performed for the effective action ay, that actually
took place in s;. We will first consider the case where 74 is
an integer, which results in the following effective action

G = Qk—ry- (N

The update rules are as follows

Q(sk, ax) — Q(sk,) + adrp Kk
6TDdSARSA,k =Tk+1 + 7@(3k+17 dk+1) - Q(Sk‘7 &k)
0TDaq k =Tpt1 + VII?XQ(SkJrh a’) — Q(sk, ax)

)
We call these variants dSARSA and dQ, where ‘d’ stands for
‘delay’. Both algorithms are memoryless, which means their
policy depends only on the current state. Action execution
is still delayed. They use the knowledge on the length of
the delay to improve the learning updates. Eligibility traces
can be introduced by modifying (3) at the following point:
er(s,a) = 1if s = s and a = a;. We will now discuss the
most important properties of dQ and dSARSA.

A. Behavior of dQ-learning

Regular Q-learning is an off-policy algorithm, which
means that Q(s, a) is not based on the action selection policy.
The only restriction on the action selection policy is that
all state-action pairs continue to be updated. In dQ-learning,
we restored the temporal match between states and actions.
This means that with dQ-learning, the action-value function
will converge to the optimal action-value function of the
underlying undelayed MDP. Execution is still delayed.

When combining dQ-learning with eligibility traces, form-
ing dQ(\)-learning, convergence is not guaranteed, since
eligibility of preceding states is only valid when the greedy
policy is being followed. With delayed execution, this is
generally not the case. In our empirical evaluations in Sec.
IV, we will indeed see that the use of eligibility traces
can lead to rapid divergence. However, dQ(0) is still an
interesting algorithm due to its convergence properties, and
we expect it to be an improvement over regular Q-learning.

B. Behavior of dSARSA

Regular SARSA is an on-policy algorithm. Therefore,
the estimated Q-function is based on the policy’s action
selection probabilities. In the case of dSARSA, execution
of actions is still delayed. Therefore, although we restored
the temporal match between states and actions in the updates,
the actual policy still depends on the history of the agent.
The convergence proof of SARSA [6] requires the policy to
be greedy in the limit with infinite exploration (GLIE), which

dSARSA cannot provide. dSARSA can choose, but not
execute, greedy actions with respect to its value function due
to the delayed execution of actions. This convergence proof
therefore does not hold. However, we expect that dSARSA is
still an improvement over SARSA due to the incorporation
of knowledge about the delay. When combining dSARSA
with eligibility traces, forming dSARSA()), the eligibility of
preceding states is in this case justified because the action-
value function is based on the actually executed policy (the
delayed policy). Therefore, dSSARSA and dSARSA()) are
expected to give the same solution.

From the above reasoning and from existing convergence
proofs, we can conclude that from the algorithms Q()),
dQ(A), SARSA(N) and dSARSA()), only dQ(0) (i.e., without
eligibility traces) is guaranteed to converge in the delayed
case. More insight into the convergence of dSARSA()\) and
dQ()\) remains important future work.

The actions that are selected prior to visiting a state s
are responsible for the action actually executed in s. While
these actions can in principle not be predicted from s, their
probability distribution might contain structure when the
policy is quasi-stationary and the distribution of initial states
is fixed. When the learning rate « is reduced, the policy
changes less rapidly, and Q-values represent the average of
a larger number of experiences. From this reasoning, we
expect the performance of memoryless policies to improve
with decreasing «. In Sec. IV, we will verify this hypothesis.

Note that although dSARSA and dQ are memoryless
and model-free, they can still benefit from a (learned) state
transition model by using it to predict the future state after
74 steps and selecting the action for that predicted state.

C. Non-integer values of T4

We will now consider the case where 74 is not an integer.
From Fig. 1, it can be seen that the control action is a
combination of the two previously selected actions ay_{r,
and aj_rr,141 with [74] the smallest integer for which
Ta < [74]. Therefore, dSARSA and dQ cannot be directly
applied in this case. We will now show that in the special case
where the system dynamics can be accurately linearized at
arbitrary states, over the length of one time step, it is possible
to estimate the effective action a(kh) without knowledge of
the system dynamics. In case T;; < h, *the state transition of
the real system can be shown to be, in a first approximation,
equivalent to the case where the system would have executed
the following virtual effective action a(kh) during the full
time step:

ap = ap—174 + ar(l — 74) &)

Here we assume that actions can be linearly combined, e.g.,
when actions are motor torque or voltage. Switching to the
continuous time notation s(kh) = si, a(kh) = ag, the
locally linearized system at time ¢ = kh around state s(kh)
has the form

5(t) = Fs(t) + Ga(t) (10)

2To avoid notation clutter, we make the assumption that Ty < h.
However, generalizing the results to larger delays is straightforward.

with ' and G matrices. The exact solution to (10) in the
delayed case with Ty < h is

s(kh+h) = efs(kh)
kh+Tg
- / eF'Fhth=s) s Ga(kh — h)

kh
kh+h

+ /eF(kthh*S)dsGa(kh)

kh+Tq

Y

The exact solution to the non-delayed case in which action
a(kh) from (9) was executed is

s(kh+h) = ef"s(kh)
kh+h T
+ / el (kh+h—s) dsGa(kh—h)#

kh
kh+h

- / eFkhth=s) s Ga(kh)
kh

h—Ty
h

12)

For small time steps, we can approximate integrals of the
form [/*eX*ds ~ I(ty —t1) + X (13 — 13) ~ I(ta — ta),
for which (11) and (12) become equal. In this special case,
dSARSA and dQ can again be applied using (9).

IV. EMPIRICAL EVALUATIONS

In this section, we empirically evaluate the performance of
dSARSA and dQ on two test problems. We consider integer
values of 74 in the large W-maze — a gridworld problem —
and non-integer values of 74 in the simulation of the two-link
manipulator — a robotic system.

A. Integer values of 74: the large W-maze

We first consider the large W-maze, see Fig. 2b, in which
T4 is always an integer. This is a modified version of the
W-maze, see Fig. 2a, that was used in [2] to empirically
illustrate several approaches to delayed MDPs. In the original
W-maze, a delay of one time step easily results in the agent
missing the middle corridor that leads towards the goal. The
larger corridors and goal state of the large W-maze make the
effect of delayed policy execution less severe.

GOAL

N N

Fig. 2. The W-maze (left) and the large W-maze (right), which has larger
corridors and a larger goal region.

We evaluated the performance of dQ(0), dQ()\) and
dSARSA()) in comparison with Q(A) and SARSA(\). While
dSARSA(0) is merely a slower version of dSARSA()) and
of less interest, dQ(0) is the only algorithm with convergence
guarantees (see Sec. III-A) and we therefore include it. We

set the delay to 2 time steps. The only reward in the system
is —1 for every action, so that the agent learns to reach the
goal as fast as possible. We did not use discounting (y = 1).
We used the e-greedy policy (5) with e = 0.1 (fixed).

First, we compared the policy performance from the
solutions found by all methods, as a function of the learning
rate . While keeping « constant, the agent was allowed
to learn for 1-10° time steps. The policy performance was
periodically measured by letting the agent start a trial from
each of the 60 possible positions in the maze, execute the
greedy policy until the goal was reached (with a maximum
of 300 steps), and summing up all trial times (ergo, smaller is
better). The average of all performance measurements during
the last 5-10° steps is plotted against « in Fig. 3.

The graph shows that for all methods, except dQ(0),
the performance is much better for smaller values of .
This confirms the hypothesis that memoryless policies for
delayed MDPs can improve their performance by averaging
over more samples. This averaging is not needed by dQ(0).
Despite its lack of eligibility traces, dQ(0) can still learn fast
because it allows for high values of a.

Furthermore, we can observe that at equal values of
a, dSARSA(0.8) performed at least twice as good as
SARSA(0.8). Instability of dQ(0.8) occurred for larger values
of o (Q-values quickly went to infinity).

10000
——Q(0.8)
o 80001 —6--SARSA(0.8)
2 —+—dQ(0.8)
g —+-dSARSA(0.8)
5 6000 r —=—dQ(0)
E_ """" Optimal
> 40001
2
= :
& 2000¢
@ = S "
0
Learn rate o
Fig. 3. Comparison of several memoryless TD algorithms on the large

W-maze problem, showing the final average performance (lower is better)
at different values of «, with v on a log scale (average of 20 runs).

To compare the learning speed of all methods, we again
kept € and « constant. However, we chose a different «
for each method for the following reason. An increase in
« results in faster learning, but also in a decrease in final
performance. Therefore, we chose the largest values of «
for which each method was able to achieve approximately
the same final performance of 800 or better. This resulted
in the following values: dQ(0): o = 1, dQ(0.8): a = 0.2,
dSARSA(0.8): a = 0.02, Q(0.8): @ = 0.02, SARSA(0.8):
a = 0.2. dQ(0) is an exception; for this method, the average
performance did not drop below approx. 1000. The result
can be found in Fig. 4. We can observe that in order to
achieve the same final performance, dSARSA(0.8) learns
much faster than SARSA(0.8) and Q(0.8). Although dQ(0)
does not benefit from eligibility traces, in this particular test

it can learn as fast as dQ(0.8) and dSARSA(0.8) because it
allows for much higher values of a.

—e—Q(0.8), a=0.020
—6--SARSA(0.8), a=0.020 ||
——dQ(0.8), 0=0.200
—+-dSARSA(0.8), 0=0.200

—&— dQ(0), a=1.000 |

Policy performance

0 0.5 1 1.5 2
Learning time [steps] < 10°

Fig. 4. Learning curves of several memoryless TD algorithms on the large
W-maze problem. The learn rate o for each method was set to a value that
produced a performance measure < 800 (average of 20 runs).

B. Non-integer values of 14: the two-link manipulator

We now consider the simulation of the two link manip-
ulator - a robotic system - depicted in Fig. 5. This system
has been used in previous work (see, for example, [7]), has
limited complexity and is well reproducible. In this system,
the delay can be any non-integer multiple of the time step h,
which is generally the case for robotic systems. The system
has two rigid links, which are connected by a motorized joint.
One end of the system is attached to the world, also with a
motorized joint. The system moves in the two dimensional
horizontal plane without gravity according to the following
fourth-order non-linear dynamics:

M(@)p + Clo, @) =T

where @ = [¢1, p2], T = [T1, 2], M(¢) is the mass matrix
and C(¢p, ¢) is the Coriolis and centrifugal forces matrix.

13)

Fig. 5. Schematic overview of the two-link manipulator

We consider delay values of 0 <= Ty <= h. The task of
the system is to accomplish 1 = 2 = @1 = @2 = 0 as
fast as possible by choosing torque signals for both motors.
To this end, a reward is given when the angles and angular
velocities are within a small region around 0: |p| < 0.17
(rad) and || < 0.2 (rad) - s~!. Furthermore, a time penalty
is given at each time step. The reward function r is

{ 100,
Ty = _1

The learning time step h = 0.05s, the learning rate o =
0.4, the exploration rate ¢ = 0.05 (again using the e-greedy

if || < 0.17 and |¢| < 0.2

all other cases (time penalty) (14)

policy (5)), the discount factor v = 0.98 and the trace decay
rate A = 0.92. We use tile coding function approximation [3]
with 16 tilings to approximate the Q-function. The state s =
(p1, 92, $1,¢2). The tile widths for the state space are 1/12
(rad) in the ¢ and ¢, dimensions and 1/6 (rad)-s~! in the
1 and o dimensions. The tile widths for the action space
are 1Nm in both dimensions. The action space A = 71 X Ty
is divided in 5 equidistant discrete steps in both dimensions,
allowing for a total of 5- 5 = 25 torque combinations. These
parameters were selected empirically because they produced
stable learning; they were not systematically optimized.

We first tested the effects of a delay of one time step or
less using regular SARSA()). The results can be found in
Fig. 6. We can observe that for this particular system and
for o« = 0.4, the system without delay smoothly converges.
Delay values of T; > 0.025s (13 > 0.5), however, slow down
the learning process or cause frequent divergence/unlearning.
With a delay of a full time step, the system hardly learns for
this value of o.

25 : ‘
7 =0.00 ------- rd=0.24
- (. 1 T.=1.00 |
g N, gl N
7] ~\A !/ i
- W ' (AR
@]
on
e o T =0.74]
Q o RN
£ S el
&= 7 =0.50 e
entrmaoreane Lo
10 15 20
Time [h]

Fig. 6. Learning curve of the two-link manipulator running regular
SARSA() for 74 = 0,0.24,0.50,0.74 and 1.0 (average of 20 runs).

Next, we tested dSARSA()), using (9) to calculate the
effective action. To this end, we set the delay to Ty = 0.037s
(14 = 0.74), a value which caused convergence problems for
regular SARSA()\). We compared it against the approach of
using augmented state space [, = S x A™ with 75 = 1, so
that Saug = (S, T1,k—1, T27k_1) (tile widths for T1,k—1,T2,k—1
are INm). The results can be found in Fig. 7. We can observe
that for both approaches, the delayed system nicely converges
to a solution, unlike with SARSA()\) (see Fig. 6). With
dSARSA()), the system learns faster than with SARSA(\)
with augmented state space, but slower than the original,
non-delayed system with SARSA()). Both methods have
statistically indistinguishable final system performance. This
suggests that the possible performance increase from a model
based approach, such as in [2], will only be marginal in this
case.

V. CONCLUSIONS

In this work, we derived new memoryless, model-free,
online TD learning algorithms for MDPs with delay —
dSARSA()M) being the most important one — that perform

- d=O.00
—_ rd=0.74, SARSA(A),augm.
------- T d=0'74’ dSARSA(L)

Time to goal state [s]
I

10 1
5 “\Nv il
B LIy Y T VP e e St e |
0 ‘) j . ,
0 5 10 15 20 25 30

Time [h]

Fig. 7. Learning curves of the two-link manipulator with a delay of 74 =
0.74, comparing dSARSA(X) and SARSA(A) with augmented state space,
showing the average of 60 runs. The shaded area shows the 95% confidence
bounds on the mean.

better than classical TD algorithms by exploiting knowl-
edge about the delay. We showed in a gridworld problem
that dSARSA(A) can significantly outperform Q(A) and
SARSA()) in terms of learning speed and final policy
performance.

We extended our algorithms to systems in which the delay
is not an integer multiple of the time step. We showed in
a simulation of a robotic system that a control delay of
less than a single time step can already degrade learning
performance with classical SARSA(A), while dSARSA())
can successfully learn in that case. dSSARSA(\) learned faster
than a memory based approach — SARSA()\) with augmented
state space — while its policy performance did not degrade.

We can conclude that dSARSA() is a better memoryless
approach than classical SARSA()) for MDPs with delay,
and that in some cases, it can compete with memory based
approaches. In future work, we will test the applicability of
our methods on our humanoid robot ‘LEO’ [8].

REFERENCES

[1] K. V. Katsikopoulos and S. E. Engelbrecht, “Markov decision processes
with delays and asynchronous cost collection,” IEEE Transactions on
Automatic Control, vol. 48, no. 4, pp. 568-574, 2003.

[2] T.J. Walsh, A. Nouri, L. Li, and M. L. Littman, “Learning and planning
in environments with delayed feedback,” Autonomous Agents and Multi-
Agent Systems, vol. 18, no. 1, pp. 83-105, 2009.

[3] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduc-
tion,” 1998.

[4] S. P. Singh, T. Jaakkola, and M. I. Jordan, “Learning without state-
estimation in partially observable markovian decision processes,” in
Proceedings of the 11th International Conference on Machine Learning,
1994, pp. 284-292.

[5] J. Loch and S. Singh, “Using eligibility traces to find the best mem-
oryless policy in partially observable markov decision processes,” in
Proceedings of the 15th International Conference on Machine Learning,
1998, pp. 141-150.

[6] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvari, “Convergence
results for single-step on-policy reinforcement-learning algorithms,”
Machine Learning, vol. 38, no. 3, pp. 287-308, 2000.

[7]1 L. Busoniu, D. Ernst, B. De Schutter, and R. Babuska, “Fuzzy approx-
imation for convergent model-based reinforcement learning,” in /EEE
International Conference on Fuzzy Systems, FUZZ-IEEE, 2007.

[8] E. Schuitema, M. Wisse, and P. Jonker, “The design of LEO: a 2D
bipedal walking robot for online autonomous reinforcement learning,”
in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, Taipei, Taiwan, October 2010.

