
Model Learning Actor–Critic Algorithms:
Performance Evaluation in a Motion Control Task

Ivo Grondman1, Lucian Buşoniu2 and Robert Babuška1

Abstract— Reinforcement learning (RL) control provides a
means to deal with uncertainty and nonlinearity associated
with control tasks in an optimal way. The class of actor–
critic RL algorithms proved useful for control systems with
continuous state and input variables. In the literature, model-
based actor–critic algorithms have recently been introduced to
considerably speed up the the learning by constructing online
a model through local linear regression (LLR). It has not been
analyzed yet whether the speed-up is due to the model learning
structure or the LLR approximator. Therefore, in this paper we
generalize the model learning actor–critic algorithms to make
them suitable for use with an arbitrary function approximator.
Furthermore, we present the results of an extensive analysis
through numerical simulations of a typical nonlinear motion
control problem. The LLR approximator is compared with
radial basis functions (RBFs) in terms of the initial convergence
rate and in terms of the final performance obtained. The results
show that LLR-based actor–critic RL outperforms the RBF
counterpart: it gives quick initial learning and comparable or
even superior final control performance.

I. INTRODUCTION

Learning control can be used to optimize the control
system’s performance over a variety of conditions, which are
difficult to predict or model for the purpose of off-line design.
It can also deliver solutions to problems that we are currently
not able to solve through conventional control design, due
to the lack of suitable methods and tools. Reinforcement
learning (RL) algorithms represent an important class of op-
timal control techniques which impose minimal assumptions
on the process model properties and on the control task
specifications. A general drawback of RL is its relatively
slow convergence and therefore extensive learning times.
To speed up learning, previous work [1] introduced two
actor–critic reinforcement learning algorithms, which both
use model learning capabilities and local linear regression
(LLR) for all function approximations. Both methods belong
to the class of model learning algorithms (also called indirect
methods) as opposed to direct algorithms [2].

Model Learning Actor–Critic (MLAC) learns a process
model and employs it to update the actor. Instead of using
this process model to generate simulated experiences as
most model learning RL algorithms do [3]–[5], it uses
the model to directly calculate an accurate policy gradient,
which accelerates learning compared to other policy gradient

1I. Grondman and R. Babuška are with the Delft Center for Sys-
tems and Control of Delft University of Technology, The Netherlands
({i.grondman,r.babuska}@tudelft.nl).

2L. Buşoniu is with CNRS, Research Center for Automatic Control,
University of Lorraine, Nancy, France and is also associated with the
Department of Automation, Technical University of Cluj-Napoca, Romania
(lucian@busoniu.net).

methods. Reference Model Actor–Critic (RMAC) also learns
a process model, but in addition it also learns a reference
model which represents desired behavior by mapping states
to subsequent desired states. The reference model and inverse
process model are then coupled to serve as an overall actor,
which is used to calculate new inputs to the system.

The goal of this paper is twofold. The first part of the paper
generalizes the MLAC and RMAC algorithms of [1] to make
them suitable for use with arbitrary function approximators.
The second part then analyzes the performance of the two
algorithms, using two different function approximators: a
radial basis functions network and local linear regression.
For the comparison we choose numerical simulations of the
pendulum swing-up task, which is a highly nonlinear control
problem commonly used in the literature [6], [7]. We are
aware of the fact that the results do not necessarily carry over
to other tasks (e.g., to higher-order systems). We do believe,
however, that this represents a broad class of motion control
problems characterized by dominant second-order dynamics,
nonlinearity and a non-trivial solution, which is hard to find
by alternative online learning methods.

II. REINFORCEMENT LEARNING
Reinforcement learning (RL) [2] can be used to solve

problems modeled as Markov decision processes (MDPs).
An MDP is a tuple 〈X,U, f, ρ〉, where X denotes the state
space, U the action space, f : X×U 7→ X the (deterministic)
state transition function and ρ : X × U 7→ R the reward
function.

The process to be controlled is described by the state
transition function f : X × U 7→ X , which returns the state
xk+1 that the process reaches from state xk after applying
action uk. After each transition to a state xk+1, the controller
receives an immediate scalar reward rk+1, given by the
reward function ρ, rk+1 = ρ(xk, uk).

The goal in RL is to find the control policy π : X 7→ U
that maximizes a function of the immediate rewards received
while following the policy π. This function can simply be
the sum or the average of all received immediate rewards, or
a discounted sum, which is used in this paper. The value
function V π : X 7→ R approximates the value of this
discounted sum during learning:

V π(x) = E

{ ∞∑
k=0

γkrk+1

∣∣∣∣∣x0 = x, π

}
where γ ∈ [0, 1) denotes the reward discount factor. The
superscript π indicates that this is the discounted sum of
rewards collected when following the policy π.



III. ACTOR–CRITIC ALGORITHMS

In real-life applications, such as robotics, processes usually
have continuous state and action spaces, making it impossible
to store exact value functions or policies for each separate
state. Any RL algorithm used in practice will have to make
use of function approximators for both value function and/or
policy in order to cover the full continuous range of states
and actions. Actor–critic algorithms [8], [9] facilitate the
use of continuous state and action spaces in an easy way.
As the policy (the actor) and value function (the critic) are
stored separately, generating a control action does not—
in contrast to critic–only methods—require an expensive
(continuous) optimization procedure over the value function.
Instead, control actions can be calculated directly from the
learned policy.

Both the actor and the critic are usually parameterized
functions. This allows both functions to easily operate on
a continuous domain. The critic approximates and updates
the value function using measured samples from interaction
with the process. The value function is then used to update
the actor’s policy parameters in the direction of performance
improvement.

Three actor–critic algorithms are evaluated in this paper.
The descriptions of the algorithms here differ from the
original ones in [1]. The focus is now more on the basic
principles of the algorithms, rather than their implementation
when using LLR. Moreover, they are now formalized in a
more general way and are no longer tied to using local linear
regression as the function approximator, but can use any
function approximator that is linear in its parameters. For
example: the actor, parameterized by ϑ ∈ Rp and using basis
functions ψ(x), is defined as πϑ(x) = ϑ>ψ(x). The critic,
parameterized by θ ∈ Rq , is defined similarly and given by
Vθ = θ>φ(x).

The critic part of all algorithms employs the same TD(λ)
update

δk = rk+1 + γVθk(xk+1)− Vθk(xk) (1a)
zk = λγzk−1 +∇θVθk(xk) (1b)

θk+1 = θk + αcδkzk (1c)

This type of update, using eligibility traces zk ∈ Rq , is
further explained in [2], [10]. The three algorithms differ in
the way they represent and update the actor, which is further
detailed in the remainder of this section.

A. Standard Actor–Critic

The Standard Actor–Critic (SAC) method uses the follow-
ing heuristic estimate [11], [12] for the policy gradient ∇ϑJ :

∇ϑJ(xk) ≈ δk∆uk∇ϑπϑ(xk)

in which ∆uk is the random exploration term, drawn from a
zero-mean normal distribution, that was added to the policy’s
output at time k. This results in the following update rule
for the actor in SAC:

ϑk+1 = ϑk + αaδk∆uk∇ϑπϑ(xk) (2)

The product of the exploration term ∆uk and the TD error
from Equation (1a) serves as a sign switch for the gradient
∇ϑπϑ(xk). When the exploration ∆uk leads to a positive TD
error, the exploration is deemed beneficial to the performance
and the policy is adjusted towards the perturbed action.
Conversely, when δk is negative, the policy is adjusted away
from this perturbation.

B. Model Learning Actor–Critic

In addition to learning the actor and critic functions,
the Model Learning Actor–Critic (MLAC) method learns
an approximate process model x′ = f̂ζ(x, u). The process
model is parameterized by ζ ∈ Rr×n, where n is the
state dimension. Having a learned process model available
simplifies the update of the actor, as it allows to predict what
the next state x′ will be, given some input u. The value
function then provides information on the value V (x′) of the
next state x′. However, since the action space is assumed to
be continuous, it is impossible to enumerate over all possible
inputs u and therefore a policy gradient is put into place.

With appropriately chosen function approximators, the
gradient of the value function with respect to the state
x and the Jacobian of the process model with respect to
the input u can be estimated. Then, by applying the chain
rule, the Jacobian of the value function with respect to the
input u becomes available. As the parameterization of the
actor is known, this allows the policy gradient ∇ϑJ to be
approximated by:

∇ϑJ(xk) ≈ ∇xVθ(xk)
>∇uf̂ζk(xk, uk)∇ϑπϑ(xk) (3)

The process model itself is updated by applying a gradient
descent update, using the error between the real output of the
system and the model output and a learning rate αp:

ζk+1 = ζk + αp(xk+1 − f̂ζk(xk, uk))∇ζ f̂ζk(xk, uk)

Note that with the SAC algorithm, which uses (2), explo-
ration is needed in order to update the actor. Because MLAC
uses the gradient in Equation (3) it knows in what direction
to update the actor such that higher state-values will be
encountered, without having to perform exploratory actions.
As a result, the MLAC algorithm can estimate the policy
gradient without exploration. Exploration is nevertheless
needed because it gives a more complete value function over
the entire state space as the current policy would only visit
a part of the state space. Finally, exploration improves the
model of the process dynamics.

C. Reference Model Actor–Critic

Reference Model Actor–Critic (RMAC) is different from
the typical actor–critic methods in the sense that it does not
learn an explicit mapping from state xk to action uk. Instead
of a policy, i.e. the actor, RMAC learns a reference model
that represents a desired behavior of the system, based on
the value function. Similar to MLAC, this algorithm learns a
process model, through which it identifies a desired next state
x′ with the highest possible value V (x′). The difference with
respect to MLAC is that an actor, mapping a state x onto



an action u, is not explicitly stored. Instead, the reference
model is used in combination with the inverse of the learned
process model to calculate the action u.

The parameterized reference model Rη(x), with parameter
η ∈ Rs×n, maps the state xk to a desired next state x̂k+1,
i.e.

x̂k+1 = Rηk(xk)

The process is controlled towards this desired next state
by using the inverse of the learned process model xk+1 =
f̂ζk(xk, uk). The reference model Rηk(xk) and the inverse
process model uk = f̂−1ζk (xk, xk+1) together act as a policy,
by using the relation uk = f̂−1ζk (xk, Rηk(xk)). This does
imply that the process model, or more specifically the func-
tion approximator that represents it, is (locally) invertible.
Here, invertibility is achieved by using a first order Taylor
expansion of the process model around the point (xk, uk−1):

x̂k+1 = f̂ζk(xk, uk−1) +∇uf̂ζk(xk, uk−1)(uk − uk−1)

From this equation, uk can be directly calculated, given xk,
x̂k+1 and uk−1.

The introduction of a reference model also requires the
introduction of an update rule for the reference model’s
parameters. A natural update rule for these parameters is to
move them in the direction that will yield the highest value,
i.e.

ηk+1 = ηk + αr∇xV (xk)
>∇ηRηk(xk) (4)

where αr > 0 is the learning rate of the reference model.
Update (4) eventually may lead to an infeasible reference
model if the output of Rη(x) is not kept within the reachable
set Rx, which is the set of all states that can be reached from
the current state x within a single sampling interval:

Rx = {x′ ∈ X|x′ = f(x, u), u ∈ U}

It is not straightforward to determine this set because it de-
pends on the current state, the (nonlinear) process dynamics
and the action space U .

To overcome this problem, it is assumed that the reachable
set Rx can be defined by only using the extreme values of
the action space U . Defining the set Ue as the finite discrete
set containing all the combinations of extreme values1 of
U , the learned process model can be used to calculate the
estimated next state when applying these extreme values:

R̂x =
{
x′ ∈ X|x′ = f̂ζ(x, u), u ∈ Ue

}
Subsequently, the critic provides the estimated value of those
next states and the state that yields the highest value is
selected as the next desired state:

xr = arg max
x∈R̂x

Vθ(x)

This procedure is justified by the assumption that if the
sampling interval is short enough, both the process model
and critic can be approximated locally by a linear function

1This requires the action space U to be a hyperbox.

Algorithm 1 Actor–Critic template
Input: γ, λ and learning rates α

1: z0 = 0
2: Initialize x0 and function approximators
3: Apply random input u0
4: k ← 0
5: loop
6: Measure xk+1, rk+1

7: δk ← rk+1 + γVθk(xk+1)− Vθk(xk)

8: // SAC/MLAC: Choose action / update actor
9: uk+1 ← πϑk

(xk+1)
10: ϑk+1 ← ϑk + αa∇ϑJ(xk)

11: // RMAC: Choose action / update reference model
12: x̂k+2 ← Rηk(xk+1)

13: uk+1 ← f̂−1ζk (xk+1, x̂k+2)
14: Select best reachable state xr from xk
15: ηk+1 ← ηk + αr(xr − x̂k+1)∇ηRηk(xk)

16: // MLAC/RMAC: Update process model
17: ζk+1 ← ζk +αp(xk+1 − f̂ζk(xk, uk))∇ζ f̂ζk(xk, uk)

18: // Update critic
19: zk ← λγzk−1 +∇θVθk(xk)
20: θk+1 ← θk + αcδkzk
21: Choose exploration ∆uk+1 ∼ N (0, σ2)
22: Apply uk+1 + ∆uk+1

23: k ← k + 1
24: end loop

and linear functions always have their extreme values on the
edges of their input domain.

The state xr is used to update the reference model:

ηk+1 = ηk + αr(xr − x̂k+1)∇ηRηk(xk) (5)

Because of the approximation ofRx the reference model will
be updated by a desired state xr that is the result of applying
the extremes of u. However, by using the learning rate αr in
the update of Rη(x), a smooth reference model and a smooth
policy can still be achieved. This approximation does mean,
though, that the algorithm will not obtain a near-optimal
solution and a more accurate calculation of the reachable
set should improve the performance.

In contrast to SAC, the RMAC improves the reference
model using (5) which does not involve exploration. Instead,
it improves the reference model on the basis of previous
experiences, but for the same reasons as with MLAC explo-
ration is still needed.

A summarizing template for the three algorithms that were
discussed in this section is given in Algorithm 1.

IV. APPROXIMATORS

In Section V, the algorithms described in the previous
section are evaluated using two types of approximators:
radial basis functions (RBFs) and local linear regression
(LLR). This section describes the two approximators and also



discusses the caveats that have to be taken into consideration
when using them with the algorithms.

A. Radial Basis Functions

The first type of approximator is a linear combination of
normalized RBFs. The critic, for example, would be modeled
by

Vθ(x) = θ>φ(x)

where φ(x) is a column vector with the value of normalized
RBFs:

φi(x) =
φ̃i(x)∑
j φ̃j(x)

(6)

with
φ̃i(x) = e−

1
2 (x−ci)

>B−1(x−ci) (7)

where ci are the centers of the RBFs and B is a diagonal
matrix containing the widths of the RBFs.

For MLAC and RMAC, the gradient of the approximated
functions is needed. With the normalization done in Equa-
tion (6), this gradient is:

∇xφi(x) = −φi(x)

[
B−1(x− ci) +

∑
j ∇xφ̃j(x)∑
j φ̃j(x)

]
The setup used for experiments described in Section V

is a system with input saturation. This means that for the
real system, the process gradient ∇uf(xk, uk) = 0 when
uk is outside of the allowed input range. As MLAC learns
a process model, this input saturation needs to be dealt
with when learning. Otherwise, a good policy will not be
produced. In the RBF case, this problem is dealt with by
setting the gradient ∇uf̂ζ(xk, uk) in Equation (3) to zero
when uk is close to the input saturation bounds.

B. Local Linear Regression

The other type of function approximation used is local
linear regression (LLR). Given a memory of a certain size,
filled with input/output samples, it is possible to estimate the
output for any arbitrary “query input”, by:

1) Finding the k samples in the memory that are nearest
to the query input, according to a (weighted) distance
metric.

2) Fitting a linear model to these k samples by performing
a least squares fit.

3) Applying this model to the query input.
The saturation issue with the process model learning

in MLAC pictured earlier also holds in the LLR case.
Here, however, a solution for keeping the values bounded
is much more straightforward. As the LLR memories hold
input/output samples, it is possible to saturate the output
part of the actor’s memory, such that it can never produce
inputs u beyond the saturation bound. Because of this, setting
∇uf̂(xk, uk) = 0 when uk is close to the input saturation
bounds is not necessary here. A broader discussion on this
approximator and its application to the algorithms in this
paper is given in [1].

V. RESULTS

To evaluate and compare the performance of the algo-
rithms with different function approximators, they are all
applied to the task of learning to swing up an inverted pendu-
lum as described in [1]. The swing-up must be done from the
pointing-down position to the upright position as quickly as
possible and the pendulum must be stabilized in this position.
Using limited actuation makes it impossible to directly move
the pendulum to the upright position. Instead, the controller
has to learn to increase the momentum of the pendulum by
swinging it back and forth before it can push it up. This task
was chosen because it is a low-dimensional, but challenging,
highly nonlinear control problem still commonly used in RL
literature [6], [7]. A continuous quadratic reward function

rk+1(xk, uk) = −x>k
[

5 0
0 0.1

]
xk − u2k (8)

that has its maximum in the upright position [0 0]> is used to
define the swing-up task. This reward function quadratically
penalizes non-zero values of the pendulum’s angle ϕ and
angular velocity ϕ̇ and the control input u.

The three actor–critic methods, SAC, MLAC and RMAC
are applied to the pendulum swing-up problem described
above using two different function approximation techniques:
local linear regression and radial basis functions.

The algorithms run for 30 minutes of simulated time,
consisting of 600 consecutive episodes with each episode
lasting 3 seconds. The pendulum needs approximately 1
second to swing up with a near-optimal policy. Every trial
begins in the upside down position with zero angular ve-
locity, x0 = [π 0]>. One learning experiment consists of
one complete run of 600 consecutive episodes. A set of
30 complete learning experiments is done per set of tuning
parameters to get a good estimate of the mean performance.

Two performance measures have been used while test-
ing each algorithm/approximator combination: quick initial
learning and best performance. The optimal tuning for quick
initial learning was decided on by measuring the average
reward obtained in the first 50 episodes of all 30 learning
experiments, which is equivalent to the first 2.5 minutes of
simulated time. The optimal tuning for best performance was
based on the average reward obtained in the last 50 episodes
of all 30 learning experiments.

Tuning of all algorithm/approximator combinations was
done by iterating over a grid of parameters, which included
parameters of the algorithm (i.e. the learning rates) as well
as parameters of the function approximator (neighborhood
sizes in case of LLR and widths of RBFs, for example).
The optimal parameters for both test scenarios are listed in
Table I.

Most parameters listed in the tables are self-explanatory,
but the parameters listed for the RBF function approximator
need some additional comment. The number of RBFs is
given by a vector. Each element corresponds to the number of
RBFs used in a particular dimension of its input space. For
example, if the critic model has a number of RBFs equal



TABLE I
THE OPTIMAL PARAMETERS WHEN TUNING FOR QUICK INITIAL LEARNING (REGULAR FONT) AND BEST PERFORMANCE (BOLD FONT).

SAC MLAC RMAC
RBF LLR RBF LLR RBF LLR

Actor / Reference model parameters
learning rate αa/r 0.1 0.05 0.1 0.05 0.01 0.001 0.18 0.12 0.7 0.5 0.12 0.04
memory size Na/r 2000 2000 2000 2000 2000 2000
nearest neighbors ka/r 25 20 25 25 25 15

number of RBFs

[
15
10

] [
20
10

] [
10
10

] [
10
10

] [
15
10

] [
10
10

]
RBF intersection 0.5 0.9 0.7 0.7 0.7 0.9
Critic parameters
learning rate αc 0.3 0.4 0.3 0.3 0.15 0.1 0.3 0.3 0.2 0.15 0.3 0.2
memory size Nc 2000 1000 2000 2000 2000 2000
nearest neighbors kc 25 10 20 15 25 15

number of RBFs

[
15
10

] [
20
10

] [
10
10

] [
10
10

] [
15
10

] [
10
10

]
RBF intersection 0.5 0.5 0.9 0.7 0.5 0.7

Process model parameters
learning rate αp 0.9 0.5 0.9 0.7
RBF intersection 0.7 0.9 0.7 0.7

to [15 10], this means that 15 RBFs are used in the first
space dimension ϕ and 10 in the second space dimension ϕ̇,
amounting to 150 RBFs in total. For the process model, the
number of RBFs per dimension were kept equal to that of the
actor and critic model, with the number of RBFs in the action
space dimension always fixed at 10. The outer RBFs always
have their centers at ±π in the ϕ dimension, ±8π in the ϕ̇
dimension and ±3 in the action space U . The intersection
height is the value of Equation (7) where two neighboring
RBFs intersect and is deemed to be a more intuitive measure
than the width of an RBF. The intersection height is chosen
to be equal in all dimensions of the input space. This means
that the widths of an RBF in the separate dimensions are
not fixed and depend on the chosen number of RBFs: if the
intersection height is kept fixed and more RBFs are used,
the width of those RBFs decreases.

For an LLR approximation of the process model, the
memory size and number of nearest neighbors were kept
fixed at Np = 100 and kp = 10 for all experiments.

The first result in Figure 1 compares the performance
of the initial learning of each algorithm, using the two
different function approximation techniques. Figure 1a shows
the complete learning curves, whereas Figure 1b zooms in
on the first 2.5 minutes of learning, to get a better view on
the initial learning phase.

It is clear from this picture that all methods learn the
quickest when they use LLR as the function approximator.
Furthermore, the MLAC and RMAC methods are performing
better than SAC in this respect. When using RBFs, the
MLAC and RMAC method do not perform better than
SAC, which implies that they need a better function ap-
proximator to become truly powerful. In addition, the LLR
implementations of SAC and MLAC also obtain a much
better performance at the end of the learning experiment

0 5 10 15 20 25 30
−6000

−5000

−4000

−3000

−2000

−1000

0

time [min]

S
u
m

 o
f 
re

w
a
rd

s
 p

e
r 

tr
ia

l

 

 

SAC/RBF

SAC/LLR

MLAC/RBF

MLAC/LLR

RMAC/RBF

RMAC/LLR

(a) The complete learning curves of all algorithms and function approxima-
tors.

0 0.5 1 1.5 2 2.5
−6000

−5500

−5000

−4500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

time [min]

S
u

m
 o

f 
re

w
a

rd
s
 p

e
r 

tr
ia

l

 

 

SAC/RBF

SAC/LLR

MLAC/RBF

MLAC/LLR

RMAC/RBF

RMAC/LLR

(b) The first 2.5 minutes of the learning curves.

Fig. 1. Comparison of different algorithms and function approximators
when tuned for best initial learning in the first 50 episodes.

than their RBF counterparts, despite only tuning for quick
initial learning. The RMAC/LLR combination shows the
steepest learning curve at the start, but does not reach the



0 5 10 15 20 25 30
−6000

−5000

−4000

−3000

−2000

−1000

0

time [min]

S
u
m

 o
f 
re

w
a
rd

s
 p

e
r 

tr
ia

l

 

 

SAC/RBF

SAC/LLR

MLAC/RBF

MLAC/LLR

RMAC/RBF

RMAC/LLR

(a) The complete learning curves of all algorithms and function approxima-
tors.

27.5 28 28.5 29 29.5 30
−1700

−1600

−1500

−1400

−1300

−1200

−1100

−1000

−900

time [min]

S
u
m

 o
f 
re

w
a
rd

s
 p

e
r 

tr
ia

l

 

 

SAC/RBF

SAC/LLR

MLAC/RBF

MLAC/LLR

RMAC/RBF

RMAC/LLR

(b) The last 2.5 minutes of the learning curves.

Fig. 2. Comparison of different algorithms and function approximators
when tuned for best performance in the last 50 episodes.

best solution.
Figure 2 shows the comparison between the algorithms

when they are tuned for best performance in the last 50
episodes, i.e. the tuning that will learn the best possible pol-
icy. The first plot shows the complete learning experiments,
the second plot zooms in on the performance in the last 50
episodes.

Again, but with the exception of RMAC, the methods
using LLR as the function approximator perform the best.
The RBF implementations of MLAC and RMAC show a
slightly worse performance than their SAC/RBF counterpart.
Interestingly, the RMAC method is the only method here that
performs better when using RBFs as the function approxi-
mator. A noticeable phenomenon when comparing Figure 1a
and Figure 2a is that the initial performance of the RBF
implementations has degraded significantly, whereas the LLR
implementations still achieve quick initial learning.

VI. CONCLUSION
From the results in the previous section, local linear

regression seems to be the approximator of choice when the
learning should both be quick and deliver a good perfor-
mance at the end of a learning experiment.

The MLAC and RMAC methods only really show their
power when used in combination with local linear regression.
This reinforces the statement in [1] that it is indeed the

combination of both LLR and these new methods that will
provide quick, stable and good learning. However, due to
time limitations no tests were done using a mix of function
approximators, e.g. RBFs for the actor and critic and LLR for
the process model, which might yield even more powerful re-
sults. Another option is to try and combine the quick learning
of RMAC/LLR with the good performance of MLAC/LLR,
by starting with RMAC and switching to MLAC when the
performance does not significantly increase anymore.

A crucial condition for the model learning algorithms to
work is that the input saturation of a system should be
dealt with when learning a process model. Simply ignoring
this will not produce a well performing policy. This can
be overcome by setting the process model’s gradient with
respect to the input to zero at the saturation bounds or by
making sure that the actor can not produce output signals
beyond the saturation bounds.

A persisting problem in dynamic programming and re-
inforcement learning is the proper tuning of the learning
algorithms and, if applicable, function approximators. The
quality of an RL algorithm should therefore not only be
measured by looking at the performance of the policy it
produces, but also by checking its robustness, i.e. how well
it keeps performing when deviating from the set of optimally
tuned parameters. This sensitivity analysis for our algorithms
is left for future work.

REFERENCES

[1] I. Grondman, M. Vaandrager, L. Buşoniu, R. Babuška, and
E. Schuitema, “Efficient Model Learning Methods for Actor-Critic
Control,” IEEE Transactions on Systems, Man, and Cybernetics—Part
B: Cybernetics, vol. 42, no. 3, pp. 591–602, 2012.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.

[3] R. S. Sutton, “Reinforcement Learning Architectures,” Proceedings of
the International Symposium on Neural Information Processing, 1992.

[4] A. W. Moore and C. G. Atkeson, “Prioritized Sweeping: Reinforce-
ment Learning with Less Data and Less Time,” Machine Learning,
vol. 13, pp. 103–130, 1993.

[5] L. Kuvayev and R. S. Sutton, “Model-Based Reinforcement Learning
with an Approximate, Learned Model,” in Proceedings of the 9th Yale
Workshop on Adaptive and Learning Systems, 1996, pp. 101–105.

[6] J. Pazis and M. G. Lagoudakis, “Reinforcement Learning in Multi-
dimensional Continuous Action Spaces,” in Proceedings of the IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement
Learning, 2011, pp. 97–104.

[7] R. L. S. de Arruda and F. J. Von Zuben, “A Neural Architecture
to Address Reinforcement Learning Problems,” in Proceedings of
International Joint Conference on Neural Networks, 2011, pp. 2930–
2935.

[8] I. H. Witten, “An Adaptive Optimal Controller for Discrete-Time
Markov Environments,” Information and Control, vol. 34, pp. 286–
295, 1977.

[9] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike Adaptive
Elements That Can Solve Difficult Learning Control Problems,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 13, no. 5, pp.
834–846, 1983.

[10] V. R. Konda and J. N. Tsitsiklis, “On Actor-Critic Algorithms,” SIAM
Journal on Control and Optimization, vol. 42, no. 4, pp. 1143–1166,
2003.

[11] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, “Natural
actor-critic algorithms,” Automatica, vol. 45, no. 11, pp. 2471–2482,
2009.

[12] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators,
ser. Automation and Control Engineering Series. CRC Press, 2010.


