
Actor-Critic Control with Reference
Model Learning

Ivo Grondman ∗ Maarten Vaandrager Lucian Buşoniu ∗

Robert Babuška ∗ Erik Schuitema ∗

∗Delft Center for Systems and Control, Faculty 3mE, Delft University
of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

(e-mail: {i.grondman, i.l.busoniu, r.babuska, e.schuitema}@tudelft.nl)

Abstract: We propose a new actor-critic algorithm for reinforcement learning. The algorithm
does not use an explicit actor, but learns a reference model which represents a desired behaviour,
along which the process is to be controlled by using the inverse of a learned process model. The
algorithm uses Local Linear Regression (LLR) to learn approximations of all the functions
involved. The online learning of a process and reference model, in combination with LLR,
provides an efficient policy update for faster learning. In addition, the algorithm facilitates the
incorporation of prior knowledge. The novel method and a standard actor-critic algorithm are
applied to the pendulum swingup problem, in which the novel method achieves faster learning
than the standard algorithm.

Keywords: learning control, reinforcement learning, actor-critic methods, local linear regression

1. INTRODUCTION AND RELATED WORK

Many processes in industry can benefit from control al-
gorithms that learn to optimise a certain cost function.
Reinforcement learning (RL) is such a learning method.
The user sets a certain goal by specifying a suitable reward
function for the RL controller. The RL controller then
learns to maximise the cumulative reward received over
time (the value function) in order to reach that goal.
However, the controller typically starts learning without
any knowledge and has to improve through trial and error.
Because of this, the process goes through a long period of
unpredictable and potentially damaging behaviour. This
is usually unacceptable in industry, especially if a near-
optimal controller is already available. The long period of
trial and error learning must be considerably reduced for
RL controllers to become useful in practice. In this paper,
we introduce a novel algorithm that employs an efficient
policy update which considerably reduces the learning
time compared to standard actor-critic methods and also
allows for inclusion of prior knowledge.

Actor-critic techniques are a class of RL methods which
learn a separate actor and critic function. The critic is
the value function approximator, and the actor is the
policy approximator. The novel algorithm replaces the
policy by learning a reference model which maps states
to subsequent desired states. Together with the inverse
of a learned process model, this is used to calculate the
inputs to the system. Hence, the process model is not used
to generate simulated experiences as most model-learning
RL algorithms do (Sutton, 1992; Moore and Atkeson, 1993;
Kuvayev and Sutton, 1996), but provides information on
how to reach a desired state, given by the reference model.

The novel algorithm introduced here uses Local Linear
Regression (LLR) as the function approximator. Memory-

based learning methods, such as LLR and case-based
reasoning (Gabel and Riedmiller, 2005), have successfully
been applied to RL before, but mostly as an approximator
for the value function. Our algorithm is similar to “learning
from relevant trajectories” (Atkeson and Schaal, 1997),
in which LLR is used to learn the process model of a
robotic arm holding a pendulum, which is then employed
to control the arm along a demonstrated trajectory that
effectively swings up the pendulum. The main difference
is that we do not make use of a demonstrated trajectory,
but use a reference model which is learned and updated
online.

2. REINFORCEMENT LEARNING

The RL problem can be described as a Markov decision
process (MDP). In this paper, we use RL in a deterministic
setting and hence we start with the deterministic MDP
description. The MDP is defined by the tupleM(X,U, f, ρ)
where X is the state space, U is the action space, f : X ×
U 7→ X is the state transition function and ρ : X×U 7→ R
is the reward function.

The process to be controlled is described by the state
transition function f : X×U 7→ X, which returns the state
xk that the process reaches from state xk−1 after applying
action uk−1. After each transition, the controller receives
a scalar reward rk ∈ R, given by the reward function
rk = ρ(xk−1, uk−1). The actions are chosen according to
the policy π : X 7→ U . The goal in RL is then to find
a policy, such that a discounted sum of future rewards is
maximised. This sum (also called the return) is stored in
a value function V π : X 7→ R, which is defined as:

V π(x) =

∞∑
j=0

γjrk+j+1 with xk = x (1)

where γ ∈ [0, 1) is the discount factor. The superscript π
indicates that this is the sum of rewards collected when
following the policy π, i.e. we have uk = π(xk).

In continuous (or infinite discrete) state and action spaces,
it is necessary to replace the exact value function V π and
the exact policy π with function approximators. This can
be facilitated by using actor-critic methods.

3. ACTOR-CRITIC REINFORCEMENT LEARNING

Actor-critic techniques were introduced in Barto et al.
(1983), and have been investigated often since then, e.g.
in Konda and Tsitsiklis (2003); Berenji and Vengerov
(2003); Peters and Schaal (2008). The actor-critic method
is characterised by learning separate functions for the actor
and the critic. The use of an actor allows for gradient-
based policy updates which makes it possible to easily use
continuous action spaces (Sutton et al., 2000).

In this paper we use a temporal difference based actor-
critic method as our baseline to compare our new method
to. We refer to this baseline as the standard actor-critic
(S-AC) algorithm. Denote the approximate value function
parameterised by θ with V (x, θ) and the approximate
policy parameterised by ϑ with π(x, ϑ). The temporal
difference error is defined as (Sutton and Barto, 1998):

δk = rk + γV (xk, θk−1)− V (xk−1, θk−1) (2)

Using the temporal difference, the gradient-descent update
rule for the critic is:

θk = θk−1 + αcδk
∂V (x, θ)

∂θ

∣∣∣∣x=xk−1

θ=θk−1

(3)

where αc ∈ [0, 1] is the learning rate of the critic.

Using (3) to update the critic results in a one-step backup,
whereas the reward received is often the result of a series
of steps. Eligibility traces offer a quicker way of assigning
credit to states visited earlier. The eligibility trace for a
certain state x at time k is denoted 1 with ek(x):

ek(x) =

{
1 if x = xk
λγek−1(x) otherwise

The trace decays with time by a factor λγ, with λ ∈ [0, 1)
the trace decay parameter. This makes more recently vis-
ited states more eligible for receiving credit. All states
along the trajectory now influence the update of θ accord-
ing to the following equation:

θk = θk−1 + αcδk
∑
x∈Xv

∂V (x, θ)

∂θ
ek(x)

where Xv denotes the set of states visited during the
current trial. The use of eligibility traces speeds up the
learning considerably.

Reinforcement learning requires the use of exploration to
keep trying new, possibly better, actions in the states
encountered. With exploration, the control action uk is
different from the action π(xk, ϑk−1) indicated by the
policy. This can be achieved by perturbing the latter with
a zero mean random exploration term ∆uk:

uk = π(xk, ϑk−1) + ∆uk
1 Note the slight abuse of notation here. If the state space X is
continuous, some mechanism has to be introduced such that there
only exists a finite number of eligibility traces to update.

When the exploration ∆uk leads to a positive temporal
difference, the policy is adjusted towards this perturbed
action. Conversely, when δk is negative, the policy is
adjusted away from this perturbation. This leads to the
following update rule for the actor:

ϑk = ϑk−1 + αaδk∆uk−1
∂π(x, ϑ)

∂ϑ

∣∣∣∣x=xk−1

ϑ=ϑk−1

(4)

where αa ∈ [0, 1] is the learning rate of the actor. The
temporal difference is interpreted as a correction of the
predicted performance, so that if the temporal difference
is positive, the obtained performance is considered better
than the predicted one.

The full implementation of the S-AC algorithm is shown
in Algorithm 1.

Algorithm 1 Standard Actor-Critic (S-AC)

Input: γ, λ, αc, αa
1: e0(x) = 0 ∀x
2: Initialise x0, θ0 and ϑ0
3: Apply input π(x0, ϑ0) + ∆u0
4: k ← 1
5: loop
6: Choose ∆uk at random
7: Measure xk, rk
8: uk ← π(xk, ϑk−1) + ∆uk
9: Apply uk

10: δk ← rk + γV (xk, θk−1)− V (xk−1, θk−1)

11: ek(x) =

{
1 if x = xk
λγek−1(x) otherwise

12: θk ← θk−1 + αcδk
∑
x∈Xv

∂V (x,θ)
∂θ ek(x)

13: ϑk ← ϑk−1 + αaδk∆uk−1
∂π(x,ϑ)
∂ϑ

14: k ← k + 1
15: end loop

4. LOCAL LINEAR REGRESSION

The algorithm presented in this paper uses Local Linear
Regression (LLR) as a function approximator. LLR is
a non-parametric memory-based method for approximat-
ing nonlinear functions. Memory-based methods are also
called case-based, exemplar-based, lazy, instance-based or
experience-based (Wettschereck et al., 1997; Wilson and
Martinez, 2000). It has been shown that memory-based
learning can work in RL and can quickly approximate a
function with only a few observations (Gabel and Ried-
miller, 2005). This is especially useful at the start of
learning.

The main advantage of memory-based methods is that
the user does not need to specify a global structure or
predefine features for the (approximate) model. Instead
of trying to fit a global structure to observations of the
unknown function, LLR simply stores the observations
in a memory. A stored observation is called a sample
si = [xTi | yTi]T with i = 1, . . . , N . One sample si is
a column vector containing the input data xi ∈ Rn and
output data yi ∈ Rm. The samples are stored in a matrix
called the memory M with size (n+m)×N whose columns
each represent one sample.

When a query xq is made, LLR uses the stored samples to
give a prediction ŷq of the true output yq. The prediction
is computed by finding a local neighbourhood of xq in the
samples stored in memory. This neighbourhood is found by
applying a weighted distance metric di (e.g. the 1-norm or
2-norm) to the query point xq and the input data xi of all
samples in M . The weighting is used to scale the inputs x
and has a large influence on the resulting neighbourhood
and thus on the accuracy of the prediction.

By selecting a limited number of K samples with the
smallest distance d, we create a subset K(xq) with the
indices of nearest neighbour samples. Only these K nearest
neighbours are then used to make a prediction of ŷq. The
set K+(xq) in the pseudocode is K(xq), extended with the
index where the sample representing xq was inserted. The
prediction is computed by fitting a linear model to these
nearest neighbours. Applying the resulting linear model to
the query point xq yields the predicted value ŷq.

First the matrices X and Y need to be constructed using
the K nearest neighbour samples:

X =

[
x1 x2 · · · xK
1 1 · · · 1

]
Y = [y1 y2 · · · yK]

The last row of X allows for a bias on the output, making
the model affine instead of truly linear.

The X and Y matrices form an over-determined set of
equations for the model parameter matrix β ∈ Rm×(n+1):

Y = βX

and can be solved (for example) by the method of least
squares using the right pseudo inverse of X:

β = Y XT (XXT)−1

At the start of a trial, the matrices X and Y do not yet
form a fully determined set of equations. In this case, there
are infinitely many solutions and β is chosen as the solution
with the smallest norm.

Finally, the model parameter matrix β is used to compute
the prediction for the query xq:

ŷq = βxq

As a result, the globally nonlinear function is approxi-
mated locally by a linear function.

Memory-based methods directly incorporate new observa-
tions, which makes it possible to get a good local estimate
of the function after incorporating only a few observations.
Note that if every observation were stored, the memory
would grow indefinitely and so would the computational
effort of finding K(xq). One has to apply memory man-
agement to keep the memory from growing past a certain
size. The exact description of the memory management
algorithm used is outside the scope of this paper.

5. REFERENCE MODEL ACTOR-CRITIC

In this section an actor-critic algorithm is introduced,
which uses a novel way of representing the actor. A
learned reference model dictates a desired behaviour along
which the process should be controlled, by using the
inverse of a learned process model. Although it lacks
an explicit actor, we refer to this method as Reference
Model Actor-Critic (RMAC), as the reference model and

process model together play the role of the actor. In the
implementation of the algorithm we always use LLR to
learn and approximate the functions and models involved.

Samples si = [xTi uTi | x′
T
i]T are held by the process

memory MP, where x′ denotes the observed next state, i.e.
x′ = f(x, u). The process model is updated by replacing
samples that are deemed obsolete with new observations.
The critic memory MC holds samples si = [xTi | Vi]T ,
while the reference model memory MR holds samples
si = [xTi | x̂Ti]T , where x̂ denotes a desired next state.
During the learning process, the critic and reference model
memory are not only updated by replacing samples, but
also by adjusting the output parts of the nearest neighbour
samples si that relate to the query point xq. The method
of updating them is explained in more detail later.

RMAC is different from the typical actor-critic methods
in the sense that it does not learn a mapping from state
xk to action uk. Instead it learns a reference model R(x)
that maps the state xk to a desired state x̂k+1, i.e. x̂k+1 =
R(xk). The process is controlled towards this desired next
state by using the inverse of the learned process model

xk+1 = f̂(xk, uk). The reference model R(x) and the

inverse process model uk = f̂−1(xk, xk+1) together act as

a policy, by using the relation uk = f̂−1(xk, R(xk)). The
process model is given by

xk+1 = f̂(xk, uk) =
[
βP
x βP

u βP
b

]︸ ︷︷ ︸
βP

·

[
xk
uk
1

]

By replacing xk+1 with the desired state x̂k+1 given by the
reference model and inverting the process model we obtain
the action uk:

uk = (βPT

u βP
u)−1βPT

u ·
(
R(xk)− βP

x xk − βP
b

)
Since a local linear approximation of the process model is
used, f−1(xk, R(xk)) always exists as a linear function is
always invertible, unless βP

u is a zero vector, in which case
the algorithm returns uk = 0.

We can improve the R(x) by adapting the desired state x̂
of the nearest neighbour samples si (i ∈ K(x)) towards
higher state-values using the following gradient update
rule:

x̂i ← x̂i + α
∂V

∂x

∣∣∣∣
x=x′

(5)

But (5) eventually may lead to an infeasible reference
model if the x̂i are not kept within the reachable set Rx,
which is the set of all states that can be reached from the
current state x within a single sampling interval:

Rx = { x′ ∈ X | ∃u ∈ U with x′ = f(x, u)}
It is not straightforward to determine this set because
it depends on the current state, the (nonlinear) process
dynamics and the action space U .

We approximate Rx as a convex hull by applying com-
binations of extremes of U to the learned process model

f̂(x, u). The current state xk and all possible combinations
of extremes are put in a matrix UR. Every column of UR
gives the current state xk and a combination of maximum
and minimum values for u. This way, the matrix UR has
a number of rows equal to the number of inputs of the

learned process model f̂(x, u) and a number of columns

equal to 2m, with m the size of vector u. For example,
with two input variables UR would be

UR =

 xk xk xk xk
u1,max u1,max u1,min u1,min

u2,max u2,min u2,max u2,min

1 1 1 1

By applying UR to the process model we obtain a matrix
XR containing the vertices of the convex hull as column
vectors:

XR = βP · UR
Given that we are using a locally linear model of the value
function V (x) bounded by a convex hull, we know that the
optimum of V (x) must then lie in one of the states found
in XR. 2 Denoting this set of reachable states with XR,
we then calculate which of these states yields the highest
value, using the local linear model of the value function:

V (x) = βC ·
[
x
1

]
The state xr that corresponds to the highest value is then
used to update the reference model R(x):

xr = arg max
x∈XR

βC ·
[
x
1

]
x̂i ← x̂i + αr(xr − x̂)

Because of the approximation of XR, the reference model
is updated using a desired state xr that is the result
of applying the extremes of u. Despite this, we can still
achieve a smooth reference model and a smooth policy by
using the learning rate αr in the update of R(x). However,
it is likely that this approximation causes the algorithm
to converge to a near-optimal solution at most and a
more accurate calculation of the bounds could improve
the performance.

In contrast to S-AC, the RMAC improves the reference
model using (5) which does not involve random exploration
to obtain the parameter increment. Instead, it improves
the reference model using locally linear models estimated
on the basis of previous experiences. However, random ex-
ploration is still needed to reduce the chance of the policy
improvement getting stuck in a local optimum. Moreover,
it improves the learned process model. The pseudocode for
the RMAC method is found in Algorithm 2.

6. EXAMPLE: PENDULUM SWINGUP

To evaluate and compare the performance of our algo-
rithm, we apply it to the task of learning to swing up
a simulated inverted pendulum and compare it to the
standard algorithm. The swingup task was chosen because
it is a low-dimensional, but challenging, highly nonlinear
control problem commonly used in RL literature. As the
process has two state variables and one action variable it
allows for easy visualization of the functions of interest. A
picture of this system is shown in Figure 1.

The equation of motion of this system is:

Jφ̈ = Mgl sin(φ)−
(
b+

K2

R

)
φ̇+

K

R
u

2 When the function is nonlinear the optimum can lie inside the hull.
With a linear function but nonlinear boundaries it lies on one of the
edges.

Algorithm 2 Reference Model Actor-Critic (RMAC)

Input: γ, λ, αc, αr
1: Initialise x0, x̂1, MC, MR and MP

2: V0 = 0, βP = 0
3: e0(si) = 0 ∀si ∈MC

4: x̂1 = R(x0)

5: u0 ← f̂−1(x0, x̂1) + ∆u0
6: k ← 1
7: loop
8: Choose ∆uk at random
9: Measure xk, rk

10: x̂k+1 = R(xk)

11: uk ← f̂−1(xk, x̂k+1) + ∆uk
12: Apply uk

13: % Update process model
14: Insert [xTk−1 u

T
k−1 | xTk]T in MP

15: % Update reference model
16: Select best reachable state xr
17: Insert [xTk−1 | xTr]T in MR

18: for ∀i ∈ K(xk−1) of MR do
19: x̂i ← x̂i + αr(xr − x̂k)
20: end for

21: % Update critic
22: Vk ← V (xk)
23: Insert [xTk−1 | Vk−1]T in MC

24: δk ← rk + γVk − Vk−1
25: for ∀si ∈MC do

26: ek(si) =

{
1 if i ∈ K+(xk−1)

λγek−1(si) otherwise
27: Vi ← Vi + αcδkek(si)
28: end for
29: k ← k + 1
30: end loop

motor

M
φ

l

Fig. 1. The inverted pendulum setup.

where φ is the angle between the pendulum and the up-
right position. The model parameters are given in Table 1.
The task is to learn to efficiently swing the pendulum
from the upside-down position to the upright position
and stabilise it in this position. The actuation signal u is

Table 1. Inverted pendulum model parameters

Model parameter Symbol Value Units

Pendulum inertia J 1.91 · 10−4 kgm2

Pendulum mass M 5.50 · 10−2 kg
Gravity g 9.81 m/s2

Pendulum length l 4.20 · 10−2 m
Damping b 3 · 10−6 Nms
Torque constant K 5.36 · 10−2 Nm/A
Rotor resistance R 9.50 Ω

limited to u ∈ [−3, 3] V, making it impossible to directly
move the pendulum to the upright position. Instead, the
controller has to learn to increase the momentum of the
pendulum by swinging it back and forth before it can push
it up.

A continuous quadratic reward function ρ is used to define
the swingup task. This reward function has its maximum
in the upright position [0 0]T and quadratically penalises

non-zero values of φ, φ̇ and u.

rk = −xTk−1Qxk−1 − Pu2k−1
with

x =

[
φ

φ̇

]
Q =

[
5 0
0 0.1

]
P = 1

The standard actor-critic method S-AC and the novel
method RMAC are applied to the simulated pendulum
swingup problem described above. The algorithms run for
30 minutes of simulated time, consisting of 600 consecutive
trials with each trial lasting 3 seconds. The pendulum
needs approximately 1 second to swing up with a near-
optimal policy. Every trial begins in the upside-down
position with zero angular velocity, x0 = [π 0]T . With
a learning experiment we denote one complete run of 600
consecutive trials.

The sum of rewards received per trial is plotted over the
time which results in a learning curve. This procedure
is repeated for 40 complete learning experiments to get
an estimate of the mean and confidence interval of the
learning curve.

6.1 Standard Actor-Critic

This section presents the results of applying the S-AC
algorithm to the problem described above.

The tunable parameters are set to γ = 0.97, λ = 0.65,
αa = 0.005 and αc = 0.1. The function approximator
used for both actor and critic is tile coding as described
in Sutton and Barto (1998). A number of 16 partitions,
each consisting of a uniform grid of 7 × 7 tiles, are used.
The partitions are equidistantly distributed over each
dimension of the state space.

Exploration is done every third step by randomly per-
turbing the policy with normally distributed zero mean
white noise with standard deviation σ = 1. The reason
for exploring only once every three steps instead of every
step is because this allows for large exploratory actions
whilst giving the controller time to correct for suboptimal
exploratory actions. Large exploratory actions appeared to
be beneficial for learning. This can be explained by the fact
that the representation of the value function by tile coding
is not perfect. There is a persistent error in the approxima-
tion causing the temporal difference to continuously vary
around a certain level. For small exploratory actions, their
contribution to the resulting temporal difference is small
compared to the contribution of the approximation error,
causing the update of the actor by (4) to be very noisy.

The S-AC algorithm applied to the pendulum swingup
task results in a learning curve shown as a dashed line in
Figure 2. The method takes about 10 minutes of simulated
time on average to converge. One striking characteristic of

0 5 10 15 20
−6000

−5000

−4000

−3000

−2000

−1000

0

time [min]

S
u

m
 o

f
re

w
a

rd
s
 p

e
r

tr
ia

l

Mean RMAC

Mean S−AC

95% confidence region for the mean

Fig. 2. Learning curves for S-AC and RMAC.

the S-AC learning curve is the short drop in performance
in the first minutes. This can be explained by the fact that
the value function is initialised to zero which is higher than
the true value function. As a result, the algorithm collects
a lot of negative rewards before it eventually learns the
true value of “bad” states and adapts the actor to avoid
these. In order to prevent this initial drop in performance,
the value function can be initialised with low values, but
this would decrease the overall learning speed as all new
unvisited states would initially be assumed to be bad and
would be avoided. The performance can be improved by
increasing the number of partitions and number of tiles
per partition in the tile coding, but this would decrease
the learning speed.

The final approximations of the policy π(x) after a repre-
sentative learning experiment is shown in Figure 3.

−3 −2 −1 0 1 2 3

−20

−10

0

10

20

angle [rad]

a
n
g
u
la

r
v
e
lo

c
it
y
 [
ra

d
/s

]

−3

−2

−1

0

1

2

3

Fig. 3. Final actor π(x) for the S-AC algorithm after one
learning experiment.

6.2 Reference Model Actor-Critic

The RMAC algorithm was applied using γ = 0.97, λ =
0.65, just as before with the S-AC method. The other
parameter settings used are shown in Table 2.

Table 2. Parameters for the RMAC method.

Critic Process Reference

learning rate 0.1 - 0.005

memory size 2000 100 2000

nearest neighbours 20 9 20

input weighting [1 .1] [1 .1 1] [1 .1]

−3 −2 −1 0 1 2 3

−20

−10

0

10

20

angle [rad]

a
n
g
u
la

r
v
e
lo

c
it
y
 [
ra

d
/s

]

−3

0

3

Fig. 4. Actor as given by the composition of the inverse
process model with the reference model, evaluated at
a rectangular grid of points in the state space.

The learning curve for the pendulum swingup task for
the RMAC method is shown as a solid line in Figure 2.
Figure 4 shows the actor as generated by the reference
model and inverse process model, i.e. it shows the value of

the composition u = f̂−1(x,R(x)) for a rectangular grid of
points in the state space. Although the RMAC method is
capable of faster learning, it does develop an actor that is
less smooth than the one developed by the S-AC method
(Figure 3), which explains the slightly better performance
of the latter method at the end of learning.

The RMAC learns very quickly and converges to a good
solution of the swingup task. The main reason for the fast
learning is the fact that the method starts out by choosing
desired states x̂ that result from the extremes of u. Desired
states that result from the extremes of u also result in large
values for u and make the system explore a large part of
the state space. This results in a fast initial estimate of the
value function, which is beneficial for the learning speed.

7. CONCLUSIONS AND OPEN ISSUES

This paper introduced a novel actor-critic method, which
uses LLR as a non-parametric, memory-based function
approximator. It has been shown by simulation that this
novel method is capable of fast learning. This increased
learning speed can be attributed to the novel way in which
the policy is updated by using a reference model, as well
as to the use of LLR to approximate the functions.

In the pendulum swingup sample above, the memories
were initialised as empty, but instead one can initialise
them with previous measurements. This makes it easy to
incorporate prior knowledge on the process dynamics, near
optimal control policy or near optimal behaviour. For ex-
ample, the reference model can be initialised with samples
of the closed loop behaviour. This can be beneficial if the
desired behaviour of the system is known but the control
policy is yet unknown (which is often the case in supplying
prior knowledge by imitation).

LLR seems very promising for use in fast learning algo-
rithms, but a few issues prevent it from being used to
its full potential. The first issue is how to choose the
correct input weighting, which has a large influence on
selecting the most relevant samples for regression. The
second issue that has to be investigated more closely is

memory management: different ways of scoring samples in
terms of age and redundancy and thus deciding when to
remove certain samples from the memory will also influ-
ence the accuracy of the estimates generated by local linear
regression. Another issue is the high computational effort
of searching through the memory for nearest neighbour
samples. In this paper a simple sorting algorithm was used,
but one can reduce the computational burden by using, for
instance, k -d trees (Bentley and Friedman, 1979). Finally,
the approximation of the reachable subset XR may prove
insufficiently accurate for more complex control tasks. A
more reliable calculation of reachable states is the main
improvement that could be made to this method.

REFERENCES

Atkeson, C.G. and Schaal, S. (1997). Robot Learning From
Demonstration. In Proceedings of the 14th International
Conference on Machine Learning, 12–20.

Barto, A.G., Sutton, R.S., and Anderson, C.W. (1983).
Neuronlike Adaptive Elements That Can Solve Difficult
Learning Control Problems. IEEE Transactions on
Systems, Man, and Cybernetics, 13(5), 834–846.

Bentley, J.L. and Friedman, J.H. (1979). Data Structures
for Range Searching. ACM Computing Surveys (CSUR),
11(4), 397–409.

Berenji, H.R. and Vengerov, D. (2003). A Convergent
Actor–Critic-Based FRL Algorithm with Application to
Power Management of Wireless Transmitters. IEEE
Transactions on Fuzzy Systems, 11(4), 478–485.

Gabel, T. and Riedmiller, M. (2005). CBR for State Value
Function Approximation in Reinforcement Learning.
In Proceedings of the 6th International Conference on
Case-Based Reasoning, 206–221.

Konda, V.R. and Tsitsiklis, J.N. (2003). On Actor-Critic
Algorithms. SIAM Journal on Control and Optimiza-
tion, 42(4), 1143–1166.

Kuvayev, L. and Sutton, R.S. (1996). Model-Based Re-
inforcement Learning with an Approximate, Learned
Model. In Proceedings of the 9th Yale Workshop on
Adaptive and Learning Systems, 101–105.

Moore, A.W. and Atkeson, C.G. (1993). Prioritized
Sweeping: Reinforcement Learning with Less Data and
Less Time. Machine Learning, 13, 103–130.

Peters, J. and Schaal, S. (2008). Natural actor-critic.
Neurocomputing, 71, 1180–1190.

Sutton, R.S. (1992). Reinforcement Learning Architec-
tures. Proceedings of the International Symposium on
Neural Information Processing.

Sutton, R.S. and Barto, A.G. (1998). Reinforcement
Learning. An Introduction. MIT Press.

Sutton, R.S., McAllester, D., Singh, S., and Mansour, Y.
(2000). Policy Gradient Methods for Reinforcement
Learning with Function Approximation. Advances in
Neural Information Processing Systems, 12, 1057–1063.

Wettschereck, D., Aha, D.W., and Mohri, T. (1997). A
Review and Empirical Evaluation of Feature Weighting
Methods for a Class of Lazy Learning Algorithms.
Artificial Intelligence Review, 11, 273–314.

Wilson, D.R. and Martinez, T.R. (2000). Reduction
Techniques for Instance-Based Learning Algorithms.
Machine Learning, 38, 257–286.

