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A B S T R A C T

Consider a mobile robot that must navigate as quickly as possible to the global maxima of a
function (e.g. density of seabed litter, pollutant concentration, wireless signal strength) defined
over its operating area. This objective function is initially unknown and is assumed to be
Lipschitz continuous. The limited velocity of the robot restricts the next samples to neighboring
positions, and to avoid wasting time and energy, the robot’s path must be adapted as new
information becomes available. The paper proposes two methods that use an upper bound
on the objective to iteratively change the position targeted by the robot as new samples are
acquired. The first method is FTW, which Turns When the best value seen so far of the objective
Function is larger than the bound of the current target position. The second is FTWD, an
extension of FTW that takes into account the Distance to the target. Convergence guarantees
are provided for both methods, and a convergence rate is proven to characterize how fast the
FTW suboptimality decreases as the number of samples grows. In a numerical study, FTWD
greatly improves performance compared to FTW, outperforms two representative source-seeking
baselines, and obtains results similar to a much more computationally intensive method that
does not guarantee convergence. The relationship between FTW and FTWD is also confirmed
in real-robot experiments, where a TurtleBot3 seeks the darkest point on a 2D grayscale map.

. Introduction

Consider an autonomous mobile robot that must navigate as quickly as possible to the global maxima of some position-dependent
hysical quantity (objective function) by sampling it online during its mission. The function, defined over the search area of the
obot, is unknown at the beginning of the experiment. An important constraint is the robot’s limited velocity, which means it
annot sample the function arbitrarily far. Instead, the next sample is restricted to a neighborhood of the robot’s current position.
o reduce time and energy consumption [1], the robot should update its trajectory towards the most likely optimum location using
ll information collected so far, i.e. the pairs of sampled positions and their corresponding values. This setting is formally known
s path-aware global optimization [2], and has many applications: finding the maximal pollution source [3], the highest odor plume
o detect leak sources [4] like gas emission points in landfill sites [5], or the strongest signal strength in sensor networks for robot
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Nonlinear Analysis: Hybrid Systems 55 (2025) 101546 
localization and communication purposes [6,7]. Another application of particular importance is the search for marine litter, as in
the SeaClear 2.0 project (https://www.seaclear2.eu/). In this example, one robot may map areas with the highest litter density [8,9],
and share this mapping information with another robot tasked with collecting the litter [10].

The key objectives in path-aware global optimization are (i) to design methods for a mobile robot to quickly find all global
ptima of a Lipschitz-continuous, but otherwise arbitrarily complex objective function (nondifferentiable, any amount of local or
lobal optima); and (ii) to guarantee asymptotic convergence and convergence rates.

In this paper, to address objective (i), two methods are presented to solve path-aware global optimization. These methods
re related to a branch-and-bound global optimization technique called deterministic optimistic optimization (DOO), which under
ipschitz continuity guarantees convergence at known rates to a global optimum [11,12]. The two methods exploit the Lipschitz
ontinuity of the objective function to recompute at each step an upper bound on it, from all the samples seen so far. The first
ethod drives the robot optimistically towards target positions corresponding to the maxima of the upper bound. At each step, it

hecks whether the bound at the target position dropped below the best objective value seen so far, and if so, it updates its target to
new best-bound position. Hence, this method is called Turn When the Function is larger than the bound, FTW for short, and was

ntroduced in our preliminary conference version [2]. The second method is novel, and is motivated by the fact that it often makes
ense to visit closer points before distant ones, even though their bounds might be slightly smaller. Therefore, this second method
odifies the target selection criterion so that large-bound points at smaller Distances to the robot’s position are ranked higher, from
here the acronym FTWD follows.

A key contribution of this paper is to thoroughly analyze both of these algorithms; such an analysis was missing from [2].
onvergence rates to the global optima are given for FTW, thereby successfully achieving objective (ii). A complexity measure that
rives the convergence rate is defined, and a close relationship to the measure defined for the original DOO in [12] is established.
he asymptotic analysis discussed earlier largely focuses on FTW because analyzing FTWD would require additional regularity
ssumptions on the objective function, and therefore reduce generality. Instead, a simpler form of convergence for FTWD (together
ith FTW) is proven only in the approximate case when the bound is defined on a finite grid.

Nevertheless, a numerical study shows that FTWD performs significantly better than FTW, and almost as well as an algorithm
alled Path-Aware Optimistic Optimization [13], which is much more computationally intensive and has no convergence guarantees.
n the same numerical study, FTWD outperforms two representative, state-of-the-art baselines from source seeking control [14,15]
y always finding all global maxima. The convergence rate of FTW is experimentally illustrated. Finally, the simulation results from
he comparison between FTW and FTWD are confirmed in a TurtleBot3 experiment, in which the real robot successfully searches
or the darkest point of a 2D grayscale surface.

elated work

The closest settings to path-aware optimization are source and extremum seeking, which aim to optimize a process variable
e.g. performance/cost function) of a dynamical system, often through approximate gradient climbing, when only online measure-
ents of the objective are available. These techniques are usually employed to regulate nonlinear plants to reach their optimal

perating point [16,17], or – similar to the present paper – applied to mobile robots when searching for the optimum of some
hysical quantity [18,19]. In the latter case, source/extremum seeking does not usually assume that absolute position coordinates
re available (e.g. mobile robots might operate in a GPS-restricted area) [20,21], although exceptions exist [18,19].

The objectives of this paper are optimization-focused and are different from the typical goals in source/extremum seeking, which
eavily focus on analyzing practical asymptotic stability [20–23]. Moreover, the shape of the function is significantly more general
han in many source/extremum seeking methods [17,20,21,24], in which the function must often be differentiable and radially
ecreasing around the optimum.

Another major point of differentiation is that the current work provides asymptotic convergence rates, which to the authors’
nowledge are very rare in source/extremum seeking, and have only been previously provided under the assumption that the global
ptimum is unique [21,25]. Two limitations of the proposed approach are that, like in [18,19], absolute robot positions are required;
nd that the asymptotic analysis disregards the transients, as is not uncommonly done in source seeking, e.g. [16,22].

Additional work related to this paper can be found in coverage problems, where robots monitor an area and build a surveillance
ath to quickly update a map of this area [26–28]. Another sample-based approach used to examine a physical quantity in minimum
ime with robot sensors can be found in informative path planning [29]. For instance, agricultural sites can be monitored with a
igh-resolution depth camera mounted on a UAV [30]. Well-established SLAM methods can be employed if both mapping and robot
ocalization in unknown environments are desired [31,32]. However, none of these methods directly optimize a function defined
ver the robot’s space. In the multiagent framework, a heuristic method searching for the maximum signal strength of an antenna was
resented in [33]. The method uses particle swarm optimization to find the global optimum without imposing regularity assumptions
n the signal function, although unlike the current work, that paper does not provide a convergence analysis and is not suitable for
ingle-robot optimization.

While the Path-Aware Optimistic Optimization method previously proposed by two of the authors [13] works well in practice,
t provides no convergence guarantees, and it is computationally much more expensive than FTW(D).

Next, some background on DOO and preliminary algorithmic development is given in Section 2, followed by the presentation
f FTW and FTWD in Section 3. Sections 4 and 5 provide convergence guarantees and rates, particularly for FTW, for which a
omplexity measure that drives this rate is formally defined. Numerical results and real-robot experiments are presented in Sections 6

nd 7 respectively, while Section 8 summarizes the paper and gives possible extensions for future work.
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2. Background and preliminaries

This section briefly introduces DOO, which represents the foundation of the proposed methods, and then formally defines the
ath-aware optimization setting.

.1. Deterministic optimistic optimization

Consider a compact and connected, n-dimensional state space 𝑋. Practical examples of 𝑋 include polyhedra (not limited to hyper-
rectangles or spheres) such as geographical regions. Over this state space, an objective function 𝑓 ∶ 𝑋 → R is defined. DOO [12] is
a global optimization algorithm belonging to the branch-and-bound class that aims to find the optima 𝑥∗ ∈ 𝑋∗ ∶= arg max𝑥∈𝑋 𝑓 (𝑥)
f the objective from successive function evaluations. It sequentially splits the search space 𝑋 into progressively finer partitions,
nd samples to further expand only the sets associated with the largest upper bound values on 𝑓 . After a numerical budget has been
xhausted, the algorithm approximates the maximum as the location 𝑥 with the largest 𝑓 value evaluated so far.

ssumption 1 (Smoothness). The objective function 𝑓 is globally Lipschitz continuous:

‖𝑓 (𝑥1) − 𝑓 (𝑥2)‖ ≤𝑀‖𝑥1 − 𝑥2‖,∀𝑥1, 𝑥2 ∈ 𝑋, (1)

here 𝑀 denotes the Lipschitz constant and ‖ ⋅ ‖ is the Euclidean norm.

Even though DOO analysis in [12] requires the Lipschitz-continuity assumption in (1) to hold only locally around the maxima
∗ ∈ arg max𝑥∈𝑋 𝑓 (𝑥), the property is needed here to hold globally in order to develop the analysis in the following sections. Note
hat typically, a global optimization algorithm either requires sampling the entire space, or relies on a smoothness assumption of
he objective function [14], like Lipschitz continuity [19,34]. This assumption is necessary because without it, an unexplored region
ay contain positions where the function experiences an arbitrarily rapid rate of change, potentially concealing a global optimum.
his restriction is realistic for many physical phenomena such as the distribution of ocean litter or gas and heat diffusion, which
radually spread over time until reaching a rather smooth steady-state distribution [19].

An alternative approach to the partition splitting in DOO will be used here: the construction of a so-called ‘‘saw-tooth’’ upper
ound [12], defined as 𝐵𝑘 ∶ 𝑋 → R so that:

𝑓 (𝑥) ≤ 𝐵𝑘(𝑥) ∶= min
𝑥𝑠∈𝑆𝑘

[𝑓 (𝑥𝑠) + ‖𝑥 − 𝑥𝑠‖], ∀𝑥 ∈ 𝑋, (2)

here 𝑆𝑘 = {𝑥1,… , 𝑥𝑘} is the set of states sampled up to step 𝑘, with 𝑘 indexing the last function evaluation; see Fig. 1 for an
xample. At each iteration, the next target (state to be sampled) is given by the formula:

𝑥𝑡 ∶= arg max
𝑥∈𝑋

𝐵𝑘(𝑥). (3)

his method will be called sawtooth DOO. Note that 𝐵𝑘 is lowered (refined) implicitly via (2) with each new sample added to 𝑆𝑘.

.2. Path-aware optimization

Consider a mobile robot characterized by positions 𝑥 ∈ 𝑋 and control inputs 𝑢 ∈ 𝑈 , which searches for the global maxima
∗ ∈ 𝑋∗ of the function 𝑓 . Next, define the discrete time dynamics 𝑔 ∶ 𝑋 × 𝑈 → 𝑋 so that:

𝑥𝑘+1 = 𝑔(𝑥𝑘, 𝑢𝑘), (4)

here 𝑘 denotes the time step. Note that the state signal consists of only robot positions and the robot moves with first order
ynamics, although this could be generalized like in [13]. In the search for 𝑥∗, the robot picks targets 𝑥𝑡 ∈ 𝑋 with (3). When
riving towards these targets, the robot uses dynamics in (4) by applying the control action leading closest to 𝑥𝑡 among all available
ctions:

𝑢𝑘 = arg min
𝑢

‖𝑥𝑡 − 𝑔(𝑥𝑘, 𝑢)‖. (5)

Most often, due to velocity constraints in dynamics (4), multiple time steps and thus control actions will be required for the robot
to reach a given target 𝑥𝑡.

ssumption 2 (Reachability). ∃𝑅 > 0 such that ∀𝑥 ∈ 𝑋 and ∀𝑥′ ∈ B(𝑥,𝑅), ∃𝑢 ∈ 𝑈 such that 𝑔(𝑥, 𝑢) = 𝑥′, where B(𝑥,𝑅) is the
-dimensional (hyper)sphere centered at 𝑥 and of radius 𝑅.

Assumption 2 ensures that the robot can eventually reach all points within the set 𝑋. Such an assumption is not uncommon and
as made e.g. for the source seeking method of [24]. When applied to the single-integrator dynamics (4), it provides a reasonable
pproximation of more complex behavior, e.g. second or third order dynamics [35], especially when robots move at relatively
ow velocities, their control actions are limited to simple maneuvers, or when the operating area is much larger than the robots’
ize [36,37]. Note that the convergence results of the following sections hold under Assumptions 1 and 2.

Path-aware global optimization [2,13] can be described as follows. The mobile robot aims to locate as quickly as possible all

lobal maxima of objective function 𝑓 , which per Assumption 1 is Lipschitz continuous with a known Lipschitz constant, but can

3 
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Fig. 1. 1D trajectory example showing the overcommitment issue faced by committed DOO (CDOO). FTW changes direction when its path clearly becomes
suboptimal. (For interpretation of the usage of color in this figure, the reader is referred to the web version of this article.)

have properties such as non-differentiability and various local and global optima. The robot lacks prior knowledge of the function
𝑓 , making the problem model-free optimization. Consequently, the robot learns the function online during a single trajectory, by
observing samples at the positions it visits along this trajectory. However, due to constraints on the robot’s dynamics (e.g., limited
velocity), it can only sample at each step neighboring states instead of being able to sample arbitrarily distant next-step positions.

In this setting, the sampling strategy of sawtooth DOO becomes inappropriate as most often a maximal 𝐵-state is not reachable
within one robot step, meaning that intermediate steps (samples) are required to reach these targets. The approach in which the
robot picks a target according to (3), travels towards this point by taking intermediate steps, and only changes the trajectory once it
has been reached, will be called committed DOO. Note that this approach is susceptible to overcommitment: even though the newly
acquired samples may suggest the current trajectory has become suboptimal, the method is unable to make trajectory adjustments
until the preset target is reached. Fig. 1 provides an example of a committed-DOO trajectory and gives more intuition on the
overcommitment issue [2].

3. FTW and FTWD algorithms

Next, the main methods of the paper are presented: FTW and its extension, FTWD. FTW was introduced in the preliminary
conference version [2], while FTWD is the main algorithmic novelty of this work.

FTW uses the sawtooth-DOO principle of refining with each new 𝑓 -sample gathered the upper bound in (2), with the goal of
focusing the search towards 𝑥∗. To tackle the danger of overcommitment, FTW continuously monitors the upper bound and function
values. If after the latest sample the bound of the currently targeted state 𝑥𝑡 (the last-chosen maximal-𝐵 location) becomes lower
than an 𝑓 -sample previously seen by the robot, the current path is clearly suboptimal. In such a case, the robot updates its target
to the current maximum of 𝐵. This method will be called FTW, as the robot Turns When a previous Function value becomes larger
than the current best upper bound.

Fig. 1 provides some intuition on the difference between committed DOO and FTW. The global maximum of the function is
marked with a red star and denoted with 𝑓 ∗, the robot samples are marked with black stars, and the blue line represents the upper
bound on 𝑓 . The robot is heading towards the left endpoint of the search space 𝑋 = [0; 25], where initially the bound was maximal
(marked with a blue star at the end of the blue dotted line). A future turnaround is exemplified: at step 𝑘 + 3 the refined bound at
the initial target point will become lower than the current function sample 𝑓 (𝑥𝑘), as shown by the horizontal dotted line, and thus
FTW will change direction towards the right. In contrast, committed DOO will continue the suboptimal trajectory until reaching the
position initially targeted, thus wasting energy and time.

Algorithm 1 summarizes the FTW method. The method starts in position 𝑥1 with no prior knowledge of 𝑓 (𝑆0 ← ∅), apart from
the Lipschitz constant 𝑀 . At each step 𝑘, the robot takes a new sample 𝑓 (𝑥𝑘), adds it to 𝑆𝑘−1, and updates both the upper bound
𝐵𝑘 and 𝑓 ∗

𝑘 = max{𝑓 (𝑥𝑠)|𝑥𝑠 ∈ 𝑆𝑘}, the maximal 𝑓 -value seen so far. The robot updates its current target 𝑥𝑡 with (3) as soon as
𝑓 ∗
𝑘 > 𝐵𝑘(𝑥𝑡), or when 𝑥𝑡 is reached. The control action in (5) guides the robot towards 𝑥𝑡, resulting in a new robot position 𝑥𝑘+1.

The algorithm stops when either the total number of iterations was exhausted or convergence was reached. Convergence is
obtained when 𝑓 ∗

𝑘 becomes larger than all (or equal to some) 𝐵𝑘 values. In that case, the position corresponding to 𝑓 ∗
𝑘 is returned

as an approximation of the optimum.
A meaningful extension to FTW can be obtained by accounting for the distance to the (locally) maximal bound states while

choosing the next target position. To understand why this approach might be preferred, consider the case when two or more, not
necessarily global, optima in 𝑋 are present. If FTW is used, the robot will continue to lower the bound around the first optimum
until the next max-bound state is located in the neighborhood of the second optimum. The robot will refine next the bound states
around the second optimum, until the first one becomes attractive again, and so on. This leads in practice to oscillating behavior:

a trajectory that repeatedly passes through the high bound-regions of different optima, as can be seen on the left of Fig. 2.

4 
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Algorithm 1 FTW/FTWD
Input: search space 𝑋, dynamics 𝑔, Lipschitz constant 𝑀 , maximum number of trajectory steps 𝑁

1: measure initial state 𝑥1
2: initialize target 𝑥𝑡 = 𝑥1 and sample set 𝑆0 ← ∅
3: for each step 𝑘 = 1,… , 𝑁 do
4: sample 𝑓 (𝑥𝑘), add 𝑥𝑘 to 𝑆𝑘−1, obtaining 𝑆𝑘
5: update max 𝑓 -sample 𝑓 ∗

𝑘 = max𝑥𝑠∈𝑆𝑘𝑓 (𝑥𝑠) and upper bound 𝐵𝑘 (2)
6: if 𝐵𝑘(𝑥𝑡) ≤ 𝑓 ∗

𝑘 then
7: update target with:

FTW: 𝑥𝑡 = argmax𝑥∈𝑋 𝐵𝑘(𝑥)
or

FTWD: 𝑥𝑡 = argmax𝑥∈𝑋 𝐷𝑘(𝑥) from (6)
8: if 𝐵𝑘(𝑥𝑡) ≤ 𝑓 ∗

𝑘 then
9: convergence occurred, break loop

10: end if
11: end if
12: find 𝑢𝑘 = argmin𝑢 ||𝑥𝑡 − 𝑔(𝑥𝑘, 𝑢)|| and apply 𝑢𝑘 to reach 𝑥𝑘+1
13: end for
14: return 𝑥∗ = argmax𝑥𝑠∈𝑆𝑁 𝑓 (𝑥𝑠).

Fig. 2. Left: Illustration of the oscillating behavior of the robot trajectory for a FTW run. Right: The oscillating behavior is reduced for FTWD, so the trajectory
length greatly decreases. Results are part of the FTW/FTWD comparison from Section 6.1, and details on the experiment are provided on page Section 6.1. (For
interpretation of the usage of color in this figure, the reader is referred to the web version of this article.)

To reduce the oscillations, and get a trajectory similar to the one on the right of Fig. 2, one can consider also the distance (which
s used here as a proxy for travel cost) required by the robot to reach the maximal-bound states. To achieve this, define the following
uantity:

𝐷𝑘(𝑥) ∶=
𝐵𝑘(𝑥) − 𝑓 ∗

𝑘
‖𝑥 − 𝑥𝑘‖

, (6)

here 𝑥𝑘 is the current position of the robot, 𝐵𝑘(𝑥) is the bound in 𝑥 ∈ 𝑋 ⧵ {𝑥𝑘}, and 𝑓 ∗
𝑘 is the maximum sample seen so far (up

to step 𝑘). The term 𝑓 ∗
𝑘 in (6) ensures that the robot will not target states where the bound is below the maximal value sampled so

far. Then, the next target point is chosen as:

𝑥𝑡 ∈ arg max
𝑥∈𝑋

𝐷𝑘(𝑥), (7)

nstead of the standard choice in (3). The new FTW variant, since it also accounts for the Distance, will be called FTWD, and
simulation comparison to FTW will be made in Section 6.1. Note that like for FTW, convergence of FTWD is reached when
𝑘(𝑥) ≤ 𝑓 ∗

𝑘 , ∀𝑥 ∈ 𝑋.
Due to the non-trivial global maximization of the bounds 𝐵𝑘 over the entire 𝑋, an approximate grid-based version of FTW and

TWD will be implemented in practice. In this case, 𝐵𝑘 and 𝐷𝑘 are evaluated over an equidistant grid 𝑋𝑔 of resolution 𝛿 defined
ver 𝑋 (the distance between adjacent points across each dimension of 𝑋 is 𝛿) and the optimum 𝑥∗ will be found with an accuracy
iven by the resolution. The convergence for the grid-based methods is reached when 𝐵𝑘(𝑥) ≤ 𝑓 ∗

𝑘 , ∀ 𝑥 ∈ 𝑋𝑔 . Note that the results of

ig. 2 were generated with the grid-based algorithms.
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4. Convergence guarantees

In this section, convergence guarantees are provided for sawtooth DOO, committed DOO and FTW, followed by a convergence
roof applicable to the grid-based versions of the same methods, as well as of FTWD. The proof for FTWD is only given for its
rid-based version, as in the continuous setting the convergence cannot be guaranteed without making additional assumptions on
he function 𝑓 , which would reduce generality. Such a setting is not in the scope of this paper, but may be studied in future work.

heorem 1 (Convergence of Sawtooth DOO and Committed DOO). The sequence of best function values obtained up until each step 𝑘, 𝑓 ∗
𝑘 ,

will converge to 𝑓 ∗ as 𝑘 → ∞.

roof. 𝑓 ∗
𝑘 is convergent due to being monotonously increasing and bounded from above (𝑓 ∗

𝑘 ≤ 𝑓 ∗). Suppose that 𝑓 ∗
𝑘 ↛ 𝑓 ∗ in the

limit 𝑘 → ∞. Thus, ∃𝜀𝑓 > 0 s.t.:

𝑓 ∗
𝑘 → 𝑓 ∗ − 𝜀𝑓 =∶ 𝑓 ∗

∞. (8)

Take any global maximum 𝑥∗, which by assumption is never sampled. Thus, for any sample 𝑥𝑘+1:

𝐵𝑘(𝑥𝑘+1) > 𝐵𝑘(𝑥∗) ≥ 𝑓 ∗ (9)

as otherwise 𝑥∗ would be sampled. Let 𝑥′𝑠 ∈ 𝑆𝑘 and denote by 𝐵′
𝑘(𝑥𝑘+1) = 𝑓 (𝑥′𝑠) +𝑀 ⋅ ‖𝑥𝑘+1 − 𝑥′𝑠‖ the bound in 𝑥𝑘+1 given by 𝑥′𝑠.

Then, using (2) one can obtain:

𝐵′
𝑘(𝑥𝑘+1) = 𝑓 (𝑥′𝑠) +𝑀 ⋅ ‖𝑥𝑘+1 − 𝑥′𝑠‖ ≥ 𝐵𝑘(𝑥𝑘+1). (10)

Using 𝑓 ∗
∞ ≥ 𝑓 (𝑥′𝑠) and (9), the last inequality leads to:

𝑓 ∗
∞ +𝑀 ⋅ ‖𝑥′𝑠 − 𝑥𝑘+1‖ > 𝑓

∗. (11)

Finally:

‖𝑥′𝑠 − 𝑥𝑘+1‖ >
𝑓 ∗ − 𝑓 ∗

∞
𝑀

=
𝜀𝑓
𝑀

> 0, ∀𝑥′𝑠 ∈ 𝑆𝑘. (12)

Inequality (12) implies that at any 𝑘, 𝑥𝑘+1 is placed at a distance greater than 𝜀𝑓
𝑀 from all states in 𝑆𝑘. This leads to a contradiction,

as there is only a finite number of samples that can be taken in 𝑋 such that the minimum distance between any new sample and
those already available in 𝑆𝑘 is greater than 𝜀𝑓

𝑀 . Thus, the assumption initially made (𝑓 ∗
𝑘 ↛ 𝑓 ∗) is false and the convergence of

sawtooth DOO is proven.
In committed DOO the robot pays the traveling cost to 𝑥𝑘+1 in order to sample this maximal 𝐵-state. Thus, the set of samples

contains (without being equal to) the set of max 𝐵-states recommended by the sampling strategy of sawtooth DOO. Nevertheless,
the same proof line exploiting the inequalities (9)–(12) can be applied to prove that lim𝑘→∞ 𝑓 ∗

𝑘 → 𝑓 ∗. □

Remark 1. The proof also implies that, for any 𝜀 > 0, 𝑓 ∗ will be found with 𝜀 accuracy in a finite number 𝑛𝜀 ∈ Z+ of function
evaluations.

Remark 2. The global maximum 𝑥∗ used in the proof was an arbitrarily chosen element of the set 𝑋∗. Thus, the proof holds for
any 𝑥∗ ∈ 𝑋∗, and the sawtooth-DOO method will find all global maxima in 𝑋∗ with arbitrary accuracy. This does not guarantee
that a maximum 𝑥∗ will eventually become a sampled state, but rather that the method is building a dense set of samples around
optima.

The convergence guarantee of the FTW method will be given in the sequel. The following Lemma represents an intermediate
step towards this.

Lemma 1. Let 𝑥1, 𝑥2 ∈ 𝑋. Then:

𝐵𝑘(𝑥1) ≤ 𝐵𝑘(𝑥2) +𝑀 ⋅ ‖𝑥1 − 𝑥2‖. (13)

Proof. Let 𝑥𝑠 ∈ 𝑆𝑘 be the sample that gives the bound 𝐵𝑘(𝑥2). Thus:

𝐵𝑘(𝑥2) = 𝑓 (𝑥𝑠) +𝑀 ⋅ ‖𝑥2 − 𝑥𝑠‖. (14)

Using (2) with 𝑥 = 𝑥1:

𝐵𝑘(𝑥1) ≤ 𝑓 (𝑥𝑠) +𝑀 ⋅ ‖𝑥1 − 𝑥𝑠‖, (15)

and by the triangle inequality:

𝐵𝑘(𝑥1) ≤ 𝑓 (𝑥𝑠) +𝑀 ⋅ ‖𝑥1 − 𝑥2‖ +𝑀 ⋅ ‖𝑥2 − 𝑥𝑠‖. (16)

Finally, by (14):
𝐵𝑘(𝑥1) ≤ 𝐵𝑘(𝑥2) +𝑀 ⋅ ‖𝑥1 − 𝑥2‖. □

6 
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Fig. 3. The shaded area represents the union of two 2-dimensional balls (disks), inside which no future target points are located. Implicitly, all maxima of 𝑓
will be found outside of the area covered by this inclusion.

Theorem 2 (Convergence of FTW). In the FTW method lim𝑘→∞ 𝑓 ∗
𝑘 → 𝑓 ∗.

Proof. Similarly to the proof of Theorem 1, 𝑓 ∗
𝑘 is convergent and suppose that 𝑓 ∗

𝑘 → 𝑓 ∗ − 𝜀𝑓 =∶ 𝑓 ∗
∞, where 𝜀𝑓 > 0. Different from

that proof, the set of samples does not necessarily contain the max 𝐵-states recommended by the sampling strategy of DOO, due
to possible FTW turnarounds when the target’s bound becomes lower than 𝑓 ∗

𝑘 . Thus, the contradiction in Theorem 1 cannot be
obtained in the same way because the max-bound recommendations could still be at a distance larger than 𝜀𝑓

𝑀 from all samples in
𝑘.

To obtain the contradiction, it is enough to prove that the total number of FTW turnarounds is finite, i.e., that ∃𝑘 after which all
ax-bound recommendations will eventually become sampled states. Thus, FTW will asymptotically behave as the committed-DOO
ethod, for which the convergence was already proven.

Suppose the contrary: that there exists an infinite number of FTW turnarounds. Denote by 𝑥𝑡,𝑗 the 𝑗th max bound state on which
n FTW turnaround was performed, and by 𝑘𝑗 the step index of the sampled state at which the turnaround from 𝑥𝑡,𝑗 was done. Then:

𝐵𝑘𝑗 (𝑥𝑡,𝑗 ) < 𝑓
∗
𝑘𝑗

(17)

nd a next target 𝑥𝑡,𝑗+1 is chosen so that:

𝐵𝑘𝑗 (𝑥𝑡,𝑗+1) = max
𝑥∈𝑋

𝐵𝑘𝑗 (𝑥). (18)

Then, by taking 𝑥1 equal to 𝑥 ∈ 𝑋 and 𝑥2 = 𝑥𝑡,𝑗 in Lemma 1, it follows that:

𝐵𝑘𝑗 (𝑥) ≤ 𝐵𝑘𝑗 (𝑥𝑡,𝑗 ) +𝑀 ⋅ ‖𝑥𝑡,𝑗 − 𝑥‖. (19)

Consider at step 𝑘𝑗 the ball B
(

𝑥𝑡,𝑗 ,
𝜀𝑓
𝑀

)

, centered in 𝑥𝑡,𝑗 and of radius 𝜀𝑓
𝑀 > 0, and take 𝑥 in this ball. As ‖𝑥𝑡,𝑗 − 𝑥‖ <

𝜀𝑓
𝑀 , using (17)

in (19) leads to:

𝐵𝑘𝑗 (𝑥) < 𝑓
∗
𝑘𝑗

+𝑀 ⋅
𝜀𝑓
𝑀

= 𝑓 ∗
𝑘𝑗

+ 𝜀𝑓 < 𝑓 ∗. (20)

Finally:

𝐵𝑘𝑗 (𝑥) < 𝑓
∗ ≤ 𝐵𝑘𝑗 (𝑥

∗),∀ 𝑥 ∈ B
(

𝑥𝑡,𝑗 ,
𝜀𝑓
𝑀

)

, (21)

hich means that future max-𝐵 states chosen by FTW will not belong to B(𝑥𝑡,𝑗 ,
𝜀𝑓
𝑀 ). Note that the size of each such ball is bounded

from below by a positive quantity, as the radius 𝜀𝑓
𝑀 > 0.

Future max 𝐵-states will not belong to the union of the previous balls either, since the bounds in these regions are below
𝑓 ∗
𝑘𝑗′
, ∀𝑗′ > 𝑗. Thus:

𝑥𝑡,𝑗′ ∉
𝑗
⋃

𝑖=1
B
(

𝑥𝑡,𝑗 ,
𝜀𝑓
𝑀

)

,∀𝑗′ > 𝑗. (22)

Note that the balls defined above are not necessarily disjoint. Nevertheless, since 𝑥𝑡,𝑗′ belongs to the exterior or the frontier of the
above union (refer to Fig. 3 for some intuition), and given the assumption that there is an infinite number of turnarounds, leading to
an infinite number of such balls, the union in (22) will grow infinitely large. The last statement contradicts the compactness property
7 
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of the state space 𝑋. Thus, the number of FTW turnarounds is finite and the method will asymptotically behave like committed
DOO, leading to the property 𝑓 ∗

𝑘 → 𝑓 ∗ as in Theorem 1. □

Remark 3. In the proof of Theorem 2, a union of balls was considered to gradually restrict the regions containing future maximal-𝐵
states and implicitly 𝑥∗. Using Lemma 1, the bounds inside each ball B

(

𝑥𝑠,
𝑓∗−𝑓 (𝑥𝑠)

𝑀

)

will be below 𝑓 ∗, ∀𝑥𝑠 ∈ 𝑆𝑘, and:

𝑥𝑡 ∉
𝑘
⋃

𝑠=1
B
(

𝑥𝑠,
𝑓 ∗ − 𝑓 (𝑥𝑠)

𝑀

)

, (23)

where 𝑥𝑡 is any maximal-𝐵 state to be chosen as target by FTW at steps 𝑘′ ≥ 𝑘. In what follows, the union in (23) will be denoted
by ∪B. All the points outside ∪B have the bounds greater than 𝑓 ∗ and, as the number of trajectory samples increases, the volume
covered by ∪B will also increase. To get an empirical signal on the convergence rate to 𝑓 ∗, the rate at which the volume covered
by ∪B grows will be experimentally studied in Section 6.3.

Theorem 3 (Convergence of Sawtooth DOO, Committed DOO, FTW and FTWD on a Grid). For each one of the methods mentioned, when
bounds are evaluated on a grid 𝑋𝑔 of resolution 𝛿, 𝑓 ∗

𝑘 is convergent and lim𝑘→∞ 𝑓 ∗
𝑘 = 𝑓 ∗

∞ ≥ 𝑓 ∗ −𝑀
√

𝑛𝛿
2 .

roof. After a finite number of steps, ∃𝑥𝑡 ∈ 𝑋𝑔 , a target chosen to be sampled for the second time. Note that this will happen at
orst after sampling all the states on the grid 𝑋𝑔 , which are finite in number as 𝑋 is compact. If 𝑥𝑡 is revisited, then 𝑥𝑡 ∈ 𝑆𝑘 and:

𝐵𝑘(𝑥) ≤ 𝐵𝑘(𝑥𝑡) = 𝑓 (𝑥𝑡) ≤ 𝑓 ∗
𝑘 ,∀𝑥 ∈ 𝑋𝑔 , (24)

which represents the convergence criterion of the DOO-based methods on a grid.
Next, let 𝑥̃ ∈ 𝑋𝑔 be the closest point to an arbitrarily chosen global maximum 𝑥∗. Then:

‖𝑥∗ − 𝑥̃‖ <

√

𝑛𝛿
2

, (25)

where
√

𝑛𝛿 comes from the diagonal of 𝑛-dimensional cubes with side length 𝛿, whose centers are given by the points on the grid
𝑋𝑔 . Using Lemma 1 for 𝑥1 = 𝑥∗ and 𝑥2 = 𝑥̃, one can obtain:

𝐵𝑘(𝑥∗) ≤ 𝐵𝑘(𝑥̃) +𝑀 ⋅ ‖𝑥∗ − 𝑥̃‖, (26)

and by combining 𝑓 ∗ ≤ 𝐵𝑘(𝑥∗), (25) and (26), it follows that:

𝑓 ∗ < 𝐵(𝑥̃) +𝑀

√

𝑛𝛿
2

. (27)

ext, the inequality from the theorem statement will be proven by contradiction. The contrary of that inequality, along with (27),
ead to:

𝑓 ∗
∞ < 𝑓 ∗ −𝑀

√

𝑛𝛿
2

< 𝐵(𝑥̃), (28)

which contradicts the convergence criterion (𝑓 ∗
∞ ≥ 𝐵(𝑥),∀ 𝑥 ∈ 𝑋𝑔). □

Remark 4. The remark in Theorem 3 may seem trivial at first since any exhaustive search algorithm could find the optimum on a
grid. However, it ensures that the grid-based methods do not get stuck in a loop without sampling the entire space. Finally, even
though the proof relies on the worst-case exhaustive search in which the grid is fully sampled, FTW and FTWD are expected to
actually do better in practice, as will be shown later in Section 6.1.

5. Convergence rate of FTW

The goal of this section is to study the convergence rate of FTW, i.e. to bound the number of samples a robot needs to acquire to
reach a given distance from 𝑓 ∗, or equivalently, to characterize the error reached after a given number of samples. As mentioned
in the introduction, the convergence rates proven here are asymptotic in nature, i.e. they hold for large numbers of samples.

Consider optimal sphere packing, or similarly the highest coverage density of point lattices, extensively studied in [38,39]. These
problems are relevant to the FTW convergence rate, because the optimal packing can give a bound on the largest amount of samples
needed to fill 𝑋 at a given pairwise distance in order to reach a certain near-optimality. While optimal coverage has been solved
in 1D-3D [40], 8D [41] and 24D [42], for other dimensions mostly bounds on the best packing densities were found [43].

The following Lemma is a prerequisite to the convergence rate. Note that the multidimensional (hyper)-sphere will be referred
to as a 𝑏𝑎𝑙𝑙.

Lemma 2. Denote by 𝑁𝜎 the maximum number of points taken inside or on the frontier of an 𝑛-dimensional ball of radius 𝑅 such that
the distance between any two points is greater than or equal to 𝜎. Then:

𝑁 <
(

1 + 2𝑅)𝑛
. (29)
𝜎 𝜎

8 
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Fig. 4. Examples of (optimal) packing in 2D with circles of different radius. (For interpretation of the usage of color in this figure, the reader is referred to the
web version of this article.)

Proof. 𝑁𝜎 is first placed in a relationship to the ball packing problem. Indeed, to guarantee a minimum distance 𝜎 between any
two different points, we can take them to be the centers of non-overlapping balls of radius 𝜎

2 . Since the points can be taken also on
the frontier of an 𝑛-dimensional ball of radius 𝑅, they have to be centers of balls packed inside a larger ball of radius 𝑅′ = 𝑅 + 𝜎

2 .
Denote by S′ the 𝑛-dimensional ball of radius 𝑅′ and by 𝑁(𝑅′, 𝑟) the maximal number of balls of radius 𝑟 ≤ 𝑅′ to fit inside

S′. Following the reasoning above, 𝑁𝜎 = 𝑁(𝑅′, 𝜎2 ). A simple upper-bound on 𝑁(𝑅′, 𝑟) is obtained by computing the ratio between
he Lebesgue measure of the ball of radius 𝑅′, denoted by 𝑉 (𝑅′), and the Lebesgue measure of the ball of radius 𝑟, denoted 𝑉 (𝑟).

Consequently:

𝑁(𝑅′, 𝑟) <
𝑉 (𝑅′)
𝑉 (𝑟)

=
(

𝑅′

𝑟

)𝑛
. (30)

By replacing 𝑅′ = 𝑅 + 𝑟 = 𝑅 + 𝜎
2 in (30) one gets:

𝑁𝜎 = 𝑁
(

𝑅′, 𝜎
2

)

<

(

𝑅 + 𝜎
2

𝜎
2

)𝑛

=
(

1 + 2𝑅
𝜎

)𝑛
. □

emark 5. The bound in (29) is by no means tight, and could be tightened by computing 𝑁𝜎 numerically using linear programming
techniques such as the ones presented in [43,44]. However, this rough result is enough to derive the complexity measure of FTW
later given in Theorem 4.

To give some intuition on Lemma 2, Fig. 4 illustrates two packing examples with balls of different radii. The well-known
ℎ𝑜𝑛𝑒𝑦𝑐𝑜𝑚𝑏 obtained by choosing 𝜎 = 𝑅 in Lemma 2 is drawn on the left of Fig. 4. The blue and red circles represent the disks (2D
balls) S′ and S, and their radii are given as follows: 𝑅′ = 1 is the radius of S′, and 𝑅 = 0.66 of S (recall that 𝑅′ = 𝑅+ 𝜎

2 ). The radius
of the packing circles is 𝑟 = 0.33. Note that 𝑁𝜎 = 7, meaning that at most 7 points (circle centers) can be taken in S such that each
f their pairwise distances is at least 𝜎; and the bound on 𝑁𝜎 ≤

(

1 + 2𝑅
𝜎

)𝑛
= 9 holds true. On the right of Fig. 4, one of the optimal

packings with circles of radius for 𝑟 = 0.11 is given, where 𝑅′ = 1, 𝑅 = 0.88 and 𝜎 = 0.22. At most 𝑁𝜎 = 64 points can be taken in S
such that their pairwise distance does not drop below 𝜎 = 0.22, and thus the bound 𝑁𝜎 ≤

(

1 + 2𝑅
𝜎

)𝑛
= 81 is verified.

The complexity of FTW will be studied next for a single global optimum 𝑥∗ = arg max𝑥∈𝑋 𝑓 (𝑥), and then extended to multiple,
ossibly infinitely many global maxima. Based on the convergence proof of FTW in Theorem 2, ∃𝑘𝜀 such that ∀𝑘 > 𝑘𝜀, ∃B∗(𝑥𝑐 , 𝑅)
ball centered in 𝑥𝑐 ∈ 𝑋, of radius 𝑅 and containing 𝑥∗, such that max𝑥∈B∗ 𝐵𝑘(𝑥) ≥ 𝑓 ∗ > max𝑦∈𝑋⧵B∗ 𝐵𝑘(𝑦). In other words, while

onverging to 𝑓 ∗ (and implicitly to 𝑥∗), the robot will eventually sample only inside a neighborhood of the maximum, contained
nside the ball B∗(𝑥𝑐 , 𝑅). In the convergence rate of Theorem 4, it will be important that every point within this ball can be reached
n a single step.

Define next the loss criterion 𝑟𝑘 = 𝑓 ∗−𝑓 ∗
𝑘 , which measures the closeness to optimality reached by FTW after 𝑘 samples. Obviously,

𝑘 is a monotonously decreasing sequence and 𝑟𝑘 → 0 as 𝑓 ∗
𝑘 → 𝑓 ∗, per the convergence Theorem 2.

heorem 4 (Worst-case Convergence Rate of FTW and Committed DOO for a Single Global Optimum). Let 𝜀 > 0. After taking at most
1 + 2𝑀𝑅

𝜀

)𝑛
samples inside B∗(𝑥𝑐 , 𝑅), the loss will be bounded by 𝑟𝑘 < 𝜀, and ∃𝑥𝑠 ∈ 𝑆𝑘 such that ‖𝑥𝑠 − 𝑥∗‖ <

𝜀
𝑀 .

Proof. Consider 𝑘 =
(

1 + 2𝑀𝑅
𝜀

)𝑛
and define 𝛥𝑘 ∶= max𝑥∈𝑋 𝐵𝑘(𝑥) − 𝑓 ∗

𝑘 . Suppose that 𝛥𝑘 ≥ 𝜀. For convenience, the indexing starts
ith 𝑘 = 1 as the samples acquired outside the ball B∗ can be omitted for this proof. Note that a contradiction to 𝛥𝑘 ≥ 𝜀 would

prove the bound on the loss, since:
∗ ∗ ∗ ∗
𝑟𝑘 = 𝑓 − 𝑓𝑘 ≤ 𝐵𝑘(𝑥 ) − 𝑓𝑘 ≤ 𝛥𝑘 < 𝜀. (31)
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Since by Assumption 2 all states inside B∗ are reachable from each other within one robot step, the next max-𝐵 state targeted by
he robot will become an actual sample at the next FTW iteration, i.e. 𝑥𝑘+1 = arg max𝑥∈𝑋 𝐵𝑘(𝑥). Denote by 𝑥̃ the closest sample to
𝑘+1 taken inside B∗ up to step 𝑘. The following inequalities hold true:

𝛥𝑘 = max
𝑥∈𝑋

𝐵𝑘(𝑥) − 𝑓 ∗
𝑘 ≤ 𝑓 (𝑥̃) +𝑀‖𝑥̃ − 𝑥𝑘+1‖ − 𝑓 ∗

𝑘 ≤𝑀‖𝑥̃ − 𝑥𝑘+1‖, (32)

ecause 𝑓 (𝑥̃) ≤ 𝑓 ∗
𝑘 . Using 𝛥𝑘 ≥ 𝜀, (32) leads to:

‖𝑥̃ − 𝑥𝑘+1‖ ≥ 𝜀
𝑀
. (33)

The result in (33) implies that the pairwise distance of the samples acquired up to step 𝑘 + 1 does not decrease below 𝜀
𝑀 . This

statement represents a contradiction, as according to Lemma 2, where 𝜎 ∶= 𝜀
𝑀 , the maximum number of samples located at least

𝜀
𝑀 farther away from each other is less than

(

1 + 2𝑀𝑅
𝜀

)𝑛
. This contradiction ends the first part of the proof, showing that 𝑟𝑘 < 𝜀.

To study how close the samples in B∗ get to the optimum 𝑥∗, consider the following inequality:

𝜀 > 𝛥𝑘 = max
𝑥∈𝑋

𝐵𝑘(𝑥) − 𝑓 ∗
𝑘 > 𝐵𝑘(𝑥

∗) − 𝑓 ∗
𝑘 . (34)

Note that ∃𝑥𝑠 ∈ 𝑆𝑘, a sample which gives the bound in 𝑥∗:

𝐵𝑘(𝑥∗) = 𝑓 (𝑥𝑠) +𝑀 ⋅ ‖𝑥𝑠 − 𝑥∗‖. (35)

Using (34) and (35), it follows that:

𝜀 > 𝑓 (𝑥𝑠) +𝑀 ⋅ ‖𝑥𝑠 − 𝑥∗‖ − 𝑓 ∗
𝑘 ≥𝑀 ⋅ ‖𝑥𝑠 − 𝑥∗‖, (36)

and then:

‖𝑥𝑠 − 𝑥∗‖ <
𝜀
𝑀
. (37)

Lastly, it will be proven that for a large enough number of steps 𝑘 > 𝑘𝜀 so that at least one sample is acquired inside B∗,
∃𝐶 ∈ (0, (4𝑀𝑅)𝑛] such that:

(

1 + 2𝑀𝑅
𝜀

)𝑛
< 𝐶𝜀−𝑛 = 𝑂(𝜀−𝑛). (38)

By multiplying the inequality in (38) with 𝜀𝑛 one can obtain:

(𝜀 + 2𝑀𝑅)𝑛 < 𝐶. (39)

A bound on 𝜀 once ∃𝑥𝑠 ∈ B∗ is:

𝜀 = max
𝑘
𝛥𝑘 = max

𝑘
(max
𝑥∈𝑋

𝐵𝑘(𝑥) − 𝑓 ∗
𝑘 ) ≤𝑀 max

𝑥∈B∗
‖𝑥 − 𝑥𝑠‖ = 2𝑀𝑅, (40)

as the maximum distance between any max-𝐵 state located inside B∗ and 𝑥𝑠 is at most equal to the diameter of the ball, i.e. 2𝑅.
Using (39) and (40):

𝐶 ∈ (0, (4𝑀𝑅)𝑛]. (41)

Thus, the 𝑂(𝜀−𝑛) worst-case number of steps/samples for FTW and committed DOO has been obtained. □

The interpretation of Theorem 4 is that FTW and committed DOO need at worst 𝑂(𝜀−𝑛) samples to get 𝜀
𝑀 -close to the unique

optimum 𝑥∗. Note that in practice the algorithm will sample fewer points. To characterize this, a complexity measure of FTW will
be given next.

Definition 1. Define the complexity measure of the optimization problem to be the smallest constant 𝑚 ∈ [0, 𝑛] for which there
exists 𝐶 > 0, such that for any 𝜀 > 0 the maximum number of samples taken inside B∗ for FTW to reach a loss 𝑟𝑘 < 𝜀 is less than
𝐶𝜀−𝑚.

The existence of 𝐶 and 𝑚 are verified by Theorem 4 and by the continuity of 𝐶𝜀−𝛾 in 𝛾. Then, by definition, the number of
samples to get a loss 𝑟𝑘 < 𝜀 in the case of a single 𝑥∗ is 𝑂(𝜀−𝑚). Next, this result will be generalized to any number of optima.

heorem 5 (Convergence Rate of FTW and Committed DOO in the General Case). Let 𝜀 > 0. The number of samples to reach 𝜀
𝑀 -close to

ll optima of 𝑓 in 𝑋 is 𝑂(𝜀−𝑚).

roof. To bound the number of steps required to reach 𝜀
𝑀 -close to multiple, possibly infinite number of maxima, the near-

ptimal regions in 𝑋 can be packed with balls similar to B∗ from above. Again, as FTW finds all global maxima, and following
Assumption 2, ∃𝑘𝜀 such that ∀𝑘 > 𝑘𝜀, ∃𝑝 balls B∗

𝑖 (𝑥𝑐,𝑖, 𝑅𝑖) of radius 𝑅𝑖, containing global maxima, such that max𝑥∈∪𝑝𝑖=1B∗
𝑖
𝐵𝑘(𝑥) ≥ 𝑓 ∗ >

ax𝑦∈𝑋⧵∪𝑝𝑖=1B
∗
𝑖
𝐵𝑘(𝑦). Note that the number of the balls B∗

𝑖 is finite (as 𝑋 is compact) and they are not necessarily disjoint. Denote by

𝑚𝑎𝑥 the maximum number of steps required by the robot to travel between any two balls. In the worst-case scenario the robot will

10 
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sample inside one ball and then immediately move to the next max 𝐵-state located in another ball. This will lead to a computational
omplexity of 𝑂(𝑝𝑁𝑚𝑎𝑥𝜀−𝑚) = 𝑂(𝜀−𝑚), with the same rate as in the case of a single 𝑥∗.

To cover also the transient regime, the number of trajectory samples until all new target points will be chosen inside ∪𝑝𝑖=1B
∗
𝑖 is

finite (recall the existence of 𝑘𝜀 in the above proof). Thus, ∃𝐶 ≥ 𝐶 such that the maximum number of samples across the whole
trajectory in order to reach a loss bound 𝑟𝑘 < 𝜀 is at most 𝐶𝜀−𝑚, i.e. the same complexity 𝑂(𝜀−𝑚). □

The complexity measure 𝑚 of FTW is closely related to the near-optimality dimension 𝑑 in [12], which was used to characterize
he original DOO. Both measures are related to the maximum number of disjoint, metric balls used to cover a set (ball) of
ear-optimal states. In what follows, a relation between 𝑚 and 𝑑 will be sought.

For a given 𝑘, consider the smallest 𝜀 > 0 and 𝜀′ > 0 such that the loss 𝑟𝑘 = 𝑓 ∗−𝑓 ∗
𝑘 < 𝜀 and the suboptimality 𝑟′𝑘 ∶= 𝑓 ∗−𝑓 (𝑥𝑘) < 𝜀′,

where 𝑥𝑘 is the state recommended to be sampled by FTW at step 𝑘. Define next the set of 𝜀-optimal states:

𝑋𝜀 ∶= {𝑥 ∈ 𝑋 ∣ 𝑓 (𝑥) > 𝑓 ∗ − 𝜀}. (42)

ince 𝑟𝑘 ≤ 𝑟′𝑘, it follows that 𝜀 ≤ 𝜀′ and 𝑋𝜀 ⊆ 𝑋𝜀′ .
From the definition of the near-optimality dimension in [12], there exists 𝑑 ≥ 0 and 𝐶 ′ > 0, such that the total number of disjoint

alls of radius 𝜀′

2𝑀 used to cover 𝑋𝜀′ and reach a suboptimality of 𝑟′𝑘 < 𝜀
′ is at most 𝐶 ′𝜀′−𝑑 . Note that in this case, the measure is

alled the 1
2𝑀 -near optimality dimension and the constant which ensures that the near-optimal regions are well-shaped in [12] is

𝜈 = 1. Using Definition 1, there exists 𝑚 ≥ 0 and 𝐶 > 0 such that the number of disjoint balls of the same radius 𝜀′

2𝑀 used to cover
𝑋𝜀 and to reach a loss 𝑟𝑘 < 𝜀 ≤ 𝜀′ is less than 𝐶𝜀′−𝑚. As 𝑋𝜀 ⊆ 𝑋𝜀′ , fewer balls of the same radius are required to cover the set of
𝜀-optimal states, i.e.:

𝐶𝜀′−𝑚 ≤ 𝐶 ′𝜀′−𝑑 , (43)

an inequality that holds for any 𝜀′ > 0. The result in (43) can be rewritten as:

𝑚 ≤ 𝑑 +
log(𝐶 ′∕𝐶)
log(𝜀′−1)

,∀𝜀′ > 0 (44)

and by taking the limit 𝜀′ → 0, it finally follows that 𝑚 ≤ 𝑑. The complexity measure of FTW is therefore at most the near-optimality
dimension in DOO.

6. Numerical results

This section numerically studies the FTW and FTWD methods, compares them to path-aware and source seeking baselines, and
provides insights into the convergence rate and complexity of FTW. The following experiments will be performed using a simulated
robot with the motion dynamics (4) defined as a unicycle:

𝑥𝑘+1 = 𝑥𝑘 + 𝑇𝑠 ⋅ 𝑢𝑘,1 ⋅ [cos(𝑢𝑘,2), sin(𝑢𝑘,2)]𝑇 , (45)

where state 𝑥𝑘 = [𝑥𝑘,1, 𝑥𝑘,2]𝑇 , sampling period 𝑇𝑠 = 1 s and control action 𝑢𝑘 = [𝑢𝑘,1, 𝑢𝑘,2]𝑇 . The robot velocity will be taken as
𝑢𝑘,1 ∈ [0, 0.2]m/s and the heading 𝑢𝑘,2 ∈ [0, 2𝜋). To find the maxima, the robot will search inside the space 𝑋 = [0, 4]m × [0, 4]m.
The bound 𝐵 will be evaluated over a discretized grid with 41 × 41 points equally spaced by 𝛿 = 0.1m across both dimensions of
𝑋.

All the methods in the experiments will use the objective function:

𝑓 (𝑥) = max{𝜙1,2,3(𝑥), 𝜓1,2,3(𝑥)}, where𝜙𝑖(𝑥) = ℎ𝑖 ⋅ exp

[

−
2
∑

𝑗=1

(𝑥𝑗 − 𝑐𝑖𝑗 )2

𝑏2𝑖𝑗

]

and𝜓𝑖(𝑥) = 𝜆𝑖 ⋅ [𝑓 ∗ −𝑀 ′
‖𝑥 − 𝑐′𝑖‖], (46)

.e. 𝑓 is the maximum amplitude among 3 cone functions 𝜓 and 3 radial basis functions 𝜙 (RBFs). The parameters of 𝜓 are as follows:
lope coefficients 𝜆𝑖 = [1; 2∕3; 1∕2] and centers 𝑐′𝑖 = [3.25; 1.5], [1; 0.75], [1.5; 0.5], where 𝑀 ′ = 312.5; and of 𝜙: widths 𝑏𝑖 = [1.4; 1.4]𝜆𝑖,

heights ℎ𝑖 = 255𝜆𝑖 and centers: 𝑐𝑖 = [2.75; 3.5], [0.75; 2.5], [3.75; 1.75]. Fig. 5 includes a contour representation of 𝑓 .
The Lipschitz constant is set to the maximal absolute value of the derivative of 𝑓 among all points where it exists, i.e. 𝑀 =𝑀 ′ =

312.5, and the global maximum 𝑓 ∗ = 255 is attained at two different locations: 𝑥∗1 = [2.75; 3.5] and 𝑥∗2 = [3.25; 1.5]. Moreover, the
slope of the cone centered in 𝑥∗2 equals the Lipschitz constant and the cone functions are nondifferentiable at their peaks, thus 𝑓 is
overall nondifferentiable. The generality of the function shape is important because as stated in the introduction, most extremum and
source seeking techniques assume a single global optimum and global differentiability for 𝑓 , while FTW(D) methods accommodate
multiple global optima, relying on the weaker property of Lipschitz continuity instead. The performance of the proposed methods
on the previously described 𝑓 will be highlighted in the following experiments, particularly in the baseline comparison within
Section 6.2.

The first two methods used in the comparison to FTW(D) are from path-aware optimization: committed DOO and Path-Aware
Optimistic Optimization (OOPA) [13], and were previously developed by the authors of the present paper. For implementation
details and parameter tuning, please refer to [13]. To allow for a fairer comparison, and in order to partly offset the higher
computation times of OOPA, its grid resolution will be increased to 𝛿 = 0.2m. The execution times of FTW(D) and OOPA will
be later given in Section 6.2.
11 
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FTW(D) will also be compared against two representative, state-of-the-art source seeking baselines detailed in [14,15]. The
ethod in [14] replaces the often-used gradient with a local spatial average of the objective function computed by taking the mean

f 𝑓 over a circle centered in the robot’s center, with its radius determined by the distance 𝑟 of a forward-mounted sensor. Assuming
certain conditions hold (e.g., local extrema do not occur within the robot’s averaging radius), the robot is directed away from local
extrema towards the global maximum. The tuning of the method remains consistent with [14] (in particular, 𝑟 = 0.2m), while
adopting the objective function from (46) and the search area 𝑋 defined earlier. For clarity and ease of reference, we will refer to
this method as the rotating-robot baseline, as it implies a rotational movement of the robot’s sensor.

The second baseline [15] applies a sliding mode control strategy to steer the robot to the location of an optimum, and thus will
be referred to as the sliding-mode baseline. The motion dynamics in [15] are of a single-integrator type similar to (4). They involve
a constant translational velocity 𝑢𝑘,1, and an angular velocity given by 𝑢̇𝑘,2 = 𝑢̇𝑘,2𝑠𝑔𝑛{ ̇𝑓 (𝑥𝑘) − 𝑣∗}, where |𝑢̇𝑘,2| ≤ 𝑢̇,∀𝑘, and 𝑣∗ is a
controller parameter influencing the size of the optimum’s neighborhood in which the robot should converge. The parameters for
this baseline were tuned as follows: 𝑢𝑘,1 = 0.2m/s (same as the maximum velocity of FTW(D)), 𝑢̇ = 1.25 rad/s and 𝑣∗ = 5. Note that
he method in [15] assumes the only critical point is given by a single (global) optimum, which is not the case for 𝑓 . To address

this issue, the method is modified such that once the robot converges to the required neighborhood of a maximum, it travels to
a randomly chosen location in 𝑋 before resuming its sliding-mode search strategy. This is done to increase the chance of finding
global optima in 𝑋. Note that the rotating-robot and sliding-mode baselines were chosen because, after the above modification, they
perform a version of global search.

The experiments are reported in the following order. Section 6.1 compares FTW to FTWD, while Section 6.2 gives a comparison
of the two with the committed DOO, OOPA and [14,15] baselines. Section 6.3 experimentally studies the convergence of FTW
across its whole trajectory, as well as inside a ball containing an 𝑥∗ in order to give some intuition on the value of 𝑚.

6.1. Comparison between FTW and FTWD

Recall first the issue of the oscillating trajectory of FTW, previously presented at the end of Section 3. An example of such a
trajectory was given on the left of Fig. 2, where the robot repeatedly moves between multiple maxima that are close in amplitude
(the ones marked with the red and orange squares), instead of refining around one maximum and then moving on to the next one.
Note that the initial robot position was arbitrarily chosen as 𝑥0 = [0.74; 1.96] for that experiment.

With the improved algorithm FTWD, the robot spends fewer steps oscillating from one maximum to another when started from the
same 𝑥0. The plot on the right of Fig. 2 shows that compared to FTW, FTWD requires roughly 40.66% less distance till convergence.1
Note that tuning parameters remained unchanged between FTW and FTWD.

It is instructive to check the performance of the two methods from more than one initial position. For this, 50 randomly chosen
oints in 𝑋 are taken as initial positions of the robot. Fig. 5 shows the trajectory length until reaching convergence for the first 25
uns of the two methods (the number of results plotted is reduced to keep the readability of the figure). FTWD always converges
ooner, scoring on average, for all 50 runs, 35.16% less distance compared to FTW.

.2. Comparison to baselines

The FTW and FTWD methods will be studied next in a baseline comparison against committed DOO, OOPA, as well as the
otating-robot and sliding-mode baselines. The evolution of the best value seen so far, 𝑓 ∗

𝑘 , will be reported for all methods, on
verage over 50 runs, along the first 250 trajectory steps. The initial positions of the robot are chosen as in the experiment of
ection 6.1. Fig. 6 shows that FTWD drastically improves the performance of FTW, getting close to the performance of OOPA. This
s important since gathering better samples faster translates to earlier convergence to 𝑓 ∗ and implicitly to 𝑥∗. Recall that OOPA
as no convergence guarantees. Due to the finer grid used, FTW(D) reached closer to 𝑓 ∗ compared to OOPA, without sacrificing
omputational time: a step of FTW or FTWD took on average two orders of magnitude less than OOPA (0.01 s vs. 1.85 s). The
erformance of committed DOO was between FTW and the rotating-robot baseline. While all path-aware methods found both global
axima, this was achieved in only 24% of all runs by the sliding-mode baseline and never by the rotating-robot baseline. The latter
ethod reached one global maximum in 50% of all runs, while the sliding-mode baseline found at least one global maximum in
0% of the runs.

.3. Convergence rate estimation for FTW

The rate at which the inclusion of the balls in (23), denoted by ∪B, fills the search space will be first studied. Because optima are
ound in the region outside the covered area, the evolution of the area of ∪B gives an idea of the convergence rate of the algorithm,
specially during its transient regime. For a quantitative study, consider the same 50 initial positions of the robot from the previous
ections. The left plot in Fig. 7 reports the average of the area covered at each step for all runs until convergence. Results show a
ogarithmic increase of the mean area covered by ∪B, approaching the total area of 𝑋 (16 m2), which serves as a notable indicator
f convergence.

1 The distance is reported in this work instead of the number of steps until reaching convergence since some of the methods involved have an adaptive step

ength.
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Fig. 5. Results (convergence distance) of 25 runs of FTW and FTWD are separated by a slash and placed near the starting robot positions, drawn with cyan
‘x’s. (For interpretation of the usage of color in this figure, the reader is referred to the web version of this article.)

Fig. 6. Comparison between OOPA, committed DOO (CDOO), FTW(D), the rotating-robot and sliding-mode baselines. The experimental results are reported as
the best sample seen so far for the first 250 trajectory samples (on average). (For interpretation of the usage of color in this figure, the reader is referred to the
web version of this article.)

Fig. 7. Left: Result of the convergence rate experiment in terms of area covered by the union of the balls (disks). Recall that this area is an exclusion zone in
which no global maximum can be located. Right: Approximating 𝐶 and 𝑚 in an FTW convergence rate experiment. (For interpretation of the usage of color in
this figure, the reader is referred to the web version of this article.)
13 
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Fig. 8. TurtleBot3 experimental testbed.

Next, the FTW complexity measure is approximated in a numerical experiment. Consider the ball B∗(𝑥𝑐 , 𝑅), where 𝑥𝑐 ∶= 𝑥∗1 and
𝑅 = 𝑇𝑠⋅max{𝑢𝑘,1}

2 = 0.2m. For a better accuracy while searching for 𝑓 ∗, a different, finer grid of 151 points spaced equally across each
dimension in 𝑋 is considered. The robot is initialized in an arbitrarily chosen position 𝑥0 = [2.71; 3.46].

According to Definition 1, the number of samples 𝑘 taken inside 𝐵∗ to reach 𝑟𝑘 < 𝜀 is such that 𝑘 < 𝐶𝜀−𝑚 < 𝐶𝑟−𝑚𝑘 . This inequality
leads to:

log(𝑘) < log(𝐶) + 𝑚 log(𝑟−1𝑘 ). (47)

Thus, by fitting the relationship between log(𝑟−1𝑘 ) and log(𝑘) with a line, its intercept helps in approximating the constant 𝐶, while
the slope approximates the FTW complexity measure 𝑚. Note that by studying log (𝑘) versus log(𝑟−1𝑘 ) in a single experiment, only a
lower bound 𝑚0 on 𝑚 can be found, since the constants 𝐶 and 𝑚 in Definition 1 ensure that 𝑘 < 𝐶𝜀−𝑚 for any initial position of the
robot. Indeed, for experiments initialized in different starting positions, the value of the slope might be higher.

The right plot in Fig. 7 shows the results. The slope of the resulting line can be computed by linear regression, leading to 𝑚0 ≈ 0.8.
An intercept to satisfy 𝑘 < 𝐶0𝑟−𝑚𝑘 can be chosen as log(𝐶0) > 2, i.e. 𝐶0 > 𝑒2. Therefore, 𝑚 ≥ 0.8.

7. Real-robot experiments with a TurtleBot3 platform

In this section, real-robot experiments will be performed to verify the simulated comparison results between FTW and FTWD
previously presented in Fig. 2 of Section 3 and Fig. 5 of Section 6.1. The experiments will be conducted using the ROBOTIS TurtleBot3
platform, and the goal is for the robot to reach the darkest location of a 2D printed grayscale map.

The experimental setup, whose overview is given in Fig. 8, is similar to the setups used in [2,13]. Different from those
implementations, the AMCL package was deployed here to increase the localization accuracy of the robot, using LiDAR information
from the surrounding walls. The AMCL-based approach has significantly enhanced localization accuracy, reducing the mean error
to approximately 5 cm. This represents a notable improvement over the dead reckoning method utilized in [2], which incurred
average localization errors exceeding 10 cm.

For the following experiments, the number of trajectory samples is set to 𝑁 = 250 (leading to 50m travel distance), and the
Lipschitz constant is tuned empirically to 𝑀 = 300.

Figs. 9 and 10 present the results of two TurtleBot3 experiments, one performed with FTW and another with FTWD. The
oscillating behavior of the FTW trajectory, previously seen in the simulation of Fig. 2, Section 3, can also be observed on the
left plot of Fig. 9. Similar to the experiment of Fig. 2 the plot on the right of Fig. 9 shows that FTWD greatly reduces the oscillating
behavior, reaching convergence in 26% shorter path than FTW (FTW: 37.5 m vs. FTWD: 27.8 m). In Fig. 10, the magenta and red
lines respectively give for each of the two algorithms the best sample acquired up to step 𝑘, 𝑓 ∗

𝑘 . The dotted lines drawn with the
same colors point out the step at which convergence was reached for each method: 190 steps for FTW and 146 steps for FTWD. For
clarity, recall the convergence criterion shared by the two methods: 𝑓 ∗

𝑘 ≥ 𝐵𝑘(𝑥),∀𝑥 ∈ 𝑋𝑔 .
In both experiments, the global maximum was found with good accuracy: FTW reached as close as 7 cm to 𝑥∗: 𝑥∗ = [1.44; 1.76]

(𝑓 ∗ = 175.7), while FTWD approximated 𝑥∗ with an error of 4 cm: 𝑥∗ = [1.41; 1.76] (𝑓 ∗ = 180.4). Such errors are expected due to
localization inaccuracies and hardware/setup limitations. In particular, the rather poor quality of the camera and of the printed plot
flattened the real function to the smaller [80; 180] interval, different from the [0; 255] interval from the simulations. That is why the
curves stop around 180 on the 𝑦-axis in Fig. 10.

Videos corresponding to the TurtleBot3 experiments in Figs. 9 and 10 and to the video still in Fig. 8 are available online at
http://rocon.utcluj.ro/files/nahs_ftw_tb3.mp4 and http://rocon.utcluj.ro/files/nahs_ftwd_tb3.mp4, for FTW and FTWD respectively.
To shorten the length of the videos such that they fit in 1.5 min or less, each video was accelerated by a factor of approximately 20.
14 
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Fig. 9. Left: The oscillating behavior of the FTW trajectory from simulations (Fig. 2) is also present in the TurtleBot3 experiment. Right: The oscillating behavior
s reduced for FTWD, like in the simulations. (For interpretation of the usage of color in this figure, the reader is referred to the web version of this article.)

Fig. 10. Experimental results of the TurtleBot3 applying the FTW and FTWD methods. (For interpretation of the usage of color in this figure, the reader is
referred to the web version of this article.)

8. Conclusions

This work presented two techniques called FTW and FTWD for mobile robots to find the maximum of a physical quantity defined
over their operating area. Convergence guarantees and rates were analytically provided for FTW, whereas the convergence of FTWD
was proven for a discrete search space (grid of points). An FTW complexity measure was identified and a relation was found with
the already-established near-optimality dimension of DOO. FTWD greatly improved the practical performance of FTW, reaching
close to the performance of a much more computationally intensive method that does not have convergence guarantees. In the
same baseline study, FTWD outperformed two representative methods from source seeking control by always reaching close to all
global maxima. Finally, TurtleBot3 experiments validated the simulation results. Future work includes extensions such as obstacle
avoidance and the development of multiagent versions of the techniques.

CRediT authorship contribution statement

T. Sântejudean: Conceptualization, Formal analysis, Investigation, Methodology, Software, Supervision, Validation, Visualiza-
tion, Writing – original draft, Writing – review & editing. Ş. Ungur: Software, Validation, Visualization. R. Herzal: Software,
Validation, Visualization. I.-C. Morărescu: Conceptualization, Formal analysis, Methodology, Supervision. V.S. Varma: Concep-
ualization, Formal analysis, Investigation, Methodology, Supervision. L. Buşoniu: Conceptualization, Formal analysis, Funding
cquisition, Investigation, Methodology, Project administration, Resources, Supervision, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.
15 



T. Sântejudean et al.

R

Nonlinear Analysis: Hybrid Systems 55 (2025) 101546 
Data availability

Data will be made available on request.

eferences

[1] Yongguo Mei, Yung-Hsiang Lu, Yu Charlie Hu, CS George Lee, Deployment of mobile robots with energy and timing constraints, IEEE Trans. Robot. 22
(3) (2006) 507–522.

[2] Tudor Sântejudean, Lucian Buşoniu, Vineeth Varma, Constantin Morarescu, A simple path-aware optimization method for mobile robots, IFAC-PapersOnLine
55 (8) (2022) 1–6.

[3] Mingrui Jiang, Yu Liao, Xun Guo, Hao Cai, Wenqing Jiang, Zhou Yang, Fei Li, Fei Liu, A comparative experimental study of two multi-robot olfaction
methods: towards locating time-varying indoor pollutant sources, Build. Environ. 207 (2022) 108560.

[4] Joseph Bourne, Eric Pardyjak, Kam Leang, Coordinated Bayesian-based bioinspired plume source term estimation and source seeking for mobile robots,
IEEE Trans. Robot. 35 (4) (2019) 967–986.

[5] Lingxiao Wang, Shuo Pang, Robotic odor source localization via adaptive bio-inspired navigation using fuzzy inference methods, Robot. Auton. Syst. 147
(2022) 103914.

[6] Johann Borenstein, H.R. Everett, Liqiang Feng, et al., Where am I? Sensors and Methods for Mobile Robot Positioning, Vol. 119, University of Michigan,
1996, p. 27, (120).

[7] Maxim Batalin, Gaurav Sukhatme, Myron Hattig, Mobile robot navigation using a sensor network, in: IEEE International Conference on Robotics and
Automation, 2004. Proceedings, ICRA’04. 2004, Vol. 1, IEEE, 2004, pp. 636–641.

[8] Michael Fulton, Jungseok Hong, Md Jahidul Islam, Junaed Sattar, Robotic detection of marine litter using deep visual detection models, in: 2019
International Conference on Robotics and Automation, ICRA, IEEE, 2019, pp. 5752–5758.

[9] Matthias Rosynski, Lucian Buşoniu, A simulator and first reinforcement learning results for underwater mapping, Sensors 22 (14) (2022) 5384.
[10] Marc Gouttefarde, Mariola Rodriguez, Cyril Barrelet, Pierre-Elie Hervé, Vincent Creuze, Jose Gorrotxategi, Arkaitz Oyarzabal, David Culla, Damien Sallé,

Olivier Tempier, et al., The robotic seabed cleaning platform: An underwater cable-driven parallel robot for marine litter removal, in: International
Conference on Cable-Driven Parallel Robots, Springer, 2023, pp. 430–441.

[11] Rémi Munos, Optimistic optimization of a deterministic function without the knowledge of its smoothness, Adv. Neural Inf. Process. Syst. 24 (2011).
[12] Rémi Munos, From bandits to Monte-Carlo tree search: The optimistic principle applied to optimization and planning, Found. Trends Mach. Learn. 7 (1)

(2014) 1–129.
[13] Tudor Sântejudean, Lucian Buşoniu, Online learning control for path-aware global optimization with nonlinear mobile robots, Control Eng. Pract. 126

(2022) 105228.
[14] Raik Suttner, Miroslav Krstic, Nonlocal nonholonomic source seeking despite local extrema, 2023, arXiv preprint arXiv:2303.16027.
[15] Alexey Matveev, Hamid Teimoori, Andrey Savkin, Navigation of a unicycle-like mobile robot for environmental extremum seeking, Automatica 47 (1)

(2011) 85–91.
[16] Ying Tan, Dragan Nešić, Iven M.Y. Mareels, Alessandro Astolfi, On global extremum seeking in the presence of local extrema, Automatica 45 (1) (2009)

245–251.
[17] Lina Fu, Ümit Özgüner, Extremum seeking with sliding mode gradient estimation and asymptotic regulation for a class of nonlinear systems, Automatica

47 (12) (2011) 2595–2603.
[18] Sei Zhen Khong, Ying Tan, Chris Manzie, Dragan Nešić, Multi-agent source seeking via discrete-time extremum seeking control, Automatica 50 (9) (2014)

2312–2320.
[19] Marcus Gronemeyer, Mirco Alpen, Joachim Horn, Limited gradient criterion for global source seeking with mobile robots, IFAC-PapersOnLine 53 (2) (2020)

15288–15293.
[20] Mohammadali Ghadiri-Modarres, Mohsen Mojiri, Normalized extremum seeking and its application to nonholonomic source localization, IEEE Trans. Autom.

Control 66 (5) (2020) 2281–2288.
[21] Shu-Jun Liu, Miroslav Krstic, Stochastic source seeking for nonholonomic unicycle, Automatica 46 (9) (2010) 1443–1453.
[22] Andrew R. Teel, Dobrivoje Popovic, Solving smooth and nonsmooth multivariable extremum seeking problems by the methods of nonlinear programming,

in: Proceedings of the 2001 American Control Conference.(Cat. No. 01CH37148), Vol. 3, IEEE, 2001, pp. 2394–2399.
[23] Lina Fu, Umit Ozguner, Variable structure extremum seeking control based on sliding mode gradient estimation for a class of nonlinear systems, in: 2009

American Control Conference, IEEE, 2009, pp. 8–13.
[24] Shun-ichi Azuma, Mahmut Selman Sakar, George J. Pappas, Stochastic source seeking by mobile robots, IEEE Trans. Autom. Control 57 (9) (2012)

2308–2321.
[25] Jennie Cochran, Miroslav Krstic, Nonholonomic source seeking with tuning of angular velocity, IEEE Trans. Autom. Control 54 (4) (2009) 717–731.
[26] Howie Choset, Coverage for robotics - a survey of recent results, Ann. Math. Artif. Intell. 31 (2001) 113–126.
[27] Chomchana Trevai, Jun Ota, Tamio Arai, Multiple mobile robot surveillance in unknown environments, Adv. Robot. 21 (7) (2007) 729–749.
[28] Georgios Fevgas, Thomas Lagkas, Vasileios Argyriou, Panagiotis Sarigiannidis, Coverage path planning methods focusing on energy efficient and cooperative

strategies for unmanned aerial vehicles, Sensors 22 (3) (2022) 1235.
[29] Lukas Schmid, Michael Pantic, Raghav Khanna, Lionel Ott, Roland Siegwart, Juan Nieto, An efficient sampling-based method for online informative path

planning in unknown environments, IEEE Robot. Autom. Lett. 5 (2) (2020) 1500–1507.
[30] Marija Popović, Teresa Vidal-Calleja, Gregory Hitz, Jen Jen Chung, Inkyu Sa, Roland Siegwart, Juan Nieto, An informative path planning framework for

UAV-based terrain monitoring, Auton. Robots 44 (2020) 889–911.
[31] Jakob Engel, Thomas Schöps, Daniel Cremers, LSD-SLAM: Large-scale direct monocular SLAM, in: Computer Vision–ECCV 2014: 13th European Conference,

Zurich, Switzerland, September 6-12, 2014, Proceedings, Part II 13, Springer, 2014, pp. 834–849.
[32] Andréa Macario Barros, Maugan Michel, Yoann Moline, Gwenolé Corre, Frédérick Carrel, A comprehensive survey of visual SLAM algorithms, Robotics 11

(1) (2022) 24.
[33] Rui Zou, Vijay Kalivarapu, Eliot Winer, James Oliver, Sourabh Bhattacharya, Particle swarm optimization-based source seeking, IEEE Trans. Autom. Sci.

Eng. 12 (3) (2015) 865–875.
[34] Shu-Jun Liu, Miroslav Krstic, Stochastic averaging in continuous time and its applications to extremum seeking, IEEE Trans. Autom. Control 55 (10) (2010)

2235–2250.
[35] Abdollah Amirkhani, Amir Hossein Barshooi, Consensus in multi-agent systems: a review, Artif. Intell. Rev. 55 (5) (2022) 3897–3935.
[36] Reza Olfati-Saber, Richard M. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control

49 (9) (2004) 1520–1533.
[37] Shiyu Zhao, Zhiyong Sun, Defend the practicality of single-integrator models in multi-robot coordination control, in: 2017 13th IEEE International

Conference on Control & Automation, ICCA, IEEE, 2017, pp. 666–671.
16 

http://refhub.elsevier.com/S1751-570X(24)00083-9/sb1
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb1
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb1
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb2
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb2
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb2
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb3
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb3
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb3
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb4
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb4
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb4
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb5
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb5
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb5
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb6
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb6
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb6
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb7
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb7
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb7
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb8
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb8
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb8
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb9
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb10
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb10
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb10
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb10
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb10
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb11
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb12
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb12
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb12
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb13
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb13
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb13
http://arxiv.org/abs/2303.16027
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb15
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb15
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb15
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb16
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb16
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb16
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb17
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb17
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb17
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb18
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb18
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb18
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb19
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb19
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb19
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb20
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb20
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb20
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb21
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb22
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb22
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb22
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb23
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb23
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb23
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb24
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb24
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb24
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb25
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb26
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb27
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb28
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb28
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb28
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb29
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb29
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb29
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb30
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb30
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb30
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb31
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb31
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb31
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb32
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb32
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb32
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb33
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb33
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb33
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb34
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb34
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb34
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb35
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb36
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb36
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb36
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb37
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb37
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb37


T. Sântejudean et al. Nonlinear Analysis: Hybrid Systems 55 (2025) 101546 
[38] John Horton Conway, Neil James Alexander Sloane, Sphere Packings, Lattices and Groups, Vol. 290, Springer Science & Business Media, 2013.
[39] John Leech, Neil James Alexander Sloane, Sphere packing and error-correcting codes, in: Sphere Packings, Lattices and Groups, Springer, 1999, pp.

136–156.
[40] Thomas Hales, Sphere packings, I, in: The Kepler Conjecture, Springer, 2011, pp. 379–431.
[41] Maryna Viazovska, The sphere packing problem in dimension 8, Ann. of Math. (2017) 991–1015.
[42] Henry Cohn, Abhinav Kumar, Stephen Miller, Danylo Radchenko, Maryna Viazovska, The sphere packing problem in dimension 24, Ann. of Math. 185 (3)

(2017) 1017–1033.
[43] Yuriy Stoyan, Georgiy Yaskov, Packing congruent hyperspheres into a hypersphere, J. Global Optim. 52 (4) (2012) 855–868.
[44] Nima Afkhami-Jeddi, Henry Cohn, Thomas Hartman, David de Laat, Amirhossein Tajdini, High-dimensional sphere packing and the modular bootstrap, J.

High Energy Phys. 2020 (12) (2020) 1–45.
17 

http://refhub.elsevier.com/S1751-570X(24)00083-9/sb38
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb39
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb39
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb39
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb40
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb41
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb42
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb42
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb42
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb43
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb44
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb44
http://refhub.elsevier.com/S1751-570X(24)00083-9/sb44

	Globally convergent path-aware optimization with mobile robots
	Introduction
	Related work

	Background and preliminaries
	Deterministic optimistic optimization
	Path-aware optimization

	FTW and FTWD algorithms
	Convergence guarantees
	Convergence rate of FTW
	Numerical results
	Comparison between FTW and FTWD
	Comparison to baselines
	Convergence rate estimation for FTW

	Real-robot experiments with a TurtleBot3 platform
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


