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Abstract: Unmanned aerial vehicles (UAVs) have gained significant attention in recent
years. Low-cost platforms using inexpensive sensor payloads have been shown to provide
satisfactory flight and navigation capabilities. In this report, we survey vision and control
methods that can be applied to low-cost UAVs, and we list some popular inexpensive
platforms and application fields where they are useful. We also highlight the sensor suites
used where this information is available. We overview, among others, feature detection and
tracking, optical flow and visual servoing, low-level stabilization and high-level planning
methods. We then list popular low-cost UAVs, selecting mainly quadrotors. We discuss
applications, restricting our focus to the field of infrastructure inspection. Finally, as an
example, we formulate two use-cases for railway inspection, a less explored application
field, and illustrate the usage of the vision and control techniques reviewed by selecting
appropriate ones to tackle these use-cases. To select vision methods, we run a thorough set
of experimental evaluations.

Keywords: unmanned aerial vehicle; control; planning; camera-based sensing;
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1. Introduction

Unmanned vehicles, including UAVs, offer new perspectives for transportation and services.
Although the legal requirements are still quite restrictive [1], UAV applications are becoming
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widespread, from military usage to civil applications, such as aerial imaging [2] or various inspection
tasks [3,4].

We focus here on low-cost (under $1500), small-scale (diameter under 1 m) and lightweight (under
4 kg) UAVs that can be reliably used outdoors. Examples for UAVs that fit these criteria are the Parrot
AR.Drone [5], the Arducopter platforms [6] or others presented in Section 4. While the specific limits
on size, weight and cost are, of course, arbitrary to an extent, we are also motivated to select them
by the railway inspection application we discuss in Section 6: since the UAVs are small they are
unlikely to damage a train in the event of an unavoidable collision, and their low cost makes them
easily replaceable. More generally, inexpensive UAVs are accessible to civilian users and commercially
attractive for companies, making them more likely to become widespread. Among small-scale UAVs,
higher-cost platforms, such as the AscTec, Draganflyer and MikroKopter products, offer improved
flight stability [7,8] and advanced sensing units, such as laser rangefinders [9,10] or thermal infrared
cameras [11,12]. While such platforms are sometimes also referred to as low-cost UAVs [12,13], we
consider here significantly less expensive UAVs.

UAVs under $1500 use less expensive hardware, especially for sensing and processing units. They still
possess basic navigation units, such as inertial measurement units (IMU) and possibly Global Positioning
System (GPS) modules, but the measurement accuracy is usually reduced. Color cameras are used, which
are useful only in daytime and do not provide depth and scale information for the captured environment.
Nevertheless, the cameras are the richest data sources, so computer vision usually plays a central role in
UAV automation. Building on vision, advanced sensing and control methods are used to compensate for
the performance and capability limitations.

Therefore, in the first part of the paper, we survey general techniques for vision and control. We
describe methods that work in any application, but are specifically motivated by infrastructure inspection,
so we point out the connections of vision and control with this area. We begin by presenting at a high
level existing vision methodologies and highlight those shown to be successful in UAV applications. The
discussion is structured along several classes of techniques: feature detectors and descriptors to identify
objects in the image, optical flow for motion detection and visual servoing and mapping techniques.
The latter two techniques blur the line between vision and control, e.g., visual servoing tightly integrates
visual feedback on the position relative to an object and the control actions taken to maintain the position.
We continue by detailing UAV control methods, on two separate levels. For low-level stabilization and
path following, we briefly introduce a simplified quadrotor model and methods for attitude and position
control. We overview platform-independent high-level planning tasks and methods, focusing on methods
that can integrate obstacle avoidance and other constraints.

Already for low-level control, and also for the remainder of our paper, we select quadrotors as our
preferred class of UAVs. Among the two main types of UAVs, fixed-wing and rotorcrafts, rotorcrafts
have the important capability of hovering. Subtypes are helicopters and multirotors, where multirotors
are preferred for the robustness and modularity of the fuselage, being less subject to damage and easier
to repair. Furthermore, quadrotors are the most widespread and least costly multirotors. Since we are
interested in automating broadly-used UAVs, in this paper, we will focus on quadrotor platforms.

We start the second part of the paper by overviewing several low-cost quadrotor platforms. We then
introduce the main focus of this second part, infrastructure inspection, and review UAV applications in
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this area. Selecting a less explored subfield, namely railway inspection, we develop two use-cases in this
field to illustrate semi-autonomous short-range and fully-autonomous long-range inspection. We start
with a detailed comparison of the performance of various feature detectors, based on real data from the
use-cases. This also serves as a detailed illustration of the practical performance of many of the vision
techniques we review. Based on the test results, we select appropriate vision algorithms. In addition, we
select control methods based on our literature review, for each scenario, adapted to the facilities of the
Parrot AR.Drone quadrotor.

In related work, a number of surveys address specific sensing, vision and control topics for UAVs.
For example, the recent survey of Whitehead et al. [14] evaluates sensor types used for remote sensing
applications. In the context of vision methods, [15] presents extensive datasets and benchmarks for
optical flow techniques, and [16] discusses in detail edge detection methods. On the control side, [17]
presents techniques for low-level stabilization and control, ranging from simple linear to more accurate
nonlinear controllers, while [18] discusses high-level planning. Another survey [19] overviews planning
methods from the perspective of uncertainties. The definitive book on robotic planning [20] also
addresses low-level dynamics as constraints on planning. We do not intend to duplicate these efforts
here. Instead, we provide an overall, high-level overview of both vision and control, focusing on
methods relevant to recent low-cost quadrotors and infrastructure inspection applications. Indeed, we
refer to these existing works, drawing on their comparisons between available methods and synthesizing
their results, so in a sense, our paper is a meta-review of the area. Of course, due to the wide research
fields discussed, the overview provided by us is not exhaustive. In particular, we do not include state
estimation methods, used for example to infer unmeasurable variables from measured data or to perform
sensor fusion. Our major goal is to help the practitioner in the areas of inspection with UAVs understand
what methods are available and how they organize in a coherent landscape, so as to select an array of
techniques for their specific application; and we provide the relevant references needed to implement the
chosen techniques.

The next two sections present our survey on vision (Section 2) and control methods (Section 3). Then,
Section 4 lists popular low-cost UAVs; Section 5 discusses common UAV monitoring and inspection
applications; Section 6 evaluates vision techniques and selects control methods from those discussed for
two illustrative use-cases; and Section 7 concludes our survey. Throughout, we pay special attention
to sensor suites and present them whenever this information appears in the cited papers. Specifically,
in Section 2.5, we discuss sensors used in vision-based applications. We highlight in Section 4
sensors found in low-cost platforms, and in Section 5.4, we present the sensor suites considered in
infrastructure applications.

2. Vision: Camera-Based Sensing and Image Processing

Automated navigation of UAVs inherently requires sensing. Usually, ultrasonic sensors, color,
thermal or infrared cameras or laser rangefinders are used to acquire information about the surrounding
environment. From these sensor types, low-cost UAVs often possess color cameras. Information is
then extracted using computer vision techniques: the acquired images are processed for stabilization,
navigation and further information collection.
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In UAV navigation, feature detectors and extractors are often used for object detection; optical flow
techniques are used to distinguish motion in a scene; visual servoing is employed to translate image frame
motion into UAV displacement; whereas 3D reconstruction methods are exploited for navigation and
mapping. The literature on computer vision is rich (see surveys [15,21–23]), and instead of reproducing
these efforts, here, we briefly introduce the aforementioned classes of vision techniques, highlighting
popular methods and providing a list of relevant references for further reading. We also exemplify
the use of specific methods in inspection applications. Later on, in Section 6, we will evaluate the
performance of existing implementations of several vision methods on real data taken from our railway
inspection use-cases.

An important remark regarding most vision methods is that they are well known as being difficult
to rank by performance. Each method is suitable for specific types of environments and target objects.
Evaluation methodologies, like the one presented by Rockett [24], exist, but the performance of vision
methods remains subject to the fine-tuning of their parameters according to the problem at hand.
Nevertheless, certain methods are preferred either for their robustness, flexibility in parameter selection
or lower computational demands, as highlighted in the sequel.

2.1. Feature Detection and Description Methods

Feature detection and description algorithms are basic tools for object detection and tracking. These
methods are used, for example, to extract UAV position and motion information. Methods differ from
each other in the preprocessing used (grayscaling, blurring, masking), in the way the features are
interpreted and selected, and in the mathematical operations used in the processing steps.

Features determine regions of interest in images, which are classified roughly as edges, corners and
blobs. Detection methods are responsible for identifying them, whereas descriptors are used to match
a feature in two images (e.g., images from a different perspective or subsequent frames from a video
stream). Detectors in combination with descriptors and matching methods form complete tools for
motion tracking. They can be also used for object detection given a reference image of an object, and in
this context, additional tools, like the model fitting methods, can be considered. In what follows, we first
discuss edge, corner and region detectors, then descriptor methods. We present then feature matching,
homography-based detection and model fitting methods for object detection.

Edge detection is usually employed to identify lines and planes in images. Some of the classic
methods are Canny, Sobel, Laplacian and Scharr edge detectors [25]. Several surveys exist that compare
the performances of these and other algorithms [21,26,27]. A survey performed by Oskoei et al. [16]
highlights the good performance of step edge models used for feature lookup and Gaussian filtering
considered for further image processing. A classic example of such a method is the Canny edge detector.
However, it is known to produce false edges for noisy images, and therefore, methods like the Haar
wavelet transform [26] can be considered when the performance of the former is not satisfactory.

Corner and region detectors are mainly used for finding and tracking objects. The
Harris–Stephens [28] and Shi–Tomasi [29] methods are often used. A recent study performed by
Tulpan et al. [30] compares four corner detectors in their performance of identifying distant objects
for sense-and-avoid applications. They compare the Harris–Stephens, smallest uni-value segment
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assimilating nucleus (SUSAN) [31], features from accelerated segment test (FAST) [32] and Shi–Tomasi
methods on real video streams. Their results show that the Shi–Tomasi and Harris–Stephens methods
outperform the others when looking at the execution time, while the Shi–Tomasi method has the best
results concerning the detection range and the ratio of frames containing the detected target.

Feature descriptors are used for matching features in image pairs, either for detecting motion or for
finding objects. Well-known methods are speeded up robust features (SURF) [33] and scale-invariant
feature transform (SIFT) [34], whereas from recent years, we mention binary robust independent
elementary (BRIEF) [35] and oriented FAST and rotated BRIEF (ORB) [36]. SIFT and SURF are older
methods and are superseded by BRIEF and ORB in execution time while keeping comparable accuracy.
On the other hand, ORB overcomes the limitations of BRIEF in processing rotations in images.

Given the feature descriptors, features can be matched in pairs of images. This can be achieved by
simply comparing the descriptors from the two processed images and marking the closest descriptor
pairs. This approach is called brute force feature matching. Other solutions consider search trees for
comparing the descriptors. A popular matcher uses approximate nearest-neighbor (ANN) search [37]
that offers a more efficient way to match features than the brute force approach. A well-known
implementation of ANN is the Fast Library for ANN (FLANN) [38]. Using matched features, methods
like the homography transform [39] determine the transformation of the image compared to the reference
image, and from there, they infer displacement and rotation. A recent comparison of camera pose
estimation algorithms using stereo cameras shows that the homography method provides an acceptable
level of detection and is useful for applications with computational constraints [40].

Model fitting methods are often used in object detection. They categorize image features to find inliers
and outliers according to a model (a curve or a shape described mathematically). A well-known example
is the random sample consensus (RANSAC) method. A comprehensive performance evaluation of the
RANSAC family is performed by Choi et al. [23], showing an accuracy and robustness improvement for
maximum likelihood estimation SAC (MLESAC). RANSAC is used in several UAV applications, e.g.,
for wall plane detection [41] or for identifying the ground plane [42,43]. Although RANSAC methods
aid the identification of objects having various shapes, they require high processing power and, thus, are
less preferred in applications where computation is limited. Another classical model fitting method class
uses the Hough transform; see surveys [44,45]. Hough transforms are most often used as straight line
detectors and, thus, are preferred for linear structure detection. From the numerous variants [45], we
point out the progressive probabilistic Hough transform for its faster computational performance and for
the available implementation in OpenCV [46].

In UAV inspection applications, feature detectors are useful for detecting targets (buildings, objects)
or references that have to be followed (like linear structures or the horizon). For linear structure detection,
edge detectors can be combined, e.g., with line extractors. To achieve target detection, feature detectors
can be coupled with descriptors, matchers and reference images. When combined with descriptors and
matchers, feature detectors can also be used to track moving objects or to keep a reference position
relative to a detected object.
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2.2. Optical Flow Techniques

Optical flow is a family of techniques that focuses on determining motion from images. More
precisely, optical flow can be defined as the apparent motion of feature points or patterns in a 2D image of
the 3D environment [47]. Often, optical flow detection is performed, e.g., with an optical mouse sensor,
as it works on a similar principle and is a popular, well-tested device [47]. A comprehensive analysis
of existing optical flow techniques is performed by Baker et al. in [15]. As stated in their concluding
remarks, at the time of their publication, the most promising optical flow detection approach was the one
presented by Sun et al. [48]. In a more recent study by Sun et al. [49], they show, among others, the
good performance of classic optical flow formulations.

Although providing useful navigation information, optical flow algorithms are usually time
consuming. Chao et al. [47] remark for instance that usually, optical flow algorithms perform well
with image sequences presenting much slower motions compared to UAV flights. These methods can
nevertheless still be considered, for example, in near-hovering operation of UAVs.

2.3. Visual Servoing

Building on the techniques discussed before, visual servoing deals with controlling the camera
(and, therefore, vehicle) motion using visual data. In the context of UAV navigation, visual servoing
methods offer solutions for translating image frame motions into real-world displacement. Examples of
applications of visual servoing in inspection are flight around traffic signals, following gas pipeline or
scanning building façades.

In its classical formulation, visual servoing builds upon feature detectors. Novel approaches consider
other parameters (mainly global histogram parameters) of the images as features and perform visual
servoing using this information [50–52]. We concentrate next on feature-based visual servoing, which
has two major directions: position-based visual servoing (PBVS) and image-based visual servoing
(IBVS). PBVS finds a position estimate of the camera by calculating the pose of a known object in
the image and uses this position to correct the motion path [53]. IBVS simply selects and tracks features
in the images, using feature descriptors shown in Section 2.1, and corrects the position of the camera
so as to keep the desired position of the features in the image frame [54]. Although simpler, IBVS
may suffer from drift, and thus, it is often used only in combination with other navigation methods
(e.g., GPS/IMU-based control) or as a fallback solution. The pros and cons are thus complementary
for the two approaches: PBVS can ensure accurate positioning, but at high computational costs, while
IBVS is faster, but may result in following undesired trajectories. Implementation examples and further
discussions can be found, e.g., in papers [55,56].

2.4. 3D Reconstruction Methods: Mapping

Beyond finding the pose and the motion of the camera, simultaneous localization and mapping
(SLAM) constructs a map of the environment while localizing the vehicle on this map. Localization then
allows for autonomous navigation in unknown environments. Of course, SLAM is useful for mapping
applications. In the case of camera-based SLAM, depth information, needed for finding distances and
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scaling factors of objects, can be collected by means of extra sensors or by using reference tags. For
low-cost solutions, the latter technique is preferred, which calculates the distance from the size of known
objects or tags, captured by the camera.

SLAM requires high processing performance, and its implementation is time consuming. A common
implementation of SLAM is parallel tracking and mapping (PTAM). PTAM addresses the processing
issue by executing UAV tracking (localization) and mapping in two parallel threads: the first thread
tracks the camera motion (localization step), while the second one adds new information to the map
(map refinement step) [42]. Despite parallel execution, PTAM remains a computationally-consuming
algorithm, especially due to the map that requires more processing as it grows.

Yang et al. [42] consider PTAM to find an indoor landing site autonomously, using a single
down-looking camera. They propose to obtain a constant computation time of PTAM by avoiding
refinement of the entire map and performing it only locally, around the current position of the quadrotor.
Similarly, Schauwecker et al. [43] consider refining maps only locally and clearing old frames in order to
boost PTAM. They find that using down-looking cameras, the algorithm can have problems in tracking
the quadrotor’s motion in the case of yaw rotation (around the z axis). Using stereo cameras, they can
correct for these errors in the case of slow rotations.

Although research in the field of computer vision is extensive, there remain several open challenges.
Most of the vision algorithms are subject to fine-tuning and are limited in use to certain conditions,
specifically due to illumination conditions, pattern types and the motion of captured objects. Another
issue is the increased processing time of these methods, which needs to be further reduced for online
applications on devices with limited processing power. Additionally, the lack of scaling and distance
information in the case of 2D images leads to the need for further tools (sensors or techniques) for
acquiring this information. Though the existing solutions are promising, further development is needed
for having more robust techniques with wider applicability.

2.5. Sensors in Image Processing Applications

From the above listed works, several provide details on sensor platforms. We have found, e.g., that
Tulpan et al. [30] use a Prosilica GC2450 5 MP monochrome camera for image processing, operating
at 14 fps. Flores et al. [41] consider Kinect, a commercially available camera system, consisting of a
low-cost RGB-D and infrared camera, providing 640 × 480 pixel RGB images and 320 × 240 pixel
depth images, both at 30 fps. Yang et al. [42] work with a Firefly MV monochrome camera that provides
640 × 480 pixel images at 60 fps and a 90-degree viewing angle. Schauwecker et al. [43] consider a
dual stereo-camera solution, mounting two pairs of 640 × 480 grayscale cameras on their UAV, one pair
facing downwards, recording at 15 fps, and another facing ahead, recording at 30 fps.

One may conclude that, in most cases, images not larger than 0.3 MP are used for image processing,
at frame rates up to 30 fps. This resolution is far lower than those offered by the currently available
cameras, though it is preferred for keeping computation low (higher resolution images would require
more processing time) and also for requiring only low-cost devices. Most research results, including
the above ones, show that this resolution is good enough for proper detection. Furthermore, in terms of
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control, the acquisition frame rate of 30 fps is high enough, e.g., for controlling small-scale UAVs, and
exceeds, in many cases, the processing rate that vision methods can offer.

3. Flight Control and Planning

Relying on information provided by sensing, effective control can help in overcoming the limitations
of inexpensive sensors. Indeed, several works report good results using low-cost platforms with advanced
controllers [57–59]. In general, the task of an unmanned aircraft is to safely navigate on a desired path
and/or visit points of interest in order to perform certain missions. Control tasks behind these terms were
grouped by Amelink [60] in the following levels of abstraction, from top to bottom: mission, navigation,
aviation, flight control and flight. In this manner, he clearly classifies control problems and offers a
modular approach to UAV control.

Instead of such a detailed decomposition of UAV control problems, we prefer to discuss control tasks
at two levels: low-level flight control and high-level flight planning. With this grouping, the lower
level covers control tasks that are often already implemented in UAVs: hovering ability and disturbance
rejection, achieved mainly by attitude control, and trajectory following, the result of position control.
By an abuse of terminology, we will refer to all of these tasks as UAV control in this section. On the
other hand, high-level flight planning is then made responsible for mission and path planning, including
obstacle avoidance. We will call these problems together UAV planning.

Many of the methods presented, especially the higher level planning techniques, are platform
independent. Low-level control will be discussed from the perspective of quadrotors, the platform type
we will use in our illustrative use-cases and also in our future work. Therefore, first, we introduce the
dynamic model of a quadrotor, followed by detailing low-level control and high-level planning methods.

3.1. Quadrotor Dynamics

A basic scheme of a quadrotor is shown in Figure 1, where E denotes the Earth frame, also called
the inertial frame; B denotes the body frame, attached to the center of mass of the quadrotor; x, y and z
mark the coordinates of the center of mass of the quadrotor, in the Earth frame E ; φ, θ and ψ correspond
to the conventional roll, pitch and yaw angles; and ωi marks the angular velocity of each rotor separately.

In the “plus” configuration, where the vehicle axes correspond to the x and y axes of frame B,
displacement along the x axis can be obtained by pitch rotation, which results from keeping ω1 = ω3

and setting ω2 6= ω4. Similarly, flight on the y axis results from yaw rotation, i.e., ω2 = ω4 and ω1 6= ω3.
Hovering, lift and landing can be achieved by having velocities of the same magnitude on all propellers,
whereas rotation around the z axis is the result of ω2 = ω4 6= ω1 = ω3. Then, control commands can be
defined as:

Ucoll = b (ω2
1 + ω2

2 + ω2
3 + ω2

4)

Uφ = b (ω2
1 − ω2

3)

Uθ = b (ω2
4 − ω2

2)

Uψ = d (ω2
2 + ω2

4 − ω2
1 − ω2

3)

(1)

where Ucoll denotes the collective input (responsible for vertical displacement), Uφ the roll (y axis
movement), Uθ the pitch (x axis displacement) and Uψ the yaw forces, b is the thrust coefficient and



Sensors 2015, 15 14895

d is the drag coefficient. With these four inputs, the quadrotor can be operated simply in non-acrobatic
flight mode (non-acrobatic flight maneuvers mean that the quadrotor’s velocity is changed slowly and
the vehicle is used to fly most of the time parallel to the Earth, up to some tilt being necessary for
horizontal displacement). Note that all of these motions are with respect to frame B, which then have to
be transformed into Earth frame E .

ψ

θ

ɸ

z

y
x

ω1 ω2

ω3ω4

B

E

Figure 1. Quadrotor model.

Now, the reaction to the control inputs, i.e., the flight dynamics of the quadrotor, can be modeled
using the Euler–Lagrange approach. A simplified form of the dynamics in near-hovering mode can be
written as [8]:

ẍ = θg ÿ = −φg z̈ = ∆Ucoll

m

φ̈ = l
Ix
Uφ θ̈ = l

Iy
Uθ ψ̈ = 1

Iz
Uψ

(2)

Often, more general forms of this model are considered [61,62]. However, even those works build
on the assumptions of near-hovering operation mode, low flight speeds and that the quadrotor can
be modeled as a rigid body and has a symmetric structure. As these are realistic considerations for
most low-cost small-sized quadrotors, controllers based on the principle of Equation (2) can be easily
transferred from one platform to another, where only some parameters have to be adjusted to match the
new vehicle.

3.2. Low-Level Flight Control

The main low-level control tasks are: achieving flight, stabilizing the UAV and following a flight
path. These tasks are addressed by attitude and position control, which, in the case of quadrotors,
are commonly coupled as a nested control loop, shown in Figure 2. Attitude control is then
responsible for flight stabilization and tracking the desired heading, while position control serves for
trajectory following.
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Position

control

Attitude

control
Quadrotor

inner control loop

outer control loop

x, y, z ɸ,θ,ψ ω

Figure 2. Nested low-level control loop: attitude and position control.

Attitude control is often addressed by using proportional integral derivative (PID) controllers. Often,
the PID controllers are set up by experimental tuning. They have the advantage of requiring no complex
model of the system dynamics. Based on the results from papers [57,63], this control method, although
simple, provides good results for the attitude control. However, the attitude controller is usually enhanced
with robust features for obtaining improved stability [57,64].

Concerning position control, Raffo et al. [64], for example, propose to use an error-model based
model-predictive control that simulates a virtual quadrotor following a desired trajectory. The role of
their controller is to minimize the position error between a real and a virtual quadrotor. They compare this
solution in a simulation to a backstepping approach. Both methods show robust tracking performance,
though the former solution leads to smaller errors and smoother control.

Attitude and position control are often discussed together. Cui et al. [63] perform, for instance,
trajectory tracking, using PID controllers for position control and several controller types for setting the
attitude of the simulated vehicle. In simulations, they show that the PID controller provides the smallest
tracking error and lowest settling time for attitude control. Salazar et al. [62] combine PID with robust
sliding mode control (SMC) for attitude and position control in performing trajectory tracking. They
conclude that, despite the good control performance of SMC, chattering of the control input may lead to
quick wearing of the actuators, and thus, the use of SMC might be a less preferred solution.

Despite the good performance of current low-level stabilization systems and controllers, several
further challenges remain to be addressed. Among these are the various types of uncertainties appearing
in outdoor operation, the integration of saturation limits in the control schemes and the underactuated
nature of the systems. In recent works, such challenges were addressed by more advanced control
methods, such as adaptive controllers [8] or model-predictive control [65].

3.3. High-Level Flight Planning

The higher level problems of UAV automation relate mainly to defining and planning missions, as
well as to planning flight paths that fulfil these missions. The goal is to make UAVs fly autonomously
based on a mission plan and to make the flight paths feasible and optimal.

Path planning provides flight paths for the lower-level trajectory tracker. It results in optimization
problems where certain costs (e.g., energy consumption, execution time) have to be minimized to find
an optimal path. To achieve online execution, often, receding horizon techniques are considered. In the
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sequel, we detail the principle of receding horizon planning and present works that use it for UAV path
planning. Afterwards, we discuss planning constraints that ensure flight path feasibility and methods to
address them.

Exhaustive overviews of path planning methods can be found in [18–20,66]; see also the references
therein. Here, we provide some reference works in the field of UAV path planning.

The idea of receding horizon planning is to reevaluate solutions while closing the control loop. In
control, this approach is called model predictive control (MPC). At each call, MPC evaluates possible
control sequences for a period of time called a horizon. Each sequence has an associated cost. After
the simulation stops, MPC follows the control sequence with the best cost for a time period called
the execution horizon. The algorithm is then repeated from the new state. MPC can cover nonlinear
dynamics problems, too, such as UAV path planning and path following under uncertainties. However,
especially in that case, MPC becomes time consuming, mainly due to “repeated” calculation of the cost
values that usually requires simulating the model of the system.

For reducing computation, a common planning method used for UAV planning is the
rapidly-exploring random tree (RRT) algorithm. RRT propagates random samples in the search space
of control sequences, rapidly covering in this manner the possible solutions. Lin et al. [66] use RRT
in a receding horizon fashion and couple it with Dubins curves in order to find feasible paths online,
paths that avoid moving obstacles. Dubins curves are curves that connect two points while respecting
constraints on the curvature. Although the RRT method cannot ensure global optimality [66], shows the
practical success of the method both in simulations and in real flights.

Bellingham et al. [67] use MPC for path planning among obstacles. They work with linearized models
and simplify the cost value calculation by using a cost estimator in order to reduce the execution time.
They manage to obtain near-optimal solutions in around a minute [67]. More recent works report on
using MPC for more complex situations, such as path planning for multi-UAV formation flights among
obstacles [68] and with communication constraints [69]. However, the computational demand of these
solutions is not transparent and is likely to exceed the processing performance of low-cost platforms.

An important challenge comes from the feasibility constraints considered in the planning. These
integrate kinematic constraints (coming, e.g., from obstacles) and dynamic limitations (mainly due to the
velocity and acceleration limits of the vehicle) [70]. Feasibility constraints can be treated in several ways.
Commonly, they can be implemented as equality or inequality constraints in the optimizer [67,68,71] or
can be simulated as curves [66,72,73]. For example, mixed-integer linear programming (MILP) is an
optimizer that can integrate both linear and binary constraints. Bellingham et al. [67] use, for instance,
MILP for solving path planning, while considering both the continuous constraints resulting from the
dynamics of the vehicle and binary constraints coming from obstacle avoidance rules. In their RRT
approach discussed before, Lin et al. [66] use Dubins curves for their planning method in order to cover
the dynamic constraints of the vehicle.

Alternatively, kinematic constraints (e.g., obstacles) in particular can be addressed by means of
control methods from computer vision; see Section 2. Navigation methods, such as visual servoing
or control based on optical-flow, can be considered. Furthermore, to reduce the problem complexity,
obstacle avoidance can be addressed with position control, where the avoidance maneuver represents a
temporary deviation from the planned trajectory [74]. Similarly, dynamic constraints can be applied to
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adjust the flight path after it has been planned. Methods, such as the artificial potential field, can be
used to smoothen the trajectory [75]. Such solutions are often less time consuming and may be preferred
when computation power is limited. However, they do not offer performance guarantees and might be
applicable only in certain scenarios, where waypoints are not mandatory to be reached, but deviations
from the planned trajectory that are small in a certain sense are acceptable.

On top of flight planning sits mission planning, which covers the descriptive part of UAV automation.
Mission planning includes all formal and informal requirements and specifications regarding usage of
the vehicle. Furthermore, it is responsible for translating the missions into a well-defined sequence of
subtasks that can be interpreted by path planners. Such subtasks are: take-off, fly to a coordinate, track
an object, etc. Mission planning can be formalized, and the translation of missions into subtasks can be
then performed automatically, based on a set of subtasks and rules. Looking at the literature, only sparse
work has been done in this direction, mainly related to airspace integration efforts [1,76,77].

Several open challenges exist in UAV high-level planning. The computational demand of the
advanced path planning methods is often high compared to the processing capabilities of low-cost UAVs,
meaning that adaptations of these techniques are required in order to implement them onboard and online.
Computational limitations also require approximate models, linearization or discretization of the system.
Regarding the automation tasks, obstacle avoidance remains the most demanding problem, mainly due
to the big variety of avoidance cases, which are hard to address all at once. On the other hand, mission
planning challenges mainly relate to airspace integration issues, for which it is important to have a proper
formalization of tasks in order to clearly define the expected and possible flight phases and events.

3.4. Flight Control and Planning Methods for Inspection Applications

Low-level stabilization is a basic flight requirement, and thus, attitude and position control are
mandatory. However, the required flight planning techniques will vary. If one can assume obstacle-free
flight when keeping a reference distance to the inspected target, visual servoing or preplanned trajectories
can be considered. For online obstacle avoidance or for power consumption optimization online
replanning, methods like the RRT should be considered. MPC-based techniques are able to explicitly
deal with more complex constraints on the inspection (e.g., covering both flight time and obstacle
avoidance) and are thus preferred in environments with more obstacles (e.g., urban roads, train stations).

4. Low-Cost Quadrotor Platforms

Having overviewed vision and control techniques, we move on to available low-cost platforms
and UAV applications. The market of low-cost UAVs has exploded in the past two years. New
brands and models of UAVs continuously appear, mainly quadrotors and helicopters, and several
communities [78,79] and websites [80–82] focus on the evolution of these products. Instead of looking
at the newest platforms resulting from startups and other research projects, we focus on popular brands.
Working with a widespread platform usually ensures that the hardware is well tested and that the platform
has long-term support, compared to more custom solutions. We therefore list several representative UAV
platforms, available until April 2015, that also satisfy our criteria defined in Section 1.
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We focus mainly on ready-to-fly (RTF) vehicles, having the advantage of less time needed for setup
and calibration. However, RTF vehicles are usually limited in programmability and, therefore, are
less customizable. This aspect does not limit the manually-teleoperated inspection applications, but is
relevant for automated flights. Thus, we discuss with each presented platform the level of customization,
as well. We also compare these platforms with a category of modular solutions that overcome these
limitations. For each platform, we highlight the sensors used. In general, all of the quadrotors listed have
onboard stabilization, some type of camera (embedded or as a separate device) and wireless connection
for data transmission, and most of them include a GPS module, as well. Details are presented below.

Parrot released its popular AR.Drone 2.0 in 2012 citeweb:parrot. Edition 2.0 costs $400 and
weighs 420 g. It has two onboard, built-in cameras, a bottom quarter video graphics array (QVGA)
camera (320× 240 px resolution) with 60 fps for ground speed measurement and an HD front camera
(1280× 720 px resolution) with 30 fps for video recording. The flight stabilization system consists of
a set of three-axis gyroscope, accelerometer and magnetometer, enhanced with a pressure sensor that,
together with the previous, makes the quadrotor able to withstand winds of up to 24 km/h [83]. A
pair of ultrasonic sensors help in altitude keeping in close-to-terrain flights (up to 6 m). The onboard
flight controller runs in Linux and is closed-source; however, using the Parrot SDK or other APIs, one
may remotely access functionalities, such as: receive online camera image frames, navigation and other
sensor data and issue high-level velocity commands on all axes, as well as take-off and land commands.
These operations are limited to the range of the WiFi signal used for communication with the quadrotor.
Various projects target extending the control range or allow for onboard programmability, though not
as part of the official product. An official extension by Parrot is a GPS module that, for an additional
$120, among others, allows for flight path scheduling by specifying waypoints, even outside the WiFi
range. However, the quadrotor is not controllable outside the WiFi range, which limits it to short-range
usage. Besides this popular model, Parrot released the Bebop drone at the end of 2014. For $500,
among others, Bebop provides improved processing image capturing capabilities (14 Mpx image and
30 fps video recording at 1920×1080 px), has a built-in geo-location system (GNSS, including GPS and
GLONASS) and an operation range of 250 m [84]. The additional Skycontroller, costing around $400,
allows for extending the operation range to 2 km.

Similar products are the Xaircraft X650 Pro [85], having a SuperX onboard flight controller [86],
and the Mikrokopter Quadrokopter XL [87], using the FlightCtrl ME flight controller [88]. The price
of these UAVs is around $1000, and they weigh around 1000–1500 g. Based on the flight controller
specifications, both controllers use for stabilization a set of sensors like those presented with the
AR.Drone: pressure sensors, three-axis gyroscopes, magnetometers and accelerometers. A special
feature of the controller of the Mikrokopter UAV is that its altitude sensing works up to 5000 m.
Both UAVs are meant for mounting external cameras, where the X650 Pro flight controller has built-in
functionalities for the camera gimbal stabilization and control. Theoretically, any recording device can
be attached to these UAVs, up to the payload limit (around 1 kg for both UAVs).

DJI produces quadrotors for aerial imaging [2]. For the price of around $1000 and weights of
about 1200 g, these vehicles are known to be stable. However, the flight controllers used with them
allow only for path scheduling based on GPS waypoints, using a graphical interface. The publicly
available specifications provide less technical information about the flight controllers [89]. Some of
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their proprietary flight controllers support the attachment of a GPS module. The newer platforms have
proprietary cameras attached to the UAV through a two-axis gimbal, providing HD 1080 p recording at
30 fps, and taking 14 MP (4384× 3288 px) photos. However, certain platforms support the use of other
cameras than the proprietary ones. Furthermore, DJI specifies an extended range of operation for the
newer products, up to 2 km.

In contrast with the above-listed RTF vehicles, which are readily assembled UAVs with the possibility
of limited customization, 3D Robotics and the Arducopter come with modular solutions, based on the
Arduino platform [90]. These UAVs use Ardupilot Mega (APM) or Pixhawk flight controllers that are
known to be custom-programmable. Furthermore, these controllers support the attachment of various
external devices, such as sensors, controllers and communication units. The Arducopter UAVs are
usually custom-built, but there exist complete kits, as well, offering RTF or almost-RTF solutions. An
RTF quadrotor is the 3DR Iris+, which costs $750 and weighs 1300 g [91], whereas an almost-RTF
solution is the Arducopter Quad [6], costing $620 and having a similar weight. Compared to the
platforms from the other producers, the Arducopter UAVs are highly customizable, though requiring
more knowledge of UAV programming and operation. A more recent platform is the 3DR Solo, a
user-friendly RTF UAV [92] with enhanced capabilities (among others, increased flight time up to 20 min
with a mounted GoPro camera and an improved onboard controller).

Regarding sensors in Arducopters, these platforms come with the ability of customization. The newer
Pixhawk controller comes with built-in gyroscopes, accelerometers and pressure sensors [93]. On the
vision part, the Iris+ has, for instance, the possibility of mounting an external camera using a gimbal
system. Pixhawk offers an optical flow module called PX4FLOW [94], which can be used for navigation
purposes. It is not meant for video recording, though, due to its reduced performance (it has a resolution
of 752× 480 px).

The presented UAVs are meant mainly for aerial imaging and gaming applications. Despite the
different price ranges, the types of sensors used for stabilization are similar. Obviously, the more
costly solutions offer better stabilization. On the vision side, platforms supporting the mount of external
cameras offer improved recording experience. However, working with integrated vision units eases the
usage of the platform, as in the case of the AR.Drone or with the PX4FLOW module. The quality and
frame rate offered, for example, by the AR.Drone 2.0 are already good enough for use for vision-based
navigation and environment capturing.

5. UAVs for Infrastructure Inspection Applications

A growing interest is shown for using UAVs for inspection and other remote sensing applications,
starting from public area monitoring, to infrastructure inspection, intelligent farming or aerial mapping.
Reaching satisfactory performance with low-cost UAVs can offer new perspectives for industrial
applications and public services.

As we discuss in the sequel, several projects already focus on inspection use-cases, although they use
more costly UAVs. We present specific applications by grouping them into two common classes, namely
power line inspection and building monitoring. We also dedicate a subsection to railway inspection
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applications, a less explored field. Furthermore, we highlight the level of autonomy of the UAVs used in
the works discussed. Finally, we list and discuss briefly the sensors used in the presented applications.

5.1. Power Line Inspection

Power line inspection applications roughly cover the tasks of following the lines and stopping at
interesting points, to scan in detail certain parts of the infrastructure. This procedure is similar to the
case of inspecting pipelines or any other linear structures, such as roads, walls, coasts, etc. Although
projects can be found that target gas pipeline monitoring [95] or structure inspection in general [96], the
topic of power line inspection appears to be more popular in recent years.

In their survey in 2010, Montambault et al. [97] already point out several research projects all around
the world that use quadrotors for power line inspection. As stated in the dissertation of Ellis, in August
2013, in Australia alone, there were already 16 companies listed as licensed UAV operators for power
line inspection [98]. We do not have details on the level of automation in these applications. However,
the following projects clearly focus on automating power line inspection.

Li et al. [4] already perform fully-automated power line inspection. They use a helicopter of 31 kg,
which also carries enough fuel for up to one hour of flight. Furthermore, their helicopter is equipped
with a more advanced sensor suite, which eases flight automation. Although promising, such platforms
do not fit into the inexpensive category.

Several projects strongly focus on the image processing part of inspection, from various perspectives.
Zhang et al. [99], for instance, compare some line detection algorithms for identifying and tracking
power lines from videos captured by quadrotors. Luque-Vega et al. [100] combine a color camera with a
thermal infrared camera to inspect infrastructure components. Larrauri et al. [101] deal with calculating
distance to vegetation, trees and buildings, based on video frames. Martinez et al. [102] perform power
line tower inspection. Their tracking approach steers the camera so as to keep an inspected tower in
focus while flying along lines.

5.2. Building Monitoring

Another popular application field is the inspection of building façades and other surfaces, with the
aim of examining their integrity. In such use-cases, the primary goal is to design flight plans that allow
for proper data acquisition.

Baiocchi et al. [3] use quadrotors in a post-seismic environment for inspecting historic buildings
for cracks and other damages. The GPS-based path planner developed by them optimizes flight paths,
reducing redundant acquisition. Furthermore, their processing software allows for the 3D reconstruction
of building façades from pairs of images. Another project, led by Eschmann et al. [103], presents a
similar application, though with manual flight control.

Nikolic et al. [104] deal with power plant boiler inspection. They design an automated
trajectory-following system and a personalized sensor suite for visual navigation. Using these, they
examine the interior walls of boilers, expanding the GPS navigation functionality of the quadrotor with
visual navigation, in order to be able to operate in GPS-denied regions, as well.
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5.3. Railway Infrastructure Inspection

Railway inspection comprises the tasks of structure inspection and linear structure following. In
this context, railway inspection is related to the previous two fields. It is an application area not yet
considered in public research projects, to the best of our knowledge. As presented below, newsletters
report on several companies that intend to or already use UAVs in railways, based mainly on manual
teleoperation or automated waypoint navigation. However, we have limited technical information on the
work performed by these groups.

In the spring of 2013, news appeared about German Railways (DB – Deutsche Bahn) regarding
their intention of using UAVs for catching graffiti sprayers [105]. French National Railways (SNCF
– Société nationale des chemins de fer français) announced in the autumn of 2013 a project of railway
bridge and viaduct inspection using UAVs [106]. The international company Elimco is also offering
inspection of various infrastructures, including railways [107]. Similar applications can be found at
Microdrones, where automated waypoint navigation is already implemented [108]. An article from
Smartrail World reports on further companies that use or plan to work with UAVs: NetworkRail from
the UK, ProRail from The Netherlands, Union Pacific from the USA and the Jerusalem light rail
network [109]. Although few technical details are publicly available about these projects, they mainly
seem to be based on manual teleoperation.

5.4. Sensors in Infrastructure Inspection Applications

Most papers discussed above provide generic or little information about the sensors used. In
general, some kind of color cameras are used to perform data acquisition. From the works where
more details are provided, Hausamann et al. [95] use a combination of optical and infrared sensors,
discussing sensor types with different spectral bands; and synthetic aperture radars that have higher
availability than color cameras due to the fact that radars are independent of weather and light conditions.
Luque-Vega et al. [100] combine thermal-infrared cameras with color cameras for improving
background subtraction and, thus, object detection. Larrauri et al. [101] use an HD camera in their
project, though for processing data at only 4 fps. Eschmann et al. [103] perform navigation based on GPS
data and use an external 12-MP commercial camera for offline post-processing only. Nikolic et al. [104]
consider a CMOS image sensor and low-cost inertial sensors on a custom-built integrated circuit that
aids UAV navigation and data collection in GPS-denied environments.

From these various details, one can conclude that color cameras are usually considered for data
acquisition. Often, the performance of these cameras is reduced, but still good enough, while aiming
at keeping the device low cost or at respecting payload constraints. Among the applications discussed,
in certain cases, infrared cameras are additionally used to improve detection.

6. Illustration in Railway Inspection Use-Cases

Finally, we illustrate in this section the use of the camera-based sensing and control methods presented
in Sections 2 and 3 for automated railway inspection. We formulate two use-cases: one where the UAV
performs infrastructure inspection in close, but difficult-to-access areas (such as long bridges or tracks
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separated from the road by, e.g., a river). A second use-case is meant for railway track following for
the sake of recording the infrastructure, such as tracks, sleepers, points or cabling. In the first use-case,
the automated control runs on a remote station, while in the second one, full control is onboard. The
chosen UAV platform is the Parrot AR.Drone 2.0 quadrotor, presented in Section 4. In certain cases, the
implementation ideas come from the specifics of this particular platform, but they are usually valid for
other low-cost quadrotors, as well.

We continue with evaluating the vision methods presented in Section 2, namely edge detectors for
rail track detection in Section 6.1 and feature detectors for target (signal light) detection in Section 6.2.
Then, we break down the use-cases into subtasks. We select detection solutions based on the results
from our experiments detailed in Sections 6.1 and 6.2. Furthermore, we indicate other vision and control
methods needed for our setup, based on the discussions from Sections 2 and 3. In this manner, our
method selection from Section 6.3 considers, to an extent, our own experimental results and further
solutions from the conclusions of our survey.

6.1. Evaluating Feature Detectors for Target Detection

In the first use-case, the quadrotor must find the target object before inspecting it. Considering that
the target is close enough to the quadrotor (below 10 m) and is in its field of view, one can apply feature
detection, description and matching methods that, given a reference image of the target, can identify it
in a new image, called the scene image.

Numerous detection, description and matching methods are readily implemented. We consider the
OpenCV 2.4.9 library [110] that, from the methods discussed in Section 2.1, comes with implementations
for the SURF, SIFT, FAST and Shi–Tomasi feature detectors and the SURF, SIFT, BRIEF and ORB
descriptors. Each of these methods has a number of tuning parameters, as presented on the OpenCV
website [110]. Based on prior tuning tests, we select a grid of meaningful values for these parameters
(values marked with bold are the best according to the optimization criterion we describe below).

– For SURF, the Hessian threshold is taken in {300, 310, ..., 420}, the number of octaves in
{2, 3, ..., 8} and the number of octave layers in {1, 2, 3, 4, 5, 6}, and we will use up-right features
and extended descriptors.

– For SIFT, we allow all features to be retained, and we set the number of octaves in {1, 2, 3}, the
contrast threshold in {0.01, 0.02, ..., 0.16}, the edge threshold in {5, 7, ..., 15} and the standard
deviation of the Gaussian in {1.2, 1.3, 1.4, ..., 2.1}.

– For FAST, we use threshold values between {0, 1, ..., 31, ..., 80} and test both enabling and
disabling non-max suppression.

– For Shi–Tomasi, we allow all features to be retained, set a quality level from
{0.001, 0.006, ..., 0.021, ..., 0.041}, a minimum feature distance of {0, 1, ..., 5}, an evaluation
block size of {3, 4, 5, 6}, allow for enabling or disabling the Harris detector and set parameter
k to {0.02, 0.04, ..., 0.1}.

With each setting, we combine the detectors with all of the descriptors and a FLANN-based
matcher [38] in order to evaluate the performance of the methods. The descriptors and the matcher
require no parameter tuning.
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As the data source, we consider a 46× 188 px reference image and 50 scene images, all 640× 360 px
in size and rectified. The reference image was taken with the same camera as the scene images. Each
scene image contains the target object at different distances. Figure 3 shows a sample matching result.

Figure 3. Target detection. Matching result with the reference and scene image.

After testing the various combinations of detector and descriptor methods, we obtain meaningful
results only when using the SIFT descriptor. The other descriptors, in general, fail to detect the target
object. Then, testing all of the detectors on the grid of parameters, we select the best parameter set for
each detection algorithm that maximizes the detection rates during the simulations. Table 1 summarizes
the performance of the four detectors in the case of these parameter sets.

Table 1. Performance evaluation of the feature detectors for target detection.

Method Detect. Rate (%) Execution Time (ms) Position Error (px) Scaling Error (%)

SURF 8 71.5 41.7 5
SIFT 54 17.4 2.7 45
FAST 98 8.3 2.2 37

Shi–Tomasi 96 7.4 2.2 41

As shown in Table 1, we evaluate the detection success rate, the average execution time per frame and
average errors on the horizontal position and the scaling of the detected object. The detection rate tells
in how many frames the algorithm detected the reference object. The average execution time considers
the total time required for detection, description and matching, for a single frame, i.e., the total image
processing time. The average position error tells the horizontal distance in pixels between the real center
of the object in the scene image and the center of the detected area. Finally, the scaling error indicates
the average difference between the size of the reference image and the size of the detected object,
expressed in percentages, i.e., it is a size detection error. Note that the latter two parameters indicate the
accuracy of the detection, while the first two inform about the usefulness of the algorithm in the case of
online use.

According to the results from Table 1, the FAST and Shi–Tomasi methods outperform the other two,
both in detection rate and execution time. The detection rate of SIFT is also acceptable. Looking at
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the average position error, all of the methods perform well, except SURF. However, the scaling error
indicates the opposite. SURF, although it has a far lower detection rate, detects the object size more
precisely. Furthermore, higher scaling errors in the case of the other methods appear since the object
detection algorithm was implicitly allowed to have these errors in favor of higher detection rates by the
optimization procedure. Additionally, the small position errors indicate that, with the last three methods,
the target was identified in the correct place.

Based on these results, we select the FAST algorithm for target detection in the given use-case, in
combination with the SIFT descriptor. However, we remark that the parameter sets were fine-tuned for
the given dataset, and other combinations might turn out to have better results for different scenarios
where other reference/target objects or other image parameters are considered. Nevertheless, we
highlight the good performance of the FAST and Shi–Tomasi detectors, which, with an average execution
time below 10 ms, allow for at least 100-Hz control, good enough for target detection during flight with
a quadrotor. With respect to the discussion in Section 2.1, the selection of the Shi–Tomasi detector
confirms the conclusions from there. However, the results of the FAST detector are even better in
our particular setup, while the Harris detector seems to reduce the performance when applied in the
Shi–Tomasi algorithm.

6.2. Evaluating Edge Detectors for Track Detection

In the second use-case, the quadrotor has to follow track lines. This can be accomplished by vanishing
point-based control, as introduced briefly below in Section 6.3.1 and presented in [111]. To achieve this
aim, edge detector methods can be used in combination with line extractors that help with finding the
track lines, which are then used to find their vanishing point.

From the edge detectors mentioned in Section 2.1, OpenCV comes with implementations for Canny,
Sobel, Laplacian and Scharr algorithms. We will test these methods on a grid of meaningful parameter
sets and combine them with a probabilistic Hough transform (PHT) for line extraction and a custom
filtering method for line selection. This method removes all of the lines up to a vertical angle, after
which it progressively filters out the lines that do not point to an average vanishing point. An example
of the processed image and obtained lines and vanishing point is shown in Figure 4.

(a) (b)

Figure 4. (a) Track line detection; (b) Canny edge detection result and vanishing
point detection.
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The parameters of the detectors are taken according to the following grid (best values marked with
bold or stated separately).

– For all of the methods, we worked with default image color depth and edge modeling border
type and set the x and y derivative orders in {0, 1, 2}, kernel sizes in {1, 3, 5, 7}, derivative scaling
factors in {0.001, 0.002, ..., 0.01, 0.015, ..., 0.14} and a delta value, added to the pixels of the output
image during the convolution, in {0, 0.01, ..., 0.40}. Note that some parameters appear with only
some of the methods.

– In the case of Canny, the two hysteresis thresholds are taken in the interval
{0, 10, ..., 90, 91, ..., 106, ...., 110, 120, ...., 300}; the best kernel size was 3, and we allowed
for enabling or disabling the use of the L2 gradient in image gradient magnitude calculation.

– For Sobel, the best values of the parameters are: derivative orders x = 1 and y = 0, kernel size
three, scaling factor 0.0125 and delta 0.037.

– For Laplacian, the best values are: kernel size five, scaling factor 0.002 and delta 0.095.

– For Scharr, the best values are: derivative orders x = 1 and y = 0, scaling factor 0.001 and
delta 0.23.

From the common parameters, the kernel size is the size of the matrix used in calculating the
transformed image. In our experiments, we observe that keeping this value low provides better results.
The scaling factor determines the image dimming, and better results are obtained when keeping this
value low, i.e., having almost completely dimmed images. The delta value has no visible influence on
the image processing, although it turns out that the lower its value, the better the detection.

We applied these detectors for a set of 165 scene images of size 640 × 360 px, all containing a pair
of track lines with different orientations, after which the line extraction and selection algorithms were
executed. We evaluated the average execution time and the average and maximum position errors. The
execution time is calculated per frame, for the detection algorithms only, as these are the subject of our
evaluation. The position errors determine the difference in pixels between the real (ground truth) and
measured horizontal position of the vanishing point of the tracks. Based on these indicators, Table 2
summarizes the performance of the detection methods for the parameter sets for which the average
position error was the lowest.

Table 2. Performance evaluation of edge detectors for line detection.

Method Exec Time (ms) Average Position Error (px) Max Positioning Error (px)

Canny 1.60 17.5 126
Sobel 2.27 16.4 193

Laplacian 2.74 13.8 79
Scharr 2.19 16.9 193

From Table 2, one can see that all of the methods have an execution time below 3 ms. Recall that we
considered only the duration of the detection, which together with the line extraction and selection results
in times up to 20–25 ms. Still, this offers a 40–50-Hz control rate in the case of any detection algorithm,
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high enough for quadrotor control. The maximum position error indicates some false detections, which
is the least severe in the case of the Laplacian algorithm. However, given the 640 px image width, all of
the methods have an average position error below 2.5% that indicates an overall correct detection. From
all of these parameters, we prefer to consider the position error the most important and use, therefore, the
Laplacian method in our use-case of track following. Nevertheless, the test results confirm the discussion
from Section 2.1 on the good performance of the Canny detector and its weakness of generating false
positives, when comparing with the performance of the Laplacian method.

6.3. Use-Case Subtasks

We select solutions for the two use-cases, the short-range inspection in difficult-to-access areas and
the long-range, track following-based infrastructure recording. This selection is just an illustration of
how the presented methods can be used for UAV navigation. We provide no details on the settings of the
considered techniques. However, flight tests were also already performed that demonstrate the suitability
of several selected methods.

First, we need to break down the use-cases into subtasks. These are mainly: take-off, fly on a path,
find and inspect targets, fly home and land. Next, we detail these subtasks and propose solutions to the
related control problems. The take-off and landing tasks are, in the case of the AR.Drone and with many
other RTF quadrotors, already solved by built-in functions. Furthermore, the newest products come with
a fly-home function that, based on GPS coordinates, makes the quadrotor return autonomously to its
take-off location and land there. For automation of the other tasks, additional processing and control
methods are required.

6.3.1. Flying on a Path

Flying on a path poses different challenges in the two use-cases. In the case of remotely-controlled
local inspection, it can be solved by GPS waypoint navigation with obstacle avoidance. Here, three
subtasks can be identified: planning the waypoint sequence, navigating using GPS data and obstacle
detection and avoidance. The waypoints have to be planned, e.g., to optimize the flight time or to
avoid obstacles. For online planning, we suggest the use of the RRT and MPC-based algorithms.
Regarding GPS-based waypoint navigation, quadrotors with a GPS module like the AR.Drone usually
have implementations for this task. We will consider the software from [112]. Finally, obstacle avoidance
is one of the most challenging tasks for quadrotors. Here, based on the experiments from Section 6.1,
we suggest using Laplacian filtering for detection, combined with optical flow techniques that can
determine motion. Then, we recommend the previously mentioned online planning methods for the
avoidance maneuver.

In the second use-case, railway following, the path planning and following problem boils down to line
following. With an onboard camera looking ahead, this can be achieved, for example, by finding and
tracking the vanishing point of the lines formed by the pair of rails [111]. The vanishing point detection
consists of image preprocessing for edge detection, line detection and line filtering in order to identify the
tracks and their vanishing point. Based on [111] and on our experiments from Section 6.2, we propose
the use of the Laplacian operator for edge detection. Then, the probabilistic Hough transform (PHT) can
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be applied to find lines from the resulting contours. These lines can then be filtered simply based on their
lengths and slopes: we select long enough lines (e.g., longer than a quarter of the image height) that are
almost vertical. These lines have a vanishing point that matches the vanishing point of the tracks. The
tracking subtask can be solved by simple visual servoing: the vanishing point can be kept in the middle
of the camera image through a proportional derivative controller. More precisely, we propose to perform
yaw (z axis) angle rotations, while additionally correcting with lateral displacement and forward velocity
reduction if the vanishing point is outside the desired range.

6.3.2. Finding and Inspecting Targets

For both use-cases, a method to find the target and a navigation strategy are needed, whereas in the
first use-case (local inspection), a further navigation solution is needed for inspection. We consider a
database of images of the possible targets. Then, based on the conclusions from Section 6.1, we propose
to use FAST feature detectors with SIFT descriptors and the FLANN-based matcher. Together, these
methods can track an object in subsequent frames. Above a threshold for the detection rate over time,
we consider the target being found. We also point out the solution presented in [102], where machine
learning is used in combination with edge detectors to find the target using a database of reference
images. Yet another idea is to test RANSAC model fitting, introduced in Section 2.1.

To navigate around a detected target, we consider visual servoing techniques. An alternative would
be GPS-based navigation, although for the AR.Drone, the GPS accuracy is of 2 m [113], not enough
for safe navigation close to objects. We propose therefore the use of PBVS methods, introduced in
Section 2.3. Furthermore, based on our experiments from Section 6.1, a basic visual servoing solution is
to use the target detection described above together with homography-based identification. The obtained
homography can then be used to determine the scaling and image-frame position of the target. Knowing
the distance to the target in the reference image, the scaling and image-frame position can be then
transformed into longitudinal and lateral distances to the object, which indicate the relative position
to the target. Based on this, simple controllers can be applied to correct the distances so as to track the
desired inspection trajectories.

7. Summary and Outlook

In the first major part of this paper, we reviewed vision and control methods for UAVs, with the
final goal of using them in railway inspection applications. In the second part, we presented several
popular low-cost quadrotor platforms, overviewed research concerning UAV inspection applications
and formulated two use-cases. The use-cases address the novel application field of railway inspection
and focus on short-range inspection in difficult-to-access areas and long-range track following. We
performed an exhaustive evaluation of feature detectors for track following and target detection. Finally,
we devised a strategy to accomplish the use-case task using results from our experiments and from the
conclusions of the survey.

The survey of vision and control techniques revealed several open challenges, like the difficult
problem of fine-tuning in the case of vision methods, the high computational demands of both vision and
flight planning tools compared to the onboard processing capacity of the low-cost UAVs or the limitations
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appearing due to the lack of adequate mission formalization and due to the restrictive regulations. Further
open issues are the lack of a general obstacle avoidance solution, which is crucial for fully-automated
UAV navigation, and limitations derived from the short battery life of low-cost UAVs. Our future work is
motivated by the railway inspection use-cases, and we are currently continuing our research by evaluating
additional vision techniques for object classification and for obstacle avoidance, by developing trajectory
and path planning techniques for automated flight of low-cost quadrotors.
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