
1

Near-Optimal Strategies for Nonlinear and Uncertain

Networked Control Systems

Lucian Buşoniu Romain Postoyan Jamal Daafouz

Abstract—We consider problems where a controller commu-
nicates with a general nonlinear plant via a network, and
must optimize a performance index. The system is modeled
in discrete time and may be affected by a class of stochastic
uncertainties that can take finitely many values. Admissible
inputs are constrained to belong to a finite set. Exploiting some
optimistic planning algorithms from the artificial intelligence
field, we propose two control strategies that take into account the
communication constraints induced by the use of the network.
Both strategies send in a single packet long-horizon solutions,
such as sequences of inputs. Our analysis characterizes the
relationship between computation, near-optimality, and trans-
mission intervals. In particular, the first strategy imposes at
each transmission a desired near-optimality, which we show is
related to an imposed transmission period; for this setting, we
analyze the required computation. The second strategy has a
fixed computation budget, and within this constraint it adapts
the next transmission instant to the last state measurement,
leading to a self-triggered policy. For this case, we guarantee long
transmission intervals. Examples and simulation experiments are
provided throughout the paper.

Index Terms—networked control systems, optimal control,
nonlinear systems, planning, predictive control.

I. INTRODUCTION

In a variety of applications, controllers are implemented

over networks in order to reduce installation costs and to facili-

tate maintenance, leading to networked control systems (NCS).

The control law therefore has to share the communication

bandwidth with other network users. This constraint cannot

be ignored in general, as it may have a serious impact on

the system performance. Various methodologies for NCS have

been developed over these last decades. Two main approaches

are distinguished based on whether the transmissions are

defined by a clock, see e.g. [7], [26], [44], or are triggered

depending on the state of the plant, in which case we talk of

event-based control, see [24] and the references therein.

In this paper, we develop an approach for the near-optimal

control of nonlinear NCS, allowing for either time-triggered

or self-triggered control strategies. The inputs are constrained

to belong to a finite set. We focus on reducing the number

of network transmissions, and we achieve this by sending

long-horizon solutions such as sequences of inputs, like in

e.g., [2], [14], [25], [38], [43]–[45]. This type of sporadic

communication at known intervals is important in scheduling,

L. Buşoniu is with the Technical University of Cluj-Napoca, Romania,
lucian@busoniu.net. R. Postoyan and J. Daafouz are with the Université de
Lorraine, CRAN, UMR 7039 and the CNRS, CRAN, UMR 7039, France,
{romain.postoyan,jamal.daafouz}@univ-lorraine.fr. This work was supported
by a PHC-Brancusi grant, CNCS-UEFISCDI no. 781/2014 and Campus
France no. 32610SE; by a grant of the Romanian National Authority for
Scientific Research, CNCS-UEFISCDI, project number PNII-RU-TE-2012-3-
0040; and by the ANR project “Computation Aware Control Systems”, ANR-
13-BS03-004-02.

since it allows the communication protocol to assign priority to

the control task only when needed. Further, by only executing

the controller at transmission instants, computation is reduced

[19]. We also show how to handle stochastic network delays

between the controller and the actuators [48]. Other network

effects such as packet drop-outs are not considered.

The main contribution of our approach is providing a

tight relationship between near-optimality and length of trans-

mission intervals on the one hand, and on the other the

computational load of the algorithm. This algorithm includes

a complete, explicit implementation of the optimizer. In the

time-triggered strategy, the transmission intervals and near-

optimality are simultaneously adjusted, and we analyze the

required computation. The advantage of our self-triggered

strategy is that computation is directly controlled, while trans-

mission intervals adapt to the current state and may be signifi-

cantly longer than in the time-triggered setting. All this is done

for general, nonlinear and not necessarily smooth systems,

and for general bounded rewards, where the optimal control

objective is to maximize the discounted sum of rewards.

We are not aware of such explicitly implementable ap-

proaches with known computational bounds in the literature on

nonlinear NCS. Instead, existing work on time-triggered NCS

typically uses model-predictive control to handle delays and

packet dropouts, e.g. [2], [43], without considering computa-

tion. Furthermore, only a few self-triggered NCS techniques

can handle optimal control, and those target linear systems,

e.g. [23], [25].

We borrow from artificial intelligence and adapt to NCS

two recent optimistic planning (OP) algorithms: OP for De-

terministic systems (OPD) [28] and OP for stochastic Markov

Decision Processes (OP-MDP) [9]. It is these algorithms

that lend our method its generality. They solve the optimal

control problem at each state encountered by exploring a tree

representation of possible sequences of actions (inputs) from

that state. Thus, OP is a type of model-predictive control.

Several OP algorithms were introduced, e.g. [8]–[10], [33],

[36], and showed good performance in problems from control

[36], medicine [10], and artificial intelligence [22].

We consider first deterministic systems, where we use

OPD and exploit the fact that it returns long and near-

optimal sequences of actions [28]. Thus, rather than sending

only the first action in the sequence and then rerunning the

algorithm, as done in [28], we choose to send a longer

subsequence which is stored in a buffer and applied in open

loop, as originally proposed by [2]. In the time-triggered

strategy, a fixed communication period between the plant and

the controller is freely selected, by choosing the sequence

length. The algorithm is therefore called Clock-triggered OP

(COP), and we analyze how suboptimality decreases and how

2

computational complexity grows with the selected period. The

second strategy enforces a fixed computation budget at every

OP execution, and within this budget generates a sequence

of actions from the last measured plant state. We analyze

how the resulting near-optimality and sequence length (and

therefore the communication interval) depend on the state, and

call the algorithm Self-Triggered OP (STOP). Sequence-based

control was used among others by [14], [25], [38], [43]–[45].

In [45], different from our motivation of reducing network

transmissions, the controller finds sequences of actions at

steps when computational resources are large, and applies the

sequences at future steps at which resources are insufficient.

In the stochastic case, we consider a class of uncertainties

modeled by finitely many random outcomes. The core ideas

are similar to the deterministic case, but open-loop sequences

are no longer appropriate, so we use OP-MDP and a new

solution concept: tree policies, which are feedback laws over

possible realizations of the uncertainties up to an adaptive

length. This also requires a different NCS architecture: a

local, computationally cheap feedback controller is directly

connected to the system and implements the tree policy, while

a computationally powerful OP-MDP controller sits beyond

the network. Since the sequence length now depends on

the uncertainty realization, COP has no direct counterpart;

instead, in the first stochastic strategy a desired near-optimality

is imposed at each transmission. The analysis then bounds

computation and leads to a probabilistic characterization of the

length. For the second, self-triggered strategy, a computational

budget is again imposed, and we investigate near-optimality

and the related probabilistic lengths.

For both deterministic and stochastic systems, our strategies

allow sending only an initial part of the solutions found:

subsequences or subtrees. A tuning parameter allows moving

from the original OP approach, which only applies the first

action, to applying the complete solutions. Interestingly, we

show that closing the loop more often does not necessarily lead

to better performance, but may do better or worse depending

on the problem. This is because solutions that are better in the

long term may either be discovered or not, depending on the

reward structure. Finally, the stochastic self-triggered method

is applied to deal with random delays in the control channel.

Our analysis focuses on near-optimality and transmission

intervals, which are important even in the absence of immedi-

ate stability guarantees. The connection between stability and

optimality would be interesting, but is not yet understood for

the discounted type of cost required by OPD and OP-MDP.

For instance, when discounting is present stability cannot

generally be guaranteed even in the linear case, as illustrated

by [31], while [12] emphasized similar difficulties in the NCS

setting. Many works in optimal control use discounted costs

without guaranteeing stability, such as [1], [29] which consider

network effects, as well as works on classic optimal control

of linear systems [27], nonlinear systems [34], singularly per-

turbed systems [21], or systems with discrete-valued variables

as in our case [5], [15], [20]. We have made an initial stability

analysis under the exactly optimal control [40], but a complete

solution is not yet available and falls outside the scope of this

paper.

To make the development easier to follow, we first describe

fully the deterministic case, starting with OPD and its analysis

in Section II, followed by COP and STOP with their analysis

and simulations in Section III. The stochastic case is similarly

developed, with OP-MDP in Section IV and the NCS methods

in Section V. Section VI focuses on the delayed case, and

Section VII concludes the paper. We performed a preliminary

study in the deterministic case in [11].

II. DETERMINISTIC CASE: BACKGROUND

We introduce the necessary techniques in detail, and we

adapt their analysis to the NCS setting.

A. Optimal control problem

Consider an optimal control problem for a deterministic,

discrete-time nonlinear system:

xk+1 = f(xk, uk) (1)

with state x ∈ X and action u ∈ U . Here, X is an arbitrary

space, such as R
m or a discrete set. We restrict U to a

finite set below. Each transition from xk to xk+1 as a result

of uk is associated with a reward rk+1 = ρ(xk, uk), and

the goal is to find for each state x a sequence of actions

u∞ = (u0, u1, . . .) ∈ U∞ that maximizes the infinite-horizon

discounted return (value):

V u∞(x) =
∞
∑

k=0

γkrk+1 =
∞
∑

k=0

γkρ(xk, uk) (2)

where x0 = x, xk+1 = f(xk, uk) for k ≥ 0, and γ ∈ [0, 1) is

the discount factor. Elements X , U , f , ρ, and γ together form

a deterministic type of Markov decision process (MDP). The

optimal value function is defined as V ∗(x) = sup
u∞

V u∞(x),
and under Assumption 1 below always exists and is unique,

see Ch. 4 of [4]. Because the system is deterministic, action

sequences are sufficient to represent the optimal solution.
Assumption 1: The action space is discrete (or discretized),

U =
{

u1, . . . , uM
}

. Rewards are bounded in [0, 1].
Reward boundedness is often assumed in the MDP lit-

erature, see e.g. Ch. 4 of [4] and [46], since it ensures

boundedness of the value in (2). The main way to achieve

boundedness is by saturating a possibly unbounded original

reward function. This changes the optimal solution, but is often

sufficient in practice. Then, the resulting bounded rewards

can be normalized to [0, 1]. On the other hand, the physical

limitations of the system may be meaningfully modeled by

saturating the states and actions. In this case, a reward bound

follows from the saturation limits.
Many systems have inherently discrete and finitely-many

actions, because they are controlled by switches. This is the

case e.g. in traffic signal control [18] or water level control

by barriers and sluices [47]. When the actions are originally

continuous, discretization reduces performance, but the loss is

often manageable. Discretized actions may even be preferable

due to their benefits in NCS: the size of communication

packets can be reduced by encoding the discrete actions by

their index, and actuator saturation can be dealt with by simply

discretizing within the operating ranges. Other authors showed

interest in coarsely-discretized control for NCS, e.g. [17].

3

B. Optimistic planning for deterministic systems

To introduce the algorithm, in this section we focus on a

particular state x where it must be applied, and by convention

set the current time to 0, so that x0 = x. Of course, the

procedure works at any time step.

u0

1

u0

2

ρ x u(,)0 0

2

L T()

f x u(,)0 0

2

ρ x u(,)0 0

1

f x u(,)0 0

1

u1

1
u1

2

d = 1

d = 2

d = 3

Fig. 1. Illustration of an OPD tree T . Nodes are labeled by actions, arcs
represent transitions and are labeled by the rewards and next states resulting
by applying the corresponding action. Subscripts are depths, superscripts index
the M possible actions/transitions from a node (here, M = 2). The leaves
L(T) are enclosed in a dashed line, while the thick path highlights an action
sequence. Note that the root corresponds to the empty sequence.

Optimistic planning for deterministic systems (OPD) [28]

explores a tree representation of the possible action sequences

from the current state, as illustrated in Figure 1. OPD starts

with an unlabeled root node, and iteratively expands nodes,

where each expansion adds new children nodes correspond-

ing to all the M actions u1, . . . , uM . Each node at some

depth d is reached via a unique path through the tree, and

can thus be uniquely associated to the sequence of actions

ud = (u0, u1, . . . , ud−1) on this path. In what follows, we

will work interchangeably with sequences and paths, keeping

this equivalence in mind.
For a sequence ud, we define three quantities:

ℓx(ud) =

d−1
∑

d′=0

γd′

ρ(xd′ , ud′), bx(ud) = ℓx(ud) +
γd

1− γ

vx(ud) = ℓx(ud) + γdV ∗(xd)

where the states are generated with the action sequence ud,

like in (2). Subscript x indicates that the three quantities

depend on the state x = x0 where OPD is applied. Due to

Assumption 1, the rewards (below depth d) are in [0, 1], so

ℓx(ud) provides a lower bound on the value of any infinite

sequence that starts with ud, while bx(ud) is an upper bound.

Value vx(ud) is obtained by continuing optimally after ud.
We denote the set of sequences corresponding to leaves of

T by L(T). OPD optimistically explores the space of action

sequences, by always expanding further a most promising leaf

sequence: one with the largest upper bound bx(u). At the end,

a sequence that maximizes the lower bound ℓx(u) among

the leaves is returned. Since leaves sit at varying depths d
in the tree so that γd/(1 − γ) varies, maximizing ℓx(u) is

different from maximizing bx(u), and can intuitively be seen

as making a safe choice. Algorithm 1 summarizes the entire

procedure, where function ∆(·) gives the depth of a tree,

and any ties among several sequences maximizing upper or

lower bounds are broken arbitrarily. We allow the algorithm

to terminate either after a given number of expansions, or

after a node at given depth d has been expanded, leading

Algorithm 1 Optimistic planning for deterministic systems

Input: state x, budget n or depth d (set the other to ∞)

1: initialize tree: T ← {root}, i = 0
2: repeat

3: find optimistic sequence: u
† ∈ arg max

u∈L(T) bx(u)

4: add children uj , j = 1, . . . ,M to the node of u
†

5: i← i + 1
6: until i = n or ∆(T) = d + 1
7: n← i; d← ∆(T)− 1

Output: u
∗ ∈ arg max

u∈L(T) ℓx(u), d, n

to ∆(T) = d + 1. Sometimes a sequence of length ∆(T)
may be returned, in which case the last action is removed for

uniformity of analysis. The computational budget is measured

by the number of expansions, since an expansion takes M calls

to the model f and to the reward function ρ, and for nonlinear

systems computing f dominates the execution time. Other tree

operations (such as computing b-values or traversing the tree

to find the optimistic sequence) are significantly cheaper, but

can be bounded between O(n log n) and O(n2), depending on

the branching factor κ(x) defined in the next section.

C. Theoretical guarantees

To characterize the complexity of finding the optimal se-

quence from a given state x, we use the branching factor

κ(x) (average number of children per node) of the near-

optimal subtree. This subtree contains only nodes that, given

the rewards obtained down to them in the tree, cannot be ruled

out as belonging to optimal sequences. In general, exploring

these nodes is unavoidable, and κ(x) is in this sense necessary

to characterize the problem. OPD only explores the near-

optimal subtree, leading to a priori guarantees on the relation

between computation, sequence length, and near-optimality.

Since κ(x) is generally unknown, actual values for e.g. near-

optimality cannot be determined in advance. Nevertheless, the

analysis provides confidence that OPD automatically adapts

to the complexity of the problem at state x, described by

κ(x). We return to detail these properties after the formal

development is in place.

The near-optimal subtree is defined as T ∗(x) = {ud | d ≥
0, V ∗(x) − vx(ud) ≤ γd/(1 − γ)}. Let T ∗

d (x) be the set

of nodes at depth d on T ∗(x) and |·| denote set cardinality,

then the asymptotic branching factor is defined as κ(x) =

lim supd→∞ |T
∗

d (x)|
1/d

.

A sequence ud is said to be ε-optimal when V ∗(x) −
vx(ud) ≤ ε. The upcoming theorem is a consequence of the

analysis in [28], [39]. It is given here in a form that brings out

the role of the sequence length, useful for the NCS application

in the sequel. Part (i) of the theorem shows that OPD returns a

long and near-optimal sequence, and parts (ii), (iii) show that

sequence length and near-optimality are closely related to the

computation budget, via branching factor κ(x).
Theorem 1: Let x ∈ X . When OPD is called at x:

(i) The length of the sequence u
∗ returned is d = ∆(T)−1.

Denoting ε(x) = V ∗(x)−ℓx(u∗), we have ε(x) ≤ γd

1−γ .

4

(ii) When OPD is called with large target depth d: • If

κ(x) > 1 it will require a number of expansions1

n(x) = O(κ(x)d). • If κ(x) = 1, n(x) = O(d).
(iii) When OPD is called with large budget n: • If κ(x) > 1

it will reach a depth of d(x) = Ω(log n
log κ(x)), and ε(x) =

O(n−
log 1/γ
log κ(x)). • If κ(x) = 1, d(x) = Ω(n) and ε(x) =

O(γc(x)n), where c(x) is a constant. �

Proof: (sketch) Item (i) follows from the proof of Theo-

rem 2 in [28], (ii) from the proof of Theorem 3 in [28], and

(iii) from the proofs of Theorems 2 and 3 in [28].

The sequence returned is also ε(x)-optimal, since V ∗(x)−
vx(u∗) ≤ V ∗(x) − ℓx(u∗) ≤ ε(x) in view of part (i); the

second inequality here is stronger than ε(x)-optimality.

These results rely on the core property that OPD only

expands nodes in T ∗(x), although it uses solely reward infor-

mation from the current tree [28], [39]. To build more intuition

on T ∗(x) and κ(x), note that T ∗(x) contains sequences for

which it is impossible to tell, from their rewards down to d,

whether or not they are part of an optimal solution, because

their near-optimality is smaller than the amount of reward

γd/(1−γ) they might accumulate below depth d. Usually only

some sequences have this property, therefore T ∗(x) is smaller

than the complete tree and κ(x) is smaller than the number

of actions M . The smaller κ(x), the more easily near-optimal

sequences can be distinguished, and the better OPD does. The

best case is κ(x) = 1, obtained e.g. when a single sequence

always obtains rewards of 1, and all the other rewards are 0.

In this case the algorithm must only develop this sequence,

and suboptimality decreases exponentially. In the worst case,

κ(x) = M , obtained e.g. when all the sequences have the

same value, the algorithm must explore the complete tree in a

uniform fashion, expanding nodes in order of their depth.

III. OPD FOR DETERMINISTIC NETWORKED CONTROL

SYSTEMS

A. Setting

We now focus on a networked-control setting, in which

actuation and state signals are exchanged over a network that

must be efficiently utilized. To this end, the controller should

only communicate with the plant when needed. OPD is well

equipped to handle this case, since it guarantees that it will

return long and near-optimal sequences of actions.

We envision the following setup, see Figure 2. The sequence

of transmission instants is denoted by ki, i ∈ {0, 1, 2, . . .},
and it will either be fixed by the user or defined by the

controller itself. At each ki, the controller receives the state’s

measurement and generates a sequence of control actions

which is sent as a single packet to the actuators’ buffer, like in

[2], [14], [25], [43], [44]. The actuators then apply the k′-th

component of the sequence to the plant at step ki + k′, until

the full sequence has been used. Afterwards, the new state’s

measurement is sent to the controller and the procedure is

repeated. The number of transmissions is reduced, since the

1Let g, h : (0,∞) → R. Statement g(t) = O(h(t)) (or g(t) = Ω(h(t)))
for large t means that ∃t0, c > 0 so that g(t) ≤ ch(t) (or g(t) ≥ ch(t))
∀t ≥ t0. When the statement is made for small t, it means that ∃t0, c > 0
so that the same inequalities hold for ∀t ≤ t0.

channel is only used at intervals equal to the sequence lengths.

network

System

OP algorithm

Buffer

Fig. 2. NCS architecture in the deterministic case.

B. Algorithms

Algorithm 1 and Theorem 1 suggest two ways in which

OPD could be exploited for NCS. The first possibility is to

impose a desired sequence length (planning depth) d at every

controller execution step, and then send to the plant either

the full sequence or an initial subsequence thereof. Denoting

the length of the sent subsequence by d′ ≤ d, this means

the communication between the controller and the plant is

set to occur with a period d′. Applying OPD in this way

is novel. Since length d and the controller execution interval

d′ ≤ d are freely selected, this first strategy is called Clock-

triggered OP (COP); it is summarized in Algorithm 2. The

Algorithm 2 COP: Clock-triggered optimistic planning

Input: initial state x0, target depth d, subsequence length d′

1: k ← 0
2: loop

3: measure current state xk

4: apply OPD(xk, d), obtaining a sequence ud

5: send initial subsequence ud′ to plant

6: k ← k + d′, wait d′ steps

7: end loop

Algorithm 3 STOP: Self-triggered optimistic planning

Input: initial state x0, budget n, subsequence fraction α
1: k ← 0
2: loop

3: measure current state xk

4: apply OPD(xk, n), obtaining a sequence ud(x)

5: send initial subsequence u⌈αd(x)⌉ to plant

6: k ← k + ⌈αd(x)⌉, wait ⌈αd(x)⌉ steps

7: end loop

second possibility is to impose the computation budget n, like

in the classical application of OPD, and let the algorithm

find the longest sequence it can within this budget. Then,

different from classical OPD which sends just one action, we

send again either the whole sequence or a subsequence. The

returned sequence length depends in addition to n also on the

current state, through the planning complexity as expressed

by branching factor κ(x). Therefore, the algorithm is self-

triggered and we call it Self-Triggered OP (STOP); it is

summarized as Algorithm 3. To allow sending subsequences,

STOP is parameterized by the fraction α ∈ (0, 1], so that if a

sequence of length d is returned by OPD, only the first ⌈αd⌉
actions are actually sent and applied, where ⌈·⌉ denotes the

ceiling operator.

5

C. Analysis

An algorithm is called ε-optimal if it applies in closed loop

a sequence u∞ satisfying V ∗(x0)− V u∞(x0) ≤ ε. Consider

first COP.

Theorem 2: For any d and d′ ≤ d, the following hold. (a)

COP is γd

1−γ -optimal. (b) For large d, at every state x where

it is called, COP requires: • n(x) = O(κ(x)d) expansions if

κ(x) > 1; • n(x) = O(d) expansions if κ(x) = 1, with κ(x)
the branching factor of Section II-C. �

Proof: The second part of the theorem is a consequence

of Theorem 1(ii). To prove part (a), denote by u
0 the sequence

returned by OPD when applied at x0, and recall that ε(x0) =
V ∗(x0) − ℓx0

(u0). If the full sequence is applied, then no

matter what actions are taken afterwards at least value ℓx0
(u0)

is obtained, so COP is ε(x0)-optimal.

Now, consider applying a subsequence u
′0 strictly shorter

than u
0, and then reexecuting OPD in the resulting state

x1 to obtain u
1, see Figure 3. Denote by u

′′0 the leftover

subsequence from u
0. For arbitrary sequences u and ũ, let

(u, ũ) denote their concatenation.

T0

T1

u
0
’ u

0 u
N

. . .x
1 x

2

x
N

u
1
’

u
1

u
N-1
’

u
N-1

Fig. 3. Using OPD with subsequences. Different from Figure 1, the trees are
now oriented horizontally.

When applied from x1, OPD builds the tree T1 by expanding

nodes in the exactly the same order as it would have expanded,

when applied from x0, nodes in the subtree of T0 having x1 at

root. That is, for any sequence ũ
1 in T1, the following b-value

relationship holds by definition: bx0
(u′0, ũ1) = ℓx0

(u′0) +
γd1bx1(ũ1), where d1 is the depth of x1 in T0. So, maximizing

bx1(ũ1) is the same as maximizing bx0
(u′0, ũ1) with respect

to ũ
1. Because OPD is applied with the same setting in x1

as in x0, it will expand more nodes and so u
′′0 is inside T1.

Since u
1 maximizes ℓx1 on T1, we have ℓx1(u1) ≥ ℓx1(u′′0),

which means the composite sequence satisfies: ℓx0
(u′0,u1) =

ℓx0
(u′0) + γd1ℓx1(u1) ≥ ℓx0

(u′0) + γd1ℓx1(u′′0) = ℓx0
(u0)

where d1 is the depth of x1.

Continuing in a similar fashion, for any N , applying N −1
shorter sequences followed by the full N th sequence achieves

ℓ(u′0,u′1, . . . ,u′N−1,uN) ≥ ℓx0
(u0), see again Figure 3.

Thus the same is true of the limit as N → ∞, and since

this limit is the value V u∞(x0) of the overall closed-loop

sequence, we have obtained V ∗(x0)− V u∞(x0) ≤ V ∗(x0)−
ℓx0

(u0) ≤ ε(x0). To obtain the final result, notice that by

Theorem 1(i), ε(x0) ≤
γd

1−γ .

Thus, the quality of the solution grows with the imposed

sequence length d, and the computation requirements to reach

this length are bounded and characterized using κ(x). Specif-

ically, computation grows exponentially in d, with base κ(x)
– unless κ(x) = 1, in which case it grows linearly in d. Next,

we move on to STOP.

Theorem 3: Take any large budget n and any α ∈ (0, 1]. (a)

The near-optimality of STOP is: • O(n
−

log 1/γ
log κ(x0)) if κ(x0) > 1,

and • O(γcn) if κ(x0) = 1. (b) At every state x where it

is called, STOP produces a sequence of length: • d(x) =
Ω(log n

log κ(x)) if κ(x) > 1, and • d(x) = Ω(n) if κ(x) = 1. �

Proof: It directly follows by reapplying the proof of

Theorem 2(b) that STOP is ε(x0)-optimal, and using the

expressions of ε(x0) from Theorem 1(iii) completes the first

part. The second part follows directly from Theorem 1(iii).

The performance guarantee of STOP depends only on the

planning difficulty at the initial state x0: it is a negative power

of n when κ(x0) > 1, and exponential (better) in n when it

is κ(x0) = 1. The sequence length grows fast, in a way that

is characterized using κ(x), and which basically ‘inverts’ the

relationship between computation and length in COP.

It must be emphasized that the analysis is performed under

the assumption that the model is correct. This is the main

reason for which the subsequence length (represented by d′

in COP and α in STOP) does not affect the near-optimality

guarantee: there is no loss, whether the loop is closed sooner

or later. Also, the full initial sequence could be applied and

followed by arbitrary actions, while still guaranteeing γd

1−γ -

optimality. No predictive algorithm can do better in general

without increasing the horizon, because the rewards are not

assumed to be smooth so they may change unfavorably beyond

the horizon explored at the first step. Of course, in practice

uncertainty is always present, as model errors or disturbances,

which means the sequences cannot be too long and the loop

must be closed fairly often.

Even when the model is correct, some nontrivial relations

arise between shorter and longer sequences: applying shorter

sequences – closing the loop more often – may achieve

better or worse performance, depending on the problem. The

following result characterizes this behavior, in a general way

that applies to both COP and STOP.

Theorem 4: Let x ∈ X and denote by ud the sequence

returned by OPD at x. Let ud′ be an initial subsequence of

ud and ud1
be obtained by replanning after u

′
d (see Figure 4).

Define similarly ud′′ and ud2
with d′′ > d′. Then:

vx(ud′ ,ud1
) ≥ vx(ud′′ ,ud2

)−
γd′+d1

1− γ

Furthermore, if the budget or target depth of OPD are held

constant, then the bound is tight in a worst-case sense. �

ud”

ud1

ud’

ud2

x
1

x’

x

Fig. 4. Shorter versus longer subsequences.

6

Proof: Denote by x′ and x′′ the states reached by u
′
d and

u
′′
d , respectively. The inequality is shown as follows:

vx(ud′ ,ud1
) = ℓx(ud′) + γd′

vx′(ud1
)

= ℓx(ud′) + γd′

V ∗(x′)− γd′

[V ∗(x′)− vx′(ud1
)]

≥ vx(ud′)−
γd′+d1

1− γ
≥ vx(ud′′ ,ud2

)−
γd′+d1

1− γ

where the first step follows from the definition of the v-value,

the second just adds and subtracts an extra term, the third

follows from Theorem 1(i) when applied at x′, and finally the

last step is true because v cannot increase if more actions are

added to the sequence.

ud”

ud1

ud’
ud2

rewards=1

rewards=0

x”

x
1

x’x

Fig. 5. Constructing an example where the bound is tight.

To show tightness, a worst-case example is provided where

the bound holds with equality. Construct a problem, in the

form of a tree, where all rewards are 0 except for one subtree

placed below x′′ at depth d′ + d1, in which they are all 1, see

Figure 5. Note that due to the zero rewards until d′ + d1, up

until this depth all trees will be expanded uniformly. When

OPD is applied to find ud and ud1
, it cannot discriminate

between sequences since they all have a lower bound ℓ equal

to 0, so OPD must choose one arbitrarily. We take the arbitrary

sequence ud1
so that it does not contain x′′, leading to a value

vx(ud′ ,ud1
) = 0.

When OPD is called at x′′, it starts expanding nodes

uniformly, and since this state is at depth d′′ > d′ and OPD

has the same budget or target depth as at x′, it will expand

at least a node at depth d′ + d1. We simply place the subtree

with rewards of 1 under this node, thereby ensuring that the

algorithm discovers it and that the sequence (ud′′ ,ud2
) has

the optimal value γd′+d1

1−γ . So the bound is tight.

The theorem says that applying a shorter sequence and then

replanning may lose some performance, but not too much: the

maximum loss is given by the accuracy of the entire composite

sequence (ud′ ,ud1
), i.e., γd′+d1

1−γ . Further, from the worst-case

example it is clear that the same loss can be incurred even if

the loop is closed again sooner than d1 or d2. The following

examples provide more insight into this issue, using COP as

it allows to directly control the (sub)sequence length.

Example 1: Shorter sequences can perform better. Con-

sider an MDP with state space {1, 2, . . . , 5}, two actions

−1, 1 (“left” and “right”), and additive dynamics xk+1 =
max(1,min(5, xk +uk)). The rewards obtained upon reaching

each of the five states are, respectively, 0.8, 0.7, 0.5, 0.8, 0, and

the discount factor is 0.8, see Figure 6.

When applied from x0 = 4 with d = 2 and d′ = 1, COP

replans in x1 = 3, which allows it to detect the larger rewards

1 3
0.8 0.7

4
0.5

2 5
0.8 0

Fig. 6. A five-state MDP and two COP solutions. States are shown in circles,
and rewards in italics above them. The solution from x0 = 4 with d′ = d = 2
is shown in gray on top of the figure, while the one for d′ = 1, d = 2 is
shown in black on the bottom. Solutions are shown as sequences of actions,
where the bullets mark the states in which planning is run, and unapplied
sequence tails are shown in dashed lines.

to the left. It eventually reaches state 1 and remains there,

achieving the optimal return of 3.62. However, when d′ is

increased to 2, COP exploits the rewards of states 4 and 5 and

cycles between these states forever, obtaining a suboptimal

return of 3.17. �

Example 2: Longer sequences can perform better. A similar

MDP is taken but now with state space {1, 2, . . . , 7} and the

rewards shown in Figure 7. The discount factor is the same.

1 3
0.5 0

4
0.7

2 5
0 0.2

6 7
1 0

Fig. 7. A seven-state MDP and two COP solutions, for d′ = d = 3 (top,
gray) and d′ = 1, d = 3 (bottom, black).

Now, when applied from x0 = 3 with d′ = d = 3, COP

discovers the large reward in state 6 and controls towards

this state, cycling afterwards between 5 and 6 for a return of

2.22. When d′ = 1 however, replanning from state 4 misleads

the algorithm into a shorter-horizon cycle that focuses on the

reward 0.7, achieving only a suboptimal return of 1.56. �

D. Simulation results for a DC motor

We study the behavior of COP and STOP in simulations

with a DC motor. See also [11] for a nonlinear example.

Discretizing in time a first-principles model of the DC motor,

with the zero-order-hold method and Ts = 0.01 s, we obtain:

f(x, u) = Ax+Bu, A ≈

[

1 0.0095
0 0.9100

]

, B ≈

[

0.0084
1.6618

]

(3)

where x1 = α is the shaft angle, x2 = α̇ the angu-

lar velocity, and u the voltage. Moreover, the states and

actions are restricted using saturation to α ∈ [−π, π] rad,

α̇ ∈ [−15π, 15π] rad/s, u ∈ [−30, 30] V, in order to represent

physical limitations in the system. The goal is to stabilize the

system around x = 0, and is described by the reward function:

ρ(x, u) = −x⊤Qx− u⊤Ru, Q = diag(5, 0.001), R = 0.01
(4)

with discount factor γ = 0.9. State and action saturation

ensure bounded rewards, and these rewards are then rescaled

into [0, 1]. The actions are discretized into the set U =
{−10,−3, 0, 3, 10}.

7

We apply the two algorithms from x0 = [2π/3, π]
⊤

, setting

d = 10 for COP and n = 300 for STOP. Figure 8 shows

the solutions obtained when the complete returned sequences

are applied, that is, when d′ = 10 and respectively α = 1. It

is interesting to see the evolution of the planning complexity

along the trajectory. This is shown in COP by the changing

computation number n of expansions required to reach the

desired sequence lengths, where the practical effects of The-

orem 2(b) are seen; and in STOP by the lengths produced,

illustrating Theorem 3(b). Complexity is generally smaller

in states closer to the equilibrium (fewer expansions/longer

sequences), although the evolution is not always monotonic.

STOP especially requires only three controller executions and

transmissions, thanks to a very long last sequence.

0 0.2 0.4 0.6 0.8 1

0

1

2

α
 [

ra
d

]

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

α
’
[r

a
d

/s
]

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

u
 [

V
]

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

r
[−

]

t [s]

0 0.2 0.4 0.6 0.8 1
10

0

10
2

10
4

n

t [s]

0 0.2 0.4 0.6 0.8 1
0

100

200

d

t [s]

Fig. 8. Comparison between COP and STOP when applying complete
sequences. The top graphs are the controlled trajectories, with COP in gray
and STOP in black. The bottom two graphs show, at every controller execution
instant: for COP, the computation n spent; and for STOP: the length d of the
sequences found. The horizontal coordinates of the points in these graphs are
also the transmission times.

To investigate the effect of applying shorter sequences,

we vary for COP d′ = 1, 2, . . . , 10 and for STOP α =
0.1, 0.2, . . . , 1; the returns obtained are shown in Figure 9.

The suboptimality of each return obeys the upper bounds of

Theorem 2(a) for COP and Theorem 3(a) for STOP; e.g., the

COP bound is 0.910/(1−0.9) ≈ 3.49. Although the loss from

Theorem 4 is unavoidable in general, in this problem shorter

sequences are indeed better, e.g. STOP gains significantly

more return when α is below 0.5.

0 2 4 6 8 10
9.0665

9.067

9.0675

d’

re
tu

rn

0 0.2 0.4 0.6 0.8 1

9

9.02

9.04

9.06

α

re
tu

rn

Fig. 9. Returns obtained by COP (top) and STOP (bottom) as the length of
the applied subsequence varies.

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

α
 [

ra
d

]

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

α
’
[r

a
d

/s
]

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

u
 [

V
]

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

r
[−

]

t [s]

Fig. 10. Performance with a noisy system (COP in gray and STOP in black).

Finally, the resilience of the deterministic-case algorithms

to random disturbances is empirically evaluated, by adding

a Gaussian disturbance to the discrete-time transitions (3).

The disturbance is zero-mean and has covariance matrix

diag(0.01, 0.01). COP and STOP employ the original de-

terministic model during planning. Representative trajectories

are shown in Figure 10, illustrating that the algorithms work

reasonably despite the rather large disturbance amplitudes. In

addition to these results, in the remainder of the paper we

provide a detailed analysis of stochastic extensions of COP

and STOP for a class of discrete uncertainty.

IV. STOCHASTIC CASE: BACKGROUND

In the second part of the paper, we provide methods that

allow a class of stochastic uncertainties.

A. Control problem and optimistic planning algorithm

In the stochastic case, the dynamics change to [3]:

xk+1 ∼ f̃(xk, uk, ·) (5)

8

where the transition probability function f̃ provides for each

pair (x, u) the probability distribution f̃(x, u, x′) over next

states x′. The reward function is extended to also allow

a dependence on the next state: rk+1 = ρ̃(xk, uk, xk+1).
We still require discrete actions and bounded rewards, as

in Assumption 1. Moreover, we focus on uncertainties that

can be modeled by a finite number of outcomes with known

probabilities.

Assumption 2: For any pair (x, u), the number of next states

reachable with nonzero probability is at most integer N > 0.

This class of problems disallows continuous uncertainty,

such as the Gaussian disturbance empirically studied in Sec-

tion III-D. Nevertheless, it is highly relevant, including many

discrete-event systems [13, Ch. 7,9] such as Markov jump sys-

tems [16], and with important applications in power systems

[6], fault detection [35], building automation [37], etc., see also

our application to stochastic network delays in Section VI.

This is also the general form of MDPs typically studied in

artificial intelligence [42] and operations research [41], so

the variant of OP for these stochastic systems is called OP-

MDP [9]. Of course, f̃ may also be the discretization of

an originally continuous distribution, a procedure related to

scenario generation in stochastic programming [30].

Before stating the optimal control objective, some prepara-

tory steps are necessary. Like OPD, OP-MDP works at the

current system state, conventionally denoted x0. It explores

iteratively an infinite tree that represents all possible stochastic

evolutions of the system starting from x0. Denote a state node

by s, labeled by an actual state x. The planning tree T∞,

of which Figure 11 only shows a few top nodes, is defined

recursively as follows. First, the root node s0 is labeled by

the current state x0, and then each node s is expanded by

adding, for any state x′ for which f̃(x, u, x′) > 0 for some u,

a new child node s′ labeled by x′. So each node has at most

NM children, corresponding to all possible states reachable

by applying all possible actions. Note that Figure 11 explicitly

includes also the action nodes.

x
1

1

x0

x
2

1

u
2

0

f(x , ,x)0 1

2
u

u

1

1
0

0r(x , ,x)0 1

2

f(x , ,x)0 1

1
u

u

1

1
0

0r(x , ,x)0 1

1

~ ~

~~
u

1

0

d 0=

d = 2

d = 1

Fig. 11. Illustration of OP-MDP tree for N = M = 2. The squares are
state nodes labeled by states x, and the actions u are explicitly included as
circle nodes. Transition arcs to next states are labeled by probabilities f̃ and
rewards ρ̃. Superscripts index the possible actions and state outcomes, while
subscripts are depths, which only increase with the state node levels. The
thick subtree highlights a tree policy.

The open-loop action sequences from OPD would be sub-

optimal in the stochastic case, since they cannot react to the

realization of the random transitions. Instead, a closed-loop

local solution concept called a tree policy is needed. At depth

d, this tree policy is an assignment of actions to all state

outcomes under the previous action choices, thereby selecting

only some nodes of T∞:

T0 = {s0} , and for any d ≥ 0: hd : Td → U,

Td+1 = {s′ ∈ T∞|s
′ is a child of s along action hd(s)}

where hd assigns actions as desired. Then, the overall selected

tree is Th∞
=

⋃

d≥0 Td, and the policy itself is h∞ : T∞ → U ,

h∞(s) = hd(s)(s) where d(s) gives the depth of s.

The objective is then to find, locally at x0, a policy h∞

maximizing the expected return:

V h∞(x0) = Eh∞

{

∞
∑

k=0

γkrk+1

}

(6)

where the expectation is taken over all trajectories in Th∞
.

Finally, denote the optimal value V ∗(x0) = suph∞
V h∞(x0).

OP-MDP works of course with finite tree policies, denoted

simply by h and exemplified in Figure 11. These policies must

correspond to well-defined subtrees Th at the top of T∞, so

that any node is either fully expanded or not at all. The leaves

of Th are denoted by Lh. We will treat policies h and their

corresponding trees Th interchangeably. Similarly to OPD,

define three values:

ℓx(h) =
∑

s∈Lh

P(s) R(s)

bx(h) =
∑

s∈Lh

P(s) [R(s) +
γd(s)

1− γ
]

vx(h) =
∑

s∈Lh

P(s) [R(s) + γd(s)V ∗(x(s))]

(7)

where R(s) is the discounted return accumulated along the

path from the root to s, and P(s) is the probability of

reaching leaf s, equal to the product of the individual transition

probabilities along the path. So, ℓx(h) is the expected partial

return accumulated by h, and is a lower bound on the expected

returns of all complete, infinite policies h∞ starting with h;

bx(h) is an upper bound on these expected returns; and vx(h)
is the expected return when continuing optimally below h. It

is important to note that bx(h) = ℓx(h) +
∑

s∈Lh
P(s) γd(s)

1−γ .

We denote the sum in this expression by diam(h), called the

diameter of h; and c(s) = P(s) γd(s)

1−γ , the contribution of node

s to the diameter. Since the lower and upper bounds on the

values of policies starting with h are separated by diam(h),
this diameter is an uncertainty on vx(h), and c(s) quantifies

the contribution of s to this uncertainty.

OP-MDP builds a subtree T of T∞ by refining at each

iteration an optimistic policy that maximizes bx; and at the

end, it returns a policy maximizing ℓx. Thus the approach is

similar to OPD, with the major difference that now a policy

has multiple leaf nodes so a choice between them must be

made. This is resolved by selecting for expansion a node with

maximal contribution to the diameter. Algorithm 4 summarizes

the approach. The algorithm can stop either after n node

expansions or after reaching a predefined diameter for the

optimistic policy δ. Value δ has a dual meaning: diameter

and near-optimality, see the upcoming guarantees. Note that

expanding a node takes up to N times more simulations than

in the deterministic case.

9

Algorithm 4 Optimistic planning for MDPs

Input: state x, and budget n or desired diameter δ
1: initialize tree: T ← {root}, i = 0
2: h† ← initial empty policy, δ̃ ← 1

1−γ
3: repeat

4: expand node s† ∈ arg maxs∈L
h†

c(s)

5: find new optimistic policy h† ∈ arg maxh∈T bx(h)
6: δ̃ ← min{δ̃,diam(h†)}, i← i + 1
7: until i = n or diam(h†) ≤ δ
8: if input was n, then δ ← δ̃, else n = i end if

Output: h∗ ∈ arg maxh∈T ℓx(h), δ, n

B. Theoretical guarantees

While in OPD only one sequence ud was refined at a

given iteration, in OP-MDP expanding a single node refines all

policies that reach it with a positive probability. To handle this

global effect, a new complexity measure called near-optimality

exponent β(x) is required [9]. This exponent is related to other

measures of complexity for stochastic optimization [8], [32],

which however do not take global refinement into account, and

β(x) serves that purpose. To formalize β(x), define the largest

diameter of any (finite) tree policy to which the contribution

of s is the greatest: δ̄(s) = suph∈H(s) diam(h), H(s) =
{h | s ∈ Lh, c(s) = maxs′∈Lh

c(s′)}. This characterizes the

global impact of node s. Then, define the set of nodes that

have large impact on near-optimal policies:

Sε(x) =
{

s ∈ T∞
∣

∣ δ̄(s) ≥ ε,

and ∃h∞ ∋ s s.t. V ∗(x)− V h∞(x) ≤ δ̄(s)
}

(8)

where we have made explicit the dependence of Sε on the

current, root state x. Finally, the near-optimality exponent is

defined as the smallest number β(x) so that for small2 ε
|Sε(x)| = Õ(ε−β(x)). This measures the complexity of the

optimal control problem at x.

Similarly to the deterministic case, a policy h is ε-optimal

if V ∗(x) − vx(h) ≤ ε, and define ε(x) = V ∗(x) − ℓx(h∗),
immediately meaning that h∗ is ε(x)-optimal. The following

results are a consequence of the analysis of OP-MDP in [9],

[39], and are stated so as to emphasize the role of the diameter.

Theorem 5: Let x ∈ X . When OP-MDP is called at x:

(i) The policy h∗ satisfies diam(h∗) ≤ δ and ε(x) ≤ δ,

with δ the diameter returned.

(ii) When OP-MDP is called with small near-optimality (di-

ameter) δ: • If β(x) > 0 it will require n(x) = Õ(δ−β)
expansions. • If β(x) = 0, n(x) = O((log 1/δ)b(x))
with b(x) > 0 a constant.

(iii) When OP-MDP is called with large n: • If β(x) > 0 it

will obtain diameter δ(x) = Õ(n−1/β(x)). • If β(x) =
0, δ(x) = exp[−(n/a(x))1/b(x)], where a(x), b(x) > 0
are constants. �

When β(x) is smaller, the problem is simpler. The sim-

plest problem, for β(x) = 0, can e.g. be obtained with a

2f(t) = Õ(g(t)) for small (or large) t when ∃a, b, t0 > 0 so that f(t) ≤
a(log g(t))bg(t) ∀t ≤ t0 (or ∀t ≥ t0). The logarithmic term asymptotically
becomes negligible compared to g(t).

deterministic system (N = 1) having a single policy with

rewards of 1; this reduces to OPD with κ(x) = 1. In

this case, the results say that computation scales logarithmi-

cally with desired diameter/near-optimality δ – or, conversely,

δ shrinks exponentially with n. More generally, when the

problem is deterministic, the generalized development from

this section reduces to the deterministic case, by taking

β(x) = log(κ(x))/ log(1/γ) and δ = γd

1−γ . The most difficult

stochastic problem is for β(x) = log(NM)/ log(1/γ), when

all rewards in the tree are equal and the probabilities are

uniform, making the solutions impossible to differentiate and

requiring a uniform exploration of the tree.

V. OP-MDP FOR STOCHASTIC NETWORKED CONTROL

SYSTEMS

A. Setting

The main idea in applying OP-MDP to uncertain NCS

is similar to the deterministic case: the network is used

only sporadically to measure the state, a new tree policy is

computed based on this measurement, and this policy is then

sent via the network to the system, where it is locally applied.

However, using tree policies instead of action sequences leads

to several key new elements.

First, the architecture must now include two controllers. A

high-level controller sits beyond the network and implements

OP-MDP, see Figure 12. This controller is assumed to be

computationally powerful. Instead of the buffer from Figure 2,

a second, local controller is introduced, which is directly

connected to the system but is computationally much simpler

and does not perform any optimization. The local controller

applies the tree policy in closed loop, starting from the root

state xk. At each step, it applies the action the policy indicates,

measures the resulting realization of the next state, compares

it to all the children states of the applied action, and moves

the pointer in the tree to the matching child. This local loop

only costs O(N) computation, to compare with the N children

states. It is executed until reaching a leaf state, at which point

the local controller signals that the higher-level loop must be

closed via the network. The memory required by the local

controller to store the tree policy varies up to O(n), since it

is at worst proportional to the size of the entire OP-MDP tree

developed.

network

System

OP-MDP

Tree-based
local controller

Fig. 12. NCS architecture in the stochastic case.

The second novelty is that the sequence actually applied

has a random length, which must be probabilistically charac-

terized. To this end, we define the effective length of a policy

h, the value d so that:

γd

1− γ
= Es∈Lh

{

γd(s)

1− γ

}

= diam(h) (9)

Note that d is different from the expected value of the length.

10

Finally, it will also be interesting to apply shorter subpoli-

cies so as to close the loop more often, e.g. to reduce the

size of data packets transmitted and the memory required at

the local controller. Formally, from a policy with diameter

δ, one can obtain subpolicies with larger diameters δ′; this

is equivalent to changing the effective length from the initial

d = log δ(1−γ)
log γ to the smaller d′ = log δ′(1−γ)

log γ . Our analysis

is largely independent on the actual procedure to find the

subpolicy, but Algorithm 5 shows one possibility. The diameter

of the output policy h′ will be close to, and smaller than, δ′.

Algorithm 5 Tree policy truncation

Input: Th, desired diameter δ′

1: repeat starting from Th′ = {root}
2: add to Th′ all children of s† ∈ arg maxs∈Lh′ ,s/∈Lh

c(s)
3: until diam(Th′) ≤ δ′

Output: Th′

B. Algorithms

There are two ways to adapt Algorithm 4 for NCS. A

counterpart to COP is obtained by setting at every transmission

a desired near-optimality δ, which is equivalent to setting a

diameter and, through (9), an effective length d. Either the full

policy, or a subpolicy with diameter δ′ is sent via the network,

and the local controller takes over. The larger δ′ corresponds

to a smaller effective length d′, but the actual length of the

applied sequence is random and may be different from d′, so

this scheme is no longer clock-triggered. It is more accurately

called Diameter-triggered OP for Stochastic systems (DOPS),

and shown in Algorithm 6.

Algorithm 6 DOPS

Input: initial state x0, target diam. δ, subpolicy diam. δ′

1: loop

2: measure current state xk

3: apply OP-MDP(xk, δ), obtaining policy h
4: truncate h to δ′ (e.g. with Algorithm 5), obtaining h′

5: send h′ to plant

6: wait until policy exhausted

7: end loop

The second alternative is to call OP-MDP as usual, with

a fixed computation budget n, but then apply either the full

policy or a subpolicy with a larger diameter. The length of the

applied sequence depends stochastically on the complexity at

the current state, via the diameter, see (9). We have therefore

obtained Self-Triggerred OP for Stochastic systems, STOPS,

see Algorithm 7. Parameter α ∈ (0, 1] controls the truncation,

and is chosen to give an α-times smaller effective depth of the

subpolicy, leading to the diameter formula on line 4.

C. Analysis

We begin by analyzing DOPS. An algorithm is called ε-

optimal if in closed-loop it generates an infinite policy h∞

satisfying V ∗(x0)− V h∞(x0) ≤ ε.

Theorem 6: Take any δ > 0 and δ′ < δ. (a) DOPS is δ-

optimal if the full policies are applied, and δ
1−δ′(1−γ) -optimal

Algorithm 7 STOPS

Input: initial state x0, budget n, diameter fraction α
1: loop

2: measure current state xk

3: apply OP-MDP(xk, n), obtaining policy h
4: truncate h to diameter

[diam(h)(1−γ)]α

1−γ , obtaining h′

5: send h′ to plant

6: wait until policy exhausted

7: end loop

if subpolicies are applied. (b) For small δ, at every state x
where it runs planning, DOPS requires: • n(x) = Õ(δ−β(x))
expansions if β(x) > 0; • n(x) = O((log 1/δ)b(x)) expan-

sions if β(x) = 0, where b(x) is a constant. �

Proof: The computation bounds follow directly from

Theorem 4, (iii). From part (i), V ∗(x0)− ℓx0
(h0) ≤ δ, where

h0 is the policy found at initial state x0. Since ℓx0
(h0) is a

lower-bound on the value of any policy after h0, fully applying

h0 followed by any actions maintains the bound.

The case of subpolicies is more involved. Instead of apply-

ing h0, a subpolicy h′
0 is used, and upon reaching any leaf

s′ ∈ L′
0 of h′

0, OP-MDP is applied again to find a new policy

h1(s
′); see Figure 13 for a graphical illustration. For now

consider that the full new policy is applied, and denote by

h1 the policy resulting from joining h′
0 with the new policies

h1(s
′) at all s′. Then:

V ∗(x0)− vx0
(h1) =

= V ∗(x0)−
∑

s′∈L′
0

P(s′)
[

R(s′) + γd(s′)vx(s′)(h1(s
′))

]

= V ∗(x0)−
∑

s′∈L′
0

P(s′)
[

R(s′) + γd(s′)V ∗(x(s′))
]

+
∑

s′∈L′
0

P(s′) γd(s′)
[

V ∗(x(s′))− vx(s′)(h1(s
′))

]

≤ δ +
∑

s′∈L′
0

P(s′) γd(s′)δ = δ + γd′

δ (10)

where d′ is the effective length corresponding to δ′. The first

equality follows from the definition of v-values, the second is

obtained by adding and subtracting the optimal values at s′,
and the third step is due to the near-optimality of OP-MDP at

both the root state and any s′.

T0

. . .h’0 h s1(’)

T1(’)s

h0

L’0

h0(’)ss’

Fig. 13. Using OP-MDP with subpolicies. The full trees developed are also
shown in gray outline. Note the new planning tree and policy from s′ are
shown displaced from their root s′ for readability.

Now, if every h1(s
′) is truncated at δ′, a similar inequality

holds for each such truncated policy; and combining this with

11

the derivation above, the bound δ + γd′

δ + γ2d′

δ is obtained

for the overall policy. Continuing recursively like this, in the

limit we obtain δ
1−γd′ = δ

1−δ′(1−γ) .

Thus, computation depends on planning complexity, as

expressed by the near-optimality exponent β(x). The desired δ
bounds the closed-loop near-optimality when full policies are

applied. For subpolicies, an extra denominator 1 − γd′

arises

from the proof. Nevertheless, a strong intuition confirmed in

experiments indicates this extra term is conservative and δ will

always bound the closed-loop performance. A similar property

can actually be proven for STOPS, as described next.

Theorem 7: Take any large n and any α ∈ (0, 1]. (a) The

near-optimality of STOPS is: • Õ(n
− 1

β(x0)) if β(x0) > 1,

and • O(exp[−(n/a(x0))
1/b(x0)]) if β(x0) = 0. (b) at

every state x where it is called, STOPS returns a policy of

diameter: • δ(x) = Õ(n− 1
β(x)) if β(x) > 1, and • δ(x) =

O(exp[−(n/a(x))1/b(x)]) if β(x) = 0. Here, a and b are

problem- and state-specific constants. �

Proof: The second part follows from Theorem 5(iii).

When h0 is fully applied (α = 1), the first part holds as in

Theorem 6.

Otherwise, examine the case when the first policy h0 is

truncated at diameter δ′ > diam(h0); and consider again the

composite policy h1, see again Figure 13. Its ℓ-value satisfies:

ℓx0
(h1) =

∑

s′∈L′
0

P(s′)
[

R(s′) + γd(s′)ℓx(s′)(h1(s
′))

]

≥
∑

s′∈L′
0

P(s′)
[

R(s′) + γd(s′)ℓx(s′)(h0(s
′))

]

= ℓx0
(h0)

where h0(s
′) is the part of h0 below s′, which gets replaced by

h1(s
′). The crucial relation is ℓx(s′)(h1(s

′)) ≥ ℓx(s′)(h0(s
′)),

which holds because OP-MDP expands nodes in the same

order in the subtree of s′. Since its budget is still n, when

called at s′ it will expand at least all the nodes on h0(s
′) and

in the end choose a policy with at least as large an ℓ-value.

We can get a similar inequality for any h1(s
′) that is truncated

instead of being fully applied, and recursively repeating this

we get in the limit that V h∞(x0) ≥ ℓx0
(h0), where h∞ is

the complete policy that would be applied in closed loop.

Hence, this policy is near-optimal at least to the extent of

h0, completing the proof.

Like in the deterministic-case STOP, near-optimality de-

pends only on the planning complexity at the initial state x0.

The diameter shrinks like a power of n when β(x) > 0, or

faster, exponentially, when β(x) = 0, which implies a growth

rate similar to that in STOP of the effective length d and thus

of d′. More precisely, d is of the order log n
β(x) , or (n/a(x))1/b(x)

when β(x) = 0.

The closed-loop bound is independent of the subpolicy

diameter in STOPS, and has a dependence on this diameter that

is not believed to be very informative in DOPS, as explained

after Theorem 6. So a more direct characterization of the

values of subpolicies will be useful.

Theorem 8: Consider that OP-MDP returns a policy h0 with

diameter δ, which is truncated to δ′ < δ, and replanning is run

from any leaf of the subpolicy, obtaining a maximal diameter

δ1. Then, the value of the composite policy h1 satisfies:

vx0
(h1) ≥ vx0

(h0)− δ′δ1(1− γ)

Furthermore, if the budget or target diameter are held constant

and Algorithm 5 is used to find the subpolicy, then the bound

is tight in a worst-case sense. �

Proof: The inequality is shown similarly to (10):

vx0
(h1) =

∑

s′∈L′
0

P(s′)
[

R(s′) + γd(s′)vx(s′)(h1(s
′))

]

=
∑

s′∈L′
0

P(s′)
[

R(s′) + γd(s′)V ∗(x(s′))
]

−
∑

s′∈L′
0

P(s′) γd(s′)
[

V ∗(x(s′))− vx(s′)(h1(s
′))

]

≥ vx0
(h′

0)−
∑

s′∈L′
0

P(s′) γd(s′)δ1

≥ vx0
(h0)− γd′

δ1 = vx0
(h0)− δ′δ1(1− γ)

with the difference that h1(s
′) can stop at a different diameter

δ1, and exploiting the fact that the v-value of a policy can only

increase by truncation, since optimal choices are made earlier,

at s′. Here, d′ is again the effective depth for δ′.

h s1(’)h’0
s’ h0(’)s rewards=1

d’+dd’
d’+d

d

Fig. 14. Worst-case example in the stochastic case. Notation and styles are
reused from Figure 13.

To construct a worst-case example, the deterministic exam-

ple of Figure 5 is extended by changing all action sequences

into policy trees with uniform probabilities, f̃(x, u, x′) =

1/N . Choose some length d and take δ1 = δ = γd

1−γ , or, if n

is used, n =
∑d−1

i=0 (NM)i, so as to fully expand up to depth

d in a uniform tree; and take δ′ = γd′

1−γ , d′ < d. Construct

the problem in Figure 14, where all rewards are 0 except on

certain subtrees at depth d′ + d, as explained below. Due to

the 0 rewards and uniform probabilities, at x0 as well as any

s′ the algorithm will expand a uniform tree up to depth d,

and since all policies have ℓ-value 0, it will arbitrarily choose

the output policies. Then, below the composite policy h1 we

assign zero rewards, so that its overall value is 0. For each s′,
we pick the parts h0(s

′) of arbitrary policy h0 to be different

from h1(s
′), and finally we assign rewards of 1 at all nodes

below depth d′ + d downstream of h0(s
′). This is done for

all s′, and so replanning at any leaf node of h0 will surely

discover the rewards of 1, leading to an overall closed-loop

value of γd′+d

1−γ . The example is complete.

D. Simulation results for the inverted pendulum swingup

DOPS and STOPS are applied to swing up and balance an

underactuated inverted pendulum. The states are θ (angle) and

12

θ̇, while the input voltage u is limited to [−3, 3] V, insufficient

to push up the pendulum in one go; instead, the pendulum

needs to be swung back and forth to gather energy. Rewards

are quadratic (4) with Q = diag[1, 0.001] and R = 0.01, and

γ = 0.95. The pendulum is a relevant problem due to its highly

nonlinear solution and large depths to which the swings must

be planned. Actions are discretized into {−3, 0, 3}, and an

unreliable actuator is modeled that only applies the intended

action u with probability 0.7, and with probability 0.3 it

applies only 0.6u (when the intended action is 0 it stays 0).

This leads to a discrete uncertainty with N = 2 values.

We apply DOPS with d = 8 and STOPS with n = 2000,

from the pointing down state. We state results in terms of

effective lengths, to make them easy to compare with the

deterministic case. Figure 15 shows the returns for varying

subpolicy lengths, illustrating the bounds of Theorems 6(a)

and 7(a). Shorter subpolicies are usually better.

2 4 6 8
17

18

19

d’

re
tu

rn

0.2 0.4 0.6 0.8 1
17

18

19

α

re
tu

rn

Fig. 15. Returns obtained by DOPS (top) and STOPS (bottom). The shaded
area is the 95% confidence interval on the mean, from 10 experiments.

Figure 16 shows a trajectory for STOPS with α = 0.4. The

swingup is achieved, and in the bottom graph we notice that

states close to the start, where the swingup must be planned,

are difficult and lead to short policies/large diameters, as

characterized by Theorem 7(b). The graph also illustrates the

practical effects of the probabilistic relationship (9) between

effective length d′ and the (random) length of the actually

applied sequence. The two are usually different, but d′ may

still be useful as a qualitative prediction of the length.

Before moving on, it is important to discuss some compu-

tational implications of discretization, in the deterministic as

well as the stochastic case. When the actions are originally

continuous, their discretization will usually contain a number

of points M exponential in the action dimension, and similarly

for the uncertainty with N discretized points. Recalling that

each node expansion has complexity M or NM , OP suffers

in this sense from the curse of dimensionality. This is the

price to pay for the high generality of the method, recalling

that it works for nonlinear, nonsmooth dynamics and general

rewards. A crucial point of OP analysis is that the number of

expansions does not directly depend on NM – but only on the

complexity measures κ(x) or β(x). Finally, in some problems

the actions or uncertainties might be natively discrete, coming

e.g. from discrete phenomena in the network. We detail such

a case in the next section.

0 1 2 3 4
−5

0

5

α
 [
ra

d
]

0 1 2 3 4
−10

0

10

20

α
’
[r

a
d
/s

]

0 1 2 3 4
−5

0

5

u
 [
V

]

0 1 2 3 4

0.7
0.8
0.9

r
[−

]

t [s]

0 1 2 3 4
0

10

20

t [s]

d

Fig. 16. Top: a controlled trajectory. Bottom: effective length of full policies
(�), of subpolicies (◦), and real length of the applied sequences (×).

VI. RANDOM DELAYS IN THE CONTROL CHANNEL

This section shows how our stochastic framework in Fig-

ure 12 can be applied to deal with a type of network effects:

random delays in the transmission channel for control packets.

Packets must arrive in the order they were sent, and the

measurement channel should still be delay-free to accurately

signal when OP must be rerun. Receipt of the control packets

does not have to be acknowledged, since the local tree-based

controller has all the information needed to react to the delay,

as explained below. The delays must be a multiple of the

sampling time, and are modeled by a probability distribution

p : {0, 1, 2, . . . } → [0, 1], where p(j) is the probability that

the packet is received with a delay of j steps. The delay is at

most J steps, and any delay up to J has nonzero probability:

Assumption 3: The distribution p is known and time-

invariant. Further, ∃J, p(j) = 0 ∀j > J and p(j) > 0 ∀j ≤ J .

This is related to the setting of [48], which also applies

predictive control under random delays; while that approach

additionally allows delays on the measurement channel, it

is limited to linear dynamics. In our setting, the controlled

system is taken deterministic with dynamics f and rewards

ρ, and we aim to maximize the expected return under the

random delays. This return is usually smaller than the original

optimal value under the deterministic dynamics. We consider

STOPS with fully applied tree policies, and characterize its

performance relative to the maximal expected return, as well

as the transmission intervals.

By convention, let k = 0 be the current step where the

control is sent, and denote u− the previously applied action,

which will be maintained as long as the new control packet

13

does not arrive. A stochastic MDP is defined with augmented

state x̃ = [x⊤, j]
⊤
∈ X × {−1, 0, . . . , J}, x̃0 = [x⊤

0 , 0]
⊤

,

where j = −1 means the packet has been received, while

j ≥ 0 means a delay of j has occurred so far. The state

evolves and rewards are assigned according to the previous

action, and j increases, until the packet arrives, modeled by

the following MDP dynamics and rewards:

x̃k+1 =

[f⊤(xk, u−), jk + 1]
⊤

w.p. 1− q(jk) if jk < J

[f⊤(xk, uk),−1]
⊤

w.p. q(jk) if jk < J

[f⊤(xk, uk),−1]
⊤

w.p. 1 if jk ∈ {−1, J}

rk+1 =

{

ρ(xk, u−) if jk+1 ≥ 0

ρ(xk, uk) if jk+1 = −1

where q(j) is the probability that the packet is received at

j < J given that it was not received so far, q(j) = p(j)/[1−
∑j−1

i=0 p(i)], 0 ≤ j < J . The MDP defined in this way is

denoted m0 and depends on the state and default action at

the current step. The entire OP-MDP analysis in Section IV-B

carries through by replacing the dependence on the current

state by a dependence on the entire MDP m0 in quantities

V, v, ℓ, b, Sε, and β, e.g. the optimal value at x̃0 is V ∗
m0

(x̃0).
This dependence is marked in subsequent notation.

1-step delay, P(s) = (1)p

d J=2=

x0

no delay, P(s) = (0)p

2 p-step delay, P(s) = (2)

Fig. 17. A tree policy for random delays. Only the state nodes are shown.

Actions are applied by near-optimally reacting to the de-

lay realization, using a tree policy with the structure from

Figure 17. At depth 0, either the packet is received and the

intended action is applied, leading to the white node at depth

1, or a delay occurs (gray node at depth 1). The branch

corresponding to the first case is deterministic, while the

second, delayed branch faces two similar outcomes; and so

on until depth J , taken 2 in the figure. From J , all branches

are deterministic. Of course, all nodes on the j-step delay

branch have probability p(j). The local controller determines

the delay j with which the packet was received, by comparing

the packet timestamp with the current time, and applies the

sequence on branch j starting at depth j, thereby reacting

in closed loop to the delay. The overall STOPS protocol is

obtained by applying OP-MDP to the augmented MDP m at

each step where it is called. At each such step, a tree policy

h is found and sent using the architecture of Figure 12.

While the results of Section V could be applied off-the-

shelf, the restriction to STOPS with full policies allows us to

show a stronger, interesting property: that STOPS behaves in a

certain sense like the deterministic STOP and so the effects of

the delay are mild. Since the MDP m changes with the step

where OP-MDP is applied, the optimal value also changes,

and the notion of near-optimality must be reconsidered. We

therefore define near-optimality with respect to the initial MDP

m0: an algorithm is ε-optimal if its overall policy h∞ it

applies in closed loop satisfies V ∗
m0

(x̃0) − V h∞
m0

(x̃0) ≤ ε.

The upcoming Theorem 9 bounds this as well as the smallest

transmission interval.

Consider the entire OP-MDP tree T∞, which can be imag-

ined as in Figure 17 with an additional branching into M
discrete actions at every node, see also Figure 11. Consider

also the subtree T (x(sJ)) having as root some node sJ at

depth J on T∞. The notation is justified by the fact that

this subtree is, in fact, the deterministic OPD tree for state

x(sJ), since downstream of the random delay the problem

is the time-invariant, deterministic one. Recall also branching

factor κ(x(sJ)) of the near-optimal subtree T ∗(x(sJ)), see

Section II-C. The performance of STOPS will then be dictated

by κ∗(m0) := maxsJ
κ(x(sJ)), i.e. the most difficult deter-

ministic node encountered after any delay, which is intuitive

since STOPS must take into account all such states. To prove

this, the analysis of OP-MDP will be specialized to the

particular type of MDP for random delays. The key insight

is that asymptotically, for large n, the initial, stochastic tree is

fully expanded, and only the behavior along the deterministic

branches is important; κ∗(m0) dominates this behavior.

Theorem 9: In the delayed case, for large n and α = 1:

(a) STOPS near-optimality is • O(n
−

log 1/γ
log κ∗(m0)) if κ∗(m0) >

1, and • O(γcn) if κ∗(m0) = 1. (b) When called for any

x and previous action u−, which together give an MDP m,

STOPS applies a sequence of length: • d(m) = Ω(log n
log κ∗(m))

if κ∗(m) > 1, and • d(m) = Ω(n) if κ∗(m) = 1. �

Proof: We start with proving near-optimality (a), as

follows. Take a generic MDP m0. To achieve near-optimality

ε the algorithm only expands nodes in Sε(m0), see (8),

so budget n ≤ |Sε(m0)|. The main part is bounding the

cardinality |Sε(m0)| as a function of ε. Then the direct

relationship between n and near-optimality follows.

Quantity |Sε(m0)| will be bound by excluding nodes from

Sε(m0), and then counting all the remaining nodes. Con-

sider the set Sd(m0) =
{

s ∈ T∞
∣

∣ d(s) ≤ d,∃h∞ ∋
s s.t. V ∗

m0
(x̃0) − V h∞

m0
(x̃0) ≤ δ̄(s)

}

. We characterize the

impact δ̄(s) of node s – see again Section V-C for the

definition of impact – in the asymptotic regime, along the

deterministic branches. All tree policies have the structure

in Figure 17. The contribution of a node sj
d, at depth d

on branch j, is c(sj
d) = p(j) γd

1−γ . The maximal-diameter

policy on which c(sj
d) is largest is obtained by picking for

any j′ 6= j a node s′ with c(s′) ≤ c(sj
d). Therefore,

δ̄(sj
d) ≤ Jc(sj

d) = Jp(j) γd

1−γ ,∀d, j.

Define for convenience vm0
(s) := suph∞∋s V h∞

m0
(x̃0).

Choose a node sj
d, at depth e = d − J on the deterministic

subtree T (x(sJ)) of some sJ , that does not belong to the near-

optimal subtree T ∗(x(sJ)). Denote by ue the deterministic

action sequence of sj
d on T (x(sJ)). Then, V ∗(x(sJ)) −

vx(sJ)(ue) > γe

1−γ , where V ∗ and vx(sJ) are values in the

14

underlying deterministic problem, not in m0. Therefore:

V ∗
m0

(x̃0)− vm0
(sj

d) ≥ vm0
(sJ)− vm0

(sj
d)

≥ p(j)γJ [V ∗(x(sJ))− vx(sJ)(ue)] > p(j)
γd

1− γ

Take another node sj
d+d′ below sj

d; we know δ̄(sj
d+d′) ≤

Jp(j)γd+d′

1−γ . By choosing d′ =
⌈

log J
log 1/γ

⌉

, we have Jγd′

≤ 1

and δ̄(sj
d+d′) ≤ p(j) γd

1−γ < V ∗
m0

(x̃0) − vm0
(sj

d). Since

vm0
(sj

d) ≥ vm0
(sj

d+d′) and vm0
(sj

d+d′) is in turn larger than

the value of any policy h∞ containing sj
d+d′ , there exists

no such policy so that the condition V ∗
m0

(x̃0) − V h∞
m0

(x̃0) ≤

δ̄(sj
d+d′) in the definition of Sd+d′(m0) can be satisfied, and

so sj
d+d′ /∈ Sd+d′(m0).

Henceforth, ca denotes for any a an appropriately chosen

constant whose value is not important to the asymptotic

analysis. To bound |Sd(m0)| for any large d, we count nodes

that cannot be excluded as above, up to d. In particular,

applying the exclusion rule with a suboptimal node s which

is a direct child of a near-optimal one, we find that only

nodes up to d′ + 1 levels below s must be counted. At

depth e = d − J in T (x(sJ)), the count of such nodes is

denoted µe(sJ) and upper bounded as follows: µe(sJ) ≤
∑d′+1

i=0 c1κ(x(sJ))e−iKi ≤ c2κ(x(sJ))e, when κ(x(sJ)) >

1, and µe(sJ) ≤
∑d′+1

i=0 c3K
i = c4 when κ(x(sJ)) = 1.

Thus, |Sd(m0)| accumulates µe(sJ) for all (finitely many)

sJ and any e up to d − J , in addition to a constant number

c5 of nodes in the overall tree up to J : |Sd(m0)| ≤ c5 +
∑

sJ

∑d−J
e=0 µe(sJ). With some calculation, we obtain:

|Sd(m0)| ≤

{

c6κ
∗(m0)

d if κ∗(m0) > 1

c7d if κ∗(m0) = 1
(11)

Returning now to Sε(m0), note that any nodes up to d in

this set belong to Sd(m0). Then, take D the smallest depth so

that Jp̄ γD

1−γ ≤ ε, where p̄ = maxj p(j). For any s at d > D,

δ̄(s) ≤ ε and s /∈ Sε(m0), so that Sε(m0) ⊆ SD(m0). From

the condition on D, D ≤ log Jp̄/[εγ(1−γ)]
log 1/γ , and replacing this

in |SD(m0)| from (11) we have:

|Sε(m0)| ≤

{

c8ε
−

log κ∗(m0)

log 1/γ if κ∗(m0) > 1

c9
log 1/ε
log 1/γ if κ∗(m0) = 1

(12)

According to (8), this means β(m0) = log κ∗(m0)
log 1/γ and at

this point we could directly apply the guarantees of OP-MDP

with this value of β(m0). However, we want stronger STOP-

like conditions, without the logarithmic term in Õ. Hence, we

continue by recalling a crucial property of OP-MDP [9]: that it

only expands nodes in Sδ(m0) where δ is the smallest impact

among expanded nodes, see Algorithm 4.
Since only nodes in Sδ(m0) are expanded, we have n ≤

|Sδ(m0)|, and by using (12) for ε = δ:

δ ≤

{

c10n
−

log 1/γ
log κ∗(m0) if κ∗(m0) > 1

γn/c9 if κ∗(m0) = 1
(13)

By Theorem 5(i), ε(x̃0) = V ∗
m0

(x̃0) − ℓm0
(h) ≤ δ, where h

is the initial policy. STOPS will work with different MDPs m

at the leaves of h, and so on recursively, thus generating h∞.

But since h is fully applied, V h∞
m0

(x̃0) is at least as large as

ℓm0
(h), so that V ∗

m0
(x̃0)− V h∞

m0
(x̃0) ≤ δ and the first part of

Theorem 9 is proven.

For the length guarantee (b), the shallowest branch of the

tree policy h gives the minimal sequence length. For any leaf

node s at d, we have c(s) = p(j) γd

1−γ ≤ diam(h) ≤ δ. By

using (13) and solving for d, we have:

d ≥

{

c11
log n

log κ∗(m0)
if κ∗(m0) > 1

c12n if κ∗(m0) = 1

where the constants are chosen to cover for all values p(j).
Since the derivation holds at any m where STOPS is executed,

the proof is complete.

VII. CONCLUSIONS

We have developed a novel approach for the optimal control

of general nonlinear NCS, allowing for either time-triggered

or self-triggered strategies. The strategies are directly imple-

mentable and have guaranteed near-optimality, which is placed

in a tight relationship with the transmission intervals and the

computation invested. A class of stochastic uncertainties was

accommodated, and it was shown how this class can model

random network delays in the control channel. These results

were obtained by adapting optimistic planning (OP) algorithms

from artificial intelligence.

Analyzing the stability of the resulting control is the main

priority in future work. This will build on a general stability re-

sult for discounted optimal control, which we already achieved

in [40]. Stability of COP and STOP further requires dealing

with errors coming from quantization and sub-optimality.

Dealing with other network effects, such as packet losses, is

another interesting direction. Overall, we believe that such

syncretic combinations of artificial intelligence and control

ideas have a strong future.

REFERENCES

[1] D. Antunes, W. Heemels, and P. Tabuada, “Dynamic programming
formulation of periodic event-triggered control: Performance guarantees
and co-design,” in IEEE Conference on Decision and Control, Hawai:

U.S.A., 2012, pp. 7212–7217.
[2] A. Bemporad, “Predictive control of teleoperated constrained systems

with unbounded communication delays,” in Proceedings 37th Confer-

ence on Decision and Control, Tampa, Florida, USA, 16–18 December
1998, pp. 2133–2138.

[3] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Athena Scientific, 2007, vol. 2.

[4] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The

Discrete Time Case. Academic Press, 1978.
[5] S. Bhatnagar and S. Kumar, “A simultaneous perturbation stochastic

approximation-based actor-critic algorithm for markov decision pro-
cesses,” IEEE Transactions on Automatic Control, vol. 49, no. 4, pp.
592–598, 2004.

[6] R. Billinton and R. N. Allan, Reliability Evaluation of Power Systems.
Springer, 1996.

[7] M. Branicky, S. Phillips, and W. Zhang, “Scheduling and feedback co-
design for networked control systems,” in CDC (IEEE Conference on

Decision and Control) Las Vegas, U.S.A., 2002, pp. 1211–1217.
[8] S. Bubeck and R. Munos, “Open loop optimistic planning,” in Proceed-

ings 23rd Annual Conference on Learning Theory (COLT-10), Haifa,
Israel, 27–29 June 2010, pp. 477–489.

15

[9] L. Buşoniu and R. Munos, “Optimistic planning for Markov decision
processes,” in Proceedings 15th International Conference on Artificial

Intelligence and Statistics (AISTATS-12), ser. JMLR Workshop and
Conference Proceedings, vol. 22, La Palma, Canary Islands, Spain, 21–
23 April 2012, pp. 182–189.

[10] L. Buşoniu, R. Munos, B. De Schutter, and R. Babuška, “Optimistic
planning for sparsely stochastic systems,” in Proceedings 2011 IEEE

International Symposium on Adaptive Dynamic Programming and Re-

inforcement Learning (ADPRL-11), Paris, France, 11–15 April 2011, pp.
48–55.

[11] L. Buşoniu, R. Postoyan, and J. Daafouz, “Near-optimal strategies
for nonlinear networked control systems using optimistic planning,” in
Proceedings American Control Conference 2013 (ACC-13), Washington,
DC, 17–19 June 2013.

[12] N. Cardoso De Castro, C. Canudas De Wit, and F. Garin, “Energy-
aware wireless networked control using radio-mode management,” in
Proceedings 2012 American Control Conference (ACC-2012), Montréal,
Canada, 27–29 June 2012, pp. 2836–2841.

[13] C. G. Cassandras and S. Lafortune, Introduction to Discrete-Event

Systems. Kluwer, 1999.
[14] A. Chaillet and A. Bicchi, “Delay compensation in packet-switching

networked controlled systems,” in CDC (IEEE Conference on Decision

and Control), Cancun, Mexico, 2008, pp. 3620–3625.
[15] H. S. Chang, “A policy improvement method in constrained stochas-

tic dynamic programming,” IEEE Transactions on Automatic Control,
vol. 51, no. 9, pp. 1523–1526, 2006.

[16] O. Costa, M. Fragoso, and R. Marques, Discrete-Time Markov Jump

Linear Systems. Springer, 2005.
[17] C. De Persis and P. Frasca, “Robust self-triggered coordination with

ternary controllers,” IEEE Transactions on Automatic Control, vol. 58,
no. 12, pp. 3024–3038, 2013.

[18] B. De Schutter and B. De Moor, “Optimal traffic light control for a single
intersection,” European Journal of Control, vol. 4, no. 3, pp. 260–276,
1998.

[19] A. Eqtami, D. Dimarogonas, and K. Kyriakopoulos, “Novel event-
triggered strategies for model predictive controllers,” in IEEE Confer-

ence on Decision and Control and European Control Conference (CDC-

ECC), Orlando: U.S.A., 2011, pp. 3392–3397.
[20] E. Feinberg and A. Shwartz, “Constrained dynamic programming with

two discount factors: applications and an algorithm,” IEEE Transactions

on Automatic Control, vol. 44, no. 3, pp. 628–631, 1999.
[21] J. Filar, V. Gaitsgory, and A. Haurie, “Control of singularly perturbed

hybrid stochastic systems,” IEEE Transactions on Automatic Control,
vol. 46, no. 2, pp. 179–190, 2001.

[22] S. Gelly, Y. Wang, R. Munos, and O. Teytaud, “Modification of UCT
with patterns in Monte-Carlo Go,” INRIA, Tech. Rep., 2006.

[23] T. Gommans, D. Antunes, T. Donkers, P. Tabuada, and M. Heemels,
“Self-triggered linear quadratic control,” Automatica, vol. 50, no. 4, pp.
1279–1287, 2014.

[24] W. Heemels, K. Johansson, and P. Tabuada, “An introduction to event-
triggered and self-triggered control,” in IEEE Conference on Decision

and Control, 2012, 2012, pp. 3270–3285.
[25] E. Henriksson, D. Quevedo, H. Sandberg, and K. Johansson, “Self-

triggered model predictive control for network scheduling and control,”
in IFAC Symposium on Advanced Control of Chemical Processes,

Singapore, 2012, pp. 432–438.
[26] J. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results

in networked control systems,” IEEE Special Issue on Technology of

Networked Control Systems, vol. 95, no. 1, pp. 138–162, 2007.
[27] J. Hopkins, W.E., “Exponential linear quadratic optimal control with

discounting,” Automatic Control, IEEE Transactions on, vol. 39, no. 1,
pp. 175–178, 1994.

[28] J.-F. Hren and R. Munos, “Optimistic planning of deterministic systems,”
in Proceedings 8th European Workshop on Reinforcement Learning

(EWRL-08), Villeneuve d’Ascq, France, 30 June – 3 July 2008, pp.
151–164.

[29] K. Katsikopoulos and S. Engelbrecht, “Markov decision processes
with delays and asynchronous cost collection,” IEEE Transactions on

Automatic Control, vol. 48, no. 4, pp. 568–574, 2003.
[30] M. Kaut and S. W. Wallace, “Evaluation of scenario-generation methods

for stochastic programming,” Pacific Journal of Optimization, vol. 3,
no. 2, pp. 257–271, 2007.

[31] B. Kiumarsi, F. L. Lewis, H. Modares, A. Karimpour, and M.-B.
Naghibi-Sistani, “Reinforcement q-learning for optimal tracking control
of linear discrete-time systems with unknown dynamics,” Automatica,
2014, appeared online.

[32] R. Kleinberg, A. Slivkins, and E. Upfal, “Multi-armed bandits in metric
spaces,” in Proceedings 40th Annual ACM Symposium on Theory of

Computing (STOC-08), Victoria, Canada, 17–20 May 2008, pp. 681–
690.

[33] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” in
Proceedings 17th European Conference on Machine Learning (ECML-

06), Berlin, Germany, 18–22 September 2006, pp. 282–293.
[34] J. Lasserre, “Detecting planning horizons in deterministic infinite hori-

zon optimal control,” IEEE Transactions on Automatic Control, vol. 31,
no. 1, pp. 70–72, 1986.

[35] M. Mahmoud, J. Jiang, and Y. Zhang, “Stochastic stability analysis of
fault-tolerant control systems in the presence of noise,” IEEE Transac-

tion on Automatic Control, vol. 46, no. 11, pp. 1810–1815, 2001.
[36] C. Mansley, A. Weinstein, and M. L. Littman, “Sample-based plan-

ning for continuous action Markov decision processes,” in Proceedings

21st International Conference on Automated Planning and Scheduling,
Freiburg, Germany, 11–16 June 2011, pp. 335–338.

[37] P.-J. Meyer, A. Girard, and E. Witrant, “Controllability and invariance
of monotone systems for robust ventilation automation in buildings,” in
Proceedings 52nd IEEE Conference on Decision and Control (CDC-13),
Firenze, Italy, 10–13 December 2013, pp. 1289–1294.

[38] L. Montestruque and P. Antsaklis, “State and output feedback control
in model-based networked control systems,” in Proceedings 41st IEEE

Conference on Decision and Control (CDC-2002), vol. 2, Las Vegas,
US, 10–13 December 2002, pp. 1620–1625.

[39] R. Munos, “The optimistic principle applied to games, optimization and
planning: Towards foundations of Monte-Carlo tree search,” Foundations

and Trends in Machine Learning, vol. 7, no. 1, pp. 1–130, 2014.
[40] R. Postoyan, L. Buşoniu, D. Nešić, and J. Daafouz, “Stability of infinite-

horizon optimal control with discounted cost,” in 53nd Conference on

Decision and Control (CDC-14), Los Angeles, USA, 15–17 December
2014.

[41] W. B. Powell, Approximate Dynamic Programming: Solving the Curses

of Dimensionality, 2nd ed. Wiley, 2012.
[42] M. L. Puterman, Markov Decision Processes—Discrete Stochastic Dy-

namic Programming. Wiley, 1994.
[43] D. E. Quevedo and D. Nešić, “Robust stability of packetized predictive

control of nonlinear systems with disturbances and Markovian packet
losses,” Automatica, vol. 48, no. 8, pp. 1803–1811, 2012.

[44] D. E. Quevedo, J. Østergaard, and D. Nešić, “Packetized predictive
control of stochastic systems over bit-rate limited channels with packet
loss,” IEEE Transactions on Automatic Control, vol. 56, no. 12, pp.
2854–2868, 2011.

[45] D. Quevedo and V. Gupta, “Sequence-based anytime control,” IEEE

Transactions on Automatic Control, vol. 58, no. 2, pp. 377–390, 2013.
[46] Cs. Szepesvári, Algorithms for Reinforcement Learning. Morgan &

Claypool Publishers, 2010.
[47] H. van Ekeren, R. Negenborn, P. van Overloop, and B. De Schutter,

“Time-instant optimization for hybrid model predictive control of the
Rhine-Meuse delta.” Journal of Hydroinformatics, vol. 15, no. 2, pp.
271–292, 2013.

[48] R. Yang, G.-P. Liu, P. Shi, C. Thomas, and M. Basin, “Predictive output
feedback control for networked control systems,” IEEE Transactions on

Industrial Electronics, vol. 61, no. 1, pp. 512–520, 2014.

Lucian Buşoniu received the M.Sc. degree (vale-
dictorian) from the Technical University of Cluj-
Napoca, Romania, in 2003 and the Ph.D. degree
(cum laude) from the Delft University of Technol-
ogy, the Netherlands, in 2009. He is an associate
professor with the Department of Automation at
the Technical University of Cluj-Napoca, and has
previously held research positions in the Netherlands
and France. His research interests include planning
for nonlinear optimal control, reinforcement learning
and approximate dynamic programming, multiagent

systems, and robotics. He received the 2009 Andrew P. Sage Award for the
best paper in the IEEE Transactions on Systems, Man, and Cybernetics.

16

Romain Postoyan received the M.Sc. degree in
Electrical and Control Engineering from ENSEEIHT
(France) in 2005. He obtained the M.Sc. by Research
in Control Theory & Application from Coven-
try University (United Kingdom) in 2006 and the
Ph.D. in Control Theory from Université Paris-
Sud (France) in 2009. In 2010, he was a research
assistant at the University of Melbourne (Australia).
Since 2011, he is a CNRS researcher at the Centre
de Recherche en Automatique de Nancy (France).

Jamal Daafouz received the Ph.D. degree in auto-
matic control from the INSA Toulouse, in 1997. In
1998, he joined the Institut National Polytechnique
de Lorraine (INPL) as an assistant professor and
the Research Centre of Automatic Control (CRAN
UMR 7039 CNRS). In 2005, he got the French
Habilitation degree from INPL and he was engaged
as a professor of automatic control at Université
de Lorraine in Nancy, France. From 2010 to 2015,
he was an IUF (Institut Universitaire de France)
junior member. He serves as an Associate Editor

at the Conference Editorial Board of the IEEE Control Systems Society
and for the journals: Automatica, IEEE Transactions on Automatic Control
and European Journal of Control. His research interests include hybrid and
switched systems, networked control systems, robust control and applications
in secure communications, metallurgy and energy management.

