
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

Abstract—The objective of this paper is to develop a 
method for assisting users to push Power-Assisted 
Wheelchairs (PAW) in such a way that the electrical energy 
consumption over a predefined distance-to-go is optimal, 
while at the same time bringing users to a desired fatigue 
level. This assistive task is formulated as an optimal control 
problem and solved in [17] by the model-free approach 
Gradient Partially Observable Markov Decision Processes. 
To increase the data efficiency of the model-free 
framework, we propose here to use Policy learning by 
Weighting Exploration with the Returns (PoWER) with 25 
controller parameters. Moreover, we provide a new near-
optimality analysis of the finite-horizon fuzzy Q-iteration, 
which derives a model-based baseline solution to verify 
numerically the near-optimality of the presented model-free 
approaches. Simulation results show that the PoWER 
algorithm with the new parameterization converges to a 
near-optimal solution within 200 trials and possesses the 
adaptability to cope with changes of the human fatigue 
dynamics. Finally, 24 experimental trials are carried out on 
the PAW system, with fatigue feedback provided by the 
user via a joystick. The performance tends to increase 
gradually after learning. The results obtained demonstrate 
the effectiveness and the feasibility of PoWER in our 
application. 

Index Terms—Assistive control, disabled persons, 
power-assisted wheelchairs, reinforcement learning.  

I. INTRODUCTION 

ower-assisted wheelchairs (PAWs) are becoming one of the 
most used tools for disabled persons in ageing societies [1]. 

One important characteristic of PAWs is that users can perform 
a tunable and suitable level of physical activities which could 
not be achieved with traditional manual wheelchairs or fully 
electric wheelchairs. Moreover, PAWs are driven by a hybrid 
energy source consisting of human metabolic power and 
electrical power from a battery. Thanks to this hybrid energy 

storage structure of PAWs, more degrees of freedom are 
available to design an optimal energy management strategy. 

In this context, the major novelty of this paper is a 
reinforcement learning control strategy for PAWs that 
optimizes electrical energy while also taking into account 
human fatigue. We formulate the assistive task as a constrained 
optimal control problem: the assistive algorithm is expected to 
produce a desired fatigue variation of users while using minimal 
electrical energy for a given driving task. With the initial-to-
final fatigue constraint, a (near-) optimal assistance is found so 
that users contribute efficiently their metabolic energy.  

In contrast to hybrid electrical bicycles [2]-[4], little work is 
done in the PAW literature to address energy optimization with 
human fatigue considerations. In [5], a regenerative braking 
control is applied to PAWs for safe downhill driving and 
electrical energy savings. In [6], the control system is based on 
a fuzzy algorithm and the fuzzy rules are designed by an expert, 
aiming to increase the energy efficiency. However, human 
fatigue has not been taken into account to design PAWs in the 
literature. The adaptability of optimal solutions with respect to 
different human fatigue dynamics is not analyzed. An adaptable 
solution would be vital for PAW designs, since different users 
may have different fatigue dynamics. Consequently, the 
existing model-based approaches would not be appropriate for 
our PAW energy management problem. 

The present study relies on Patent WO2015173094 [7] and 
designs assistive strategies for paraplegic wheelchair users. 
Specifically, we propose to use model-free reinforcement 
learning methods to calculate the optimal assistance while 
respecting a desired fatigue variation over a prescribed driving 
task. The optimal control method of choice is the direct policy 
search Policy Gradient (PG) [8]-[9]. Compared with policy 
iteration [10] and temporal difference learning [11], PG directly 
provides continuous actions without computing the value 
function [12], which renders it more practical in robotics [13]. 
Another crucial advantage of PG is its online model-free nature: 
it treats the wheelchair dynamics, human fatigue dynamics, and 
human controller as a “black box”, and the algorithm only needs 
state measurements and rewards (negative costs) in order to 
learn the solution. This is important in practice, since the true 
human dynamics will never be available.  

Before moving on to practical implementation, the learning 
methodology must be evaluated in simulation with 
mathematical models which can roughly represent the human-
wheelchair behaviors. We select the human state of fatigue 
(���) model from [14], the human controller model [15] and the 

wheelchair model from [16]  and use these models to verify 
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numerically the optimality of the solution found by PG. The 
baseline solution is given by a finite-horizon extension of the 
fuzzy Q-iteration in [18]. The two PG methods used in this 
paper are Gradient of a Partially Observable Markov Decision 
Processes (GPOMDP) [19]-[20] and Policy learning by 
Weighting Exploration with the Returns (PoWER) [21].  

Compared to the previous work in [17], here we aim to 
improve considerably the data efficiency of the approach, by 
employing a different learning algorithm, PoWER, and by 
simplifying the parametrization of the controller. The idea is to 
find a near-optimal policy in much fewer trials, so as make the 
method better in practice. We also derive a new near-optimality 
analysis of fuzzy Q-iteration, which is not included in [18]. 
Moreover, the learning method is expected to be adaptable to 
either different users or changes in the same user. To verify this 
possibility, a novel investigation is performed in this paper. We 
modify the human fatigue dynamics to represent three 
categories of users: physically strong, normal and weak. 
Simulations are conducted to confirm if the proposed learning 
method is able to provide a solution that adapts to these cases. 
We also study the different convergence speeds to the baseline 
solution when using the parameters learned with the nominal 
fatigue model versus resetting them to zero defaults. 

Our objective with the simulations described above is to 
evaluate, as a proof of concept, the effectiveness of the learning 
methodology in the PAW domain. To this end, we select the 
coarse models [14]-[16]. While these models do generate 
qualitatively and physically meaningful interconnected human-
wheelchair behaviors [17], and thus are useful as an initial 
validation step, they are not required to be very accurate. 
Indeed, the main strength of the learning algorithm is that it 
does not depend on the details of the particular model or notion 
of fatigue used, instead working for a wide range of unknown 
dynamics. Having performed these simulations, our next step is 
to conduct an experiment with the real PAW, where the fatigue 
model is replaced by a joystick, using which users return a 
discrete subjective evaluation of their ��� to the learning 

algorithm (too fatigued, OK, and insufficiently 
fatigued/desiring more exercise). This experiment serves to 
verify whether the learning methodology works in the real 
application, which by necessity is quite different from the 
simulation model. 

This paper is organized as follows. In Section II, we present 
the human-wheelchair model and the problem formulation. 
Section III gives background on the optimal control methods 
applied. In Section IV, we apply PoWER and GPOMDP for 
PAW design and the model-free performance is compared to 
the model-based baseline. In Section V, we investigate the 
adaptability of PoWER to changes in the human fatigue 
dynamics. Section 0 presents the experimental results. Section 
0I gives our conclusion and discusses direction for future work. 

List of symbols 
�, �� Continuous time and sampling time 

� Discrete-time sample 
�� Human applied force  
�� Maximum available force 

��, � Human applied toque and motor torque 
����, ������� Desired distance-to-go and desired final state of fatigue 

�, � State vector and control input 
� Discrete-time state transition function 

� Trajectories of states and control actions 
� Return 

�, � Terminal reward and stage reward 
� Finite time horizon 

�∗, ��  Optimal Q-value and approximate �-value 
� Error between �∗ and ��  

�∗ Deterministic optimal control policy 
�� Model-based approximated optimal policy  
�� Model-free deterministic policy 
��  Model-free stochastic policy 
� Triangular membership function 

�̅� , ��� Centre of MF �� and discrete action � 

� Model-based control parameters 
� Model-free control parameters 

II. MODELLING AND PROBLEM STATEMENT 

Next, we introduce a human-wheelchair model which is used 
to validate in simulation the proposed model-free PG 
approaches. The proposed human model represents only 
coarsely human behaviors in practice, since human muscle 
fatigue would be difficult to precisely model or quantitatively 
measure [14]. However, the model is sufficiently representative 
to validate numerically the learning approach.  

A. Human Fatigue Model 

Owing to the repetitive nature of wheelchair pushing and the 
absence of a dynamical human fatigue model dedicated to 
PAWs  in the literature, we apply the muscle fatigue model from 
[14] used for a cycling application. The chosen single-state 
human fatigue model takes into account the fatigue effect and 
the recovery effect which usually happen for long-term sports 
such as wheelchair pushing [25]. Considering these two effects, 
an intelligent assistance can be devised to save electrical 
energy. Although significant differences exist between the 
bicycle problems and PAW problems, this model is still 
qualitatively meaningful and therefore useful for numerical 
validation. 

The dynamics of the maximum available force �� provided 
by human are: 
 

�̇�(�) = − �ℛ +
ℱ��(�)

���
� ��(�) + ���� 

(1)

where 0 ≤ ��(�) ≤ ��(�) ≤ ���, the variable t is time, ��� is 
the Maximum Voluntary Contraction force at rest, and ��(�) is 
the actual human applied force. Moreover, ℱ and ℛ represent 
the fatigue coefficient and the recovery coefficients 
respectively. 

When �� = ��, �� decreases at its maximum rate. This leads 
(1) to an equilibrium point where the fatigue rate is identical to 
the recovery rate, �̇� = 0, and the positive solution is: 
 

��� =
ℛ���

2ℱ
�−1 + �1 +

4ℱ

ℛ
� 

(2)

This positive solution ��� is also the minimum threshold that 

��(�) can achieve. Thus ��� ≤ �� ≤ ���. Using the first-order 

Euler’s method, a discrete-time version of (1) is: 
 

�����
= �1 − �� �ℛ +

ℱ���

���
�����

+ ��ℛ��� 
(3)

with the sampling time ��. Then, the state of fatigue ��� in 

discrete time is defined as:  
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����
=

��� − ���

��� − ���
 

(4)

The ��� is therefore the normalized value of �� and is used as 

an indicator to quantify the human fatigue. 

B. Wheelchair Dynamics and Human Controller 

The wheelchair is described by the following one-
dimensional dynamics: 
 

�
����

����
� = � �

��

��
� + ���� + ���

�� 
(5)

where the system matrix � ∈ ℝ �× � and the input matrix � ∈
ℝ �× �. The control input is the motor torque � and � is the wheel 
radius of hand-rims. The variables � and � are the wheelchair 
position and velocity, respectively. Note that the human torque 
satisfies ���

= ���
�. 

We assume that the human force �� depends on the fatigue 
state ���, the electrical motor torque �, and the wheelchair 

velocity � (all perceived by the user): 
 ���

= �(��, ����
, ��) (6)

Here, we extend the fatigue-motivation model [15] to describe 
roughly how the fatigue and the assistance affect human 
motivation. An accurate model of the motivation would require 
significant further study, but that is outside the scope of this 
paper, since it would not contribute significantly to our initial 
objective of validating the learning methodology with a coarse 
model. Human fatigue decreases the motivation and the 
perceived help increases it. The normalized help is: 
 �� = ��/���� ∈ [0,1] (7)
where ���� is the maximum motor torque. The equilibrium 
point between the perceived fatigue and the perceived help is: 
 

�� =
�� − ����

�� + ����

∈ [−1,1] 
(8)

The motivation ℳ  is:  
 

ℳ � = �
�(1 + ��)              if   �� < 0

� + (1 − �)��             if   �� ≥ 0       
 

(9)

where ℳ ∈ [0,1] and the parameter � ∈ [0,1]. The user 
motivation in (9) affects proportionally the desired wheelchair 
velocity �� of the user, so that a higher motivation leads to a 
higher desired velocity, i.e. �� =  ����ℳ  (where ���� is the 
maximum velocity of the wheelchair). Finally, the human force 
is modeled as a proportional velocity-tracking controller: 
 ���

= ��(����ℳ � − ��) (10)

Moreover, the human force should be saturated by ��, and only 
positive human force is taken into account: 
 ���

= sat(0, ���
, ���

) (11)

C. Optimal Control Problem Statement 

For simplicity, we consider the electric energy consumption 
to be a quadratic function of � via the finite horizon criterion: 
 1

2
� ��

�

� ��

���

 
(12)

Over a predefined time horizon, the optimal solution 
minimizing (12) without considering any constraint 
corresponds to a manual propulsion strategy in which all the 
kinetic energy comes from the human. To avoid this trivial 
solution, we impose the following fatigue constraint. Knowing 

the initial ����
, the final ����

 should reach a desired level 

�������: 

 ����
= ������� (13) 

while minimizing (12) over the considered driving profile. The 
wheelchair should also travel a required distance. Knowing the 
initial ��, we impose the following distance constraint: 
 �� = ���� (14) 

including the terminal distance ��  and the desired terminal 
����. Rather than solving explicitly a constrained problem, we 

represent the constraints (13)-(14) with a terminal reward, 
leading to the following optimal control problem: 

 

max
��

� = −[�� ��]�
��� − �����

�

�����
− ��������

��−
1

2
� ��

�

� ��

���

 

(15)

with ��, �� the reward weights and � the finite time horizon. 
Note that in classical control theory the return � in (15) is often 
replaced by a positive cost function and must be minimized. 
Here, we use Artificial Intelligence techniques, so we follow 
the maximization convention in this field. 

III. OPTIMAL CONTROL ALGORITHM  

This section first introduces the finite-horizon version of 
Fuzzy Q-iteration [18] and a corresponding explicit bound on 
its suboptimality. This algorithm provides the baseline to which 
we will compare the existing model-free algorithms, GPOMDP 
[9] and PoWER [21]. To fully understand the model-free 
design, these algorithms are presented in Section B. 

The system considered is described in general by the 
deterministic state transition function: 
 ���� = �(��, ��) (16)

where � and � are state vector and control input respectively. 
The general return R to optimize over a finite-horizon is: 
 

�(�) = �� �(�� ) + � ���(��, ��)

� ��

���

 
(17)

where � = (��, ��, ��, ��, … �� ��, �� ��, �� ) is a trajectory of 
the system, �(�� ) is the terminal reward, and �(��, ��) is the 
stage reward. A discount factor  � ∈ (0, 1] may be used; in the 
finite-horizon case, � is often taken equal to 1. The optimization 
problem (15) is a specific case of the general form (17). The 
following algorithms are presented for the general case defined 
in (16)-(17). 

A. Finite-Horizon Fuzzy Q-Iteration 

Fuzzy Q-iteration [18] is originally given in the infinite-
horizon case, and the horizon-K solution can be obtained simply 
by iterating the algorithm K times. However, the entire time-
varying solution must be maintained, and special care must be 
taken to properly handle the terminal reward. So for clarity we 
restate the entire algorithm, adapting it to the finite-horizon 
case.  

The idea is to approximate the optimal time-varying solution, 
which can be expressed using �-functions of the state in the 
state-space �  and action in the action space �. These �-
functions are generated backwards in time: 

�� ��
∗ (�� ��, �� ��) = �(�� ��, �� ��) + ����(�� ��, �� ��)� 
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 ��

∗(��, ��) = �(��, ��)
+ � max

��� �

����
∗ (�(��, ��), ����),  

for � = � − 2, …  , 0 and ∀� ∈ �, ∀� ∈ � 

(18)

The advantage of using �-functions is that the optimal control 
can then be computed relatively easily, using the following 
time-varying state-feedback: 
 �∗(��, �) = argmax

��

��
∗(��, ��) (19)

Since the system is nonlinear and the states and actions are 
continuous, in general it is impossible to compute the exact 
solution above. We will therefore represent �∗ with an 
approximator that relies on an interpolation over the state space, 
and on a discretization of the action space. First, to handle the 
action, the approximate �-value of the pair (�, �) is replaced by 
that of the pair (�, �� ), where ��  has the closest Euclidean 
distance to � in a discrete subset of actions �� = {���|��� ∈

�, � = 1, … , �� }. To handle the state, a grid of discrete values 
�� = {�̅�|�̅� ∈ �, �= 1, … , ��} in the state space is chosen for 
the centers of triangular membership functions �(�) =
[��(�), … , �� �

(�)] [18]. A parameter vector � ⊂ ℝ � �× � � × �  is 

defined, and the approximate �-function is linearly interpolated 
by overlapping the membership functions � on the grid of the 
centers ��  as follows: 
 

���(�, �) = � ��(�)��,�,�

� �

���

 

(20)

with ��argmin
��

�� − �����
�
. Thus, each individual parameter 

corresponds to a combination between a point i on the state 
interpolation grids, a discrete action j, and a time stage k. The 
approximated optimal solution �� can be obtained as follows: 

Algorithm 1 gives the complete version of Fuzzy Q-iteration. 
To understand it, note that the main update in line 6 is 
equivalent to the following approximate variant of the iterative 
update in (18): 
 �����̅�, ���� = �(�̅�, ���) + � max

���,�� �

�������(�̅�, ���), ���,���� 

This is because, firstly, due to the properties of triangular basis 
functions the parameter ��,�,� is equal to the approximate �-

value �����̅�, ����. Secondly, the maximization over the 

discretized actions is done by enumeration over j; and thirdly, 
the summation is just the approximate �-value at the next step, 
via (20). Line 2 simply sets the parameters at step K-1 via the 
initialization in (18). 

For clarity, the algorithm shows in line 8 how the near-
optimal control is computed via maximization over the discrete 
actions. In practice, this maximization is done on-demand, only 
for the states encountered while controlling the system, so an 
explicit function �� of the continuous state does not have to be 
stored. Instead, only the parameters are stored. 

In contrast to the algorithm itself, the infinite-horizon 
analysis does not easily extend to the finite-horizon case, e.g. 
we need to account for the possibility that � = 1. Thus, the 
upcoming analysis is a novel contribution of the present paper. 
Due to space limitations, we give it here without proofs, which 
can be found in the supplementary material at: 
http://busoniu.net/files/papers/tie_suppl.pdf. 

The error �� between ��� and ��
∗  for time � is defined as: 

 �� = ����(�, �) − ��
∗(�, �)� (22)

The state resolution step �� is defined as the largest distance 
between any two neighboring triangular MF cores, i.e. 
 �� = max

�∈{�,… � �}
min

 ��∈{�,… � � },��� �
‖�̅� − �̅��‖� (23)

The action resolution step ��  is defined similarly for the 
discrete actions. Moreover, for every �, only 2� ����� (where 
������ is the number of states) triangular membership functions 
are activated. Let the infinite norm ‖��‖� =

max
�∈{�,… � �},�∈{�,… � � }

���,�,�� denotes the largest parameter 

magnitude at sample �. Note that triangular membership 
functions are Lipschitz-continuous, so there exists a Lipschitz 
constant �� > 0 such that ‖��(�) − ��(��)‖� ≤ �� �

(‖� −

��‖�) ∀�, �� ∈ �, ∀�. Moreover, we say that a function of the 
state and action, such as the deterministic state transition 
function �, is Lipschitz continuous with constant �� > 0 if  

‖�(�, �) − �(��, ��)‖� ≤ ��(‖� − ��‖� + ‖� − ��‖�) 

∀�, �� ∈ �, �, �� ∈ �. 
Assumption 1: We assume that the reward function �, the 

terminal function �, and the deterministic state transition 
function � are Lipschitz-continuous with the Lipschitz 
constants ��, ��, and �� respectively. 

We present an explicit bound on the near-optimality of the 
�-function as a function of the grid resolutions. This bound has 
the nice feature that it converges to zero when the grid becomes 
infinitely dense, which is a consistency property of the 
algorithm. 

Proposition 1: Under Assumption 1, there exists an error 
bound ��̅ so that ��, i.e. the approximate �-function obtained by 
(22) satisfies �� ≤  ��̅ and lim

��,�� → �
 ��̅ = 0 for � = � − 1, … ,0. 

Depending on the discount factor � and the Lipschitz constant 
��, the bound is given as follows: 

1) When ��� < 1, ��̅ = (� − �)��(�� + �� ) +

∑ ��������
�

+ ��

�����
�

����

�����
�(�� + �� )� ��

��� . 

2) When ��� = 1, ��̅ = (� − �)(�� + ��)(�� + �� ) +
(� ��)(� ����)

�
��(�� + �� ). 

3) When ��� > 1, ��̅ = (� − �)��(�� + �� ) +

2� ���������� (�� + �� ) ∑ ‖�� ����‖�
� ��
��� . 

 ��(�, �) = ��� with � = argmax
��

∑ ��(�)��,��,�
� �
��� . (21)

Algorithm 1. Finite-horizon fuzzy �-iteration 
1 ��� �= 1, … , ��, � = 1, … , ��  do 

2   ��,�,� �� = ���̅�, ���� + �� ����̅�, �����  

3 end for 
4 for � = � − 2, …  ,0 do 
5     for �= 1, … , ��, � = 1, … , ��  do 

6   ��,�,� = ���̅�, ���� + � max
��

∑ �����(�̅��, ����)���,�,���
� �
����  

7    end for    

8    ��(�, �) = ���,  � = argmax
��

∑ ��(�)��,��,�
� �
���    ∀�, � 

9 end for 

http://busoniu.net/files/papers/tie_suppl.pdf
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B. Policy Gradient Algorithms: GPOMDP and PoWER 

In model-free policy search, exploration is indispensable to 
learn the unknown dynamics. Stochastic policies are needed to 
explore. To this end, we use a parameterized policy with the 
parameters λ. Then, the stochastic policy distribution is 
���(��|��, �). Under this stochastic policy, the probability 
distribution ��(�) over trajectories � can be expressed in the 
following way:  
 

�� (�) = �(��) � ��� (��|��, �)

� ��

���

 
(24)

where �(��) is the initial state distribution. Under trajectories � 
generated by ��� , the expected return is: 
 

��� = � �� (�)�(�)�� 
(25)

The GPOMDP (Gradient of a Partially Observable Markov 
Decision Processes) algorithm [20] updates the control 
parameters � in the steepest ascent direction so that the expected 
return (25) is maximized. We apply this algorithm to estimate 
the gradient �����, which can be obtained from the stage 
rewards �� and the distribution ���. The entire procedure is given 

in Algorithm 2, where Γ is the total trials. In line 3 of Algorithm 
2, for each iteration � we generate �� trajectories using the 
stochastic policy with λ�. Applying the Likelihood Ratio 
Estimator, calculating the gradient �����is transformed to 
calculating ∇�log���(��|��, �) (more details can be found in 
[22], [20]). The stochastic policy distribution ��� is available, so 
that the gradient ����� can be computed. The expected value is 
approximated by Monte Carlo techniques using the �� 
trajectories. The learning rate � has to be tuned manually in 
order for the control parameters λ to converge efficiently. 

To obtain a higher expected return, we may consider a new 
distribution ���(�) over trajectories that might provide a better 
expected return than the previous one i.e. ∫ ���(�)�(�)�� ≥

∫ ��(�)�(�)��. The new expected return ∫ ���(�)�(�)�� with 
parameters λ� is lower-bounded by a quantity ��(λ�) that 
depends on λ. The analytical expression of ��(λ�) can be found 
in [21]. The selection of λ� can be done by maximizing the 
lower bound ��(λ�) to implicitly maximize (25). In [23], the 
authors show that maximizing ��(λ�) guarantees the 
improvement of the expected return. The intuition is that if 
�(��) > �(��), the new λ� will put more probability mass on 
�� than λ does. 

PoWER (Policy learning by Weighting Exploration with the 
Returns) works by maximizing the lower bound ��(λ�). 
Moreover, a deterministic policy is approximated by general 
basis functions �  i.e. ���(��) = λ�� (��, �). To explore, 
Gaussian noise is added directly to the parameter vector λ. 

Using importance sampling, the parameters λ are updated with 
the �� trials which have the highest return among the performed 
trials. The formula to update the parameters is [21]: 
 

λ��� = λ� +
∑ (λ� − λ�)�(��)� �

���

∑ �(��)� �
���

 
(26)

The whole method is given in Algorithm 3. 

IV. DATA-EFFICIENT POLICY GRADIENT LEARNING FOR THE 

ASSISTANCE PROBLEM  

The energy optimization problem has been solved in [17] by 
using a considerable amount of data, which is expensive to 
obtain in practice. In this section, the main purpose is to 
increase the data efficiency. To achieve this goal, we propose 
two ideas. The first one is to use a more efficient PG algorithm, 
namely PoWER. Secondly, as observed in [17], the operating 
region in the state space is concentrated on a few radial basis 
functions (RBFs); therefore, for the remaining RBFs the 
parameters remain constant or have a very small gradient. 
Reducing the parameters to the significant ones will accelerate 
the learning speed. Using Fuzzy Q-iteration as the baseline 
solution, we compare the performance of the two PG algorithms 
(PoWER and GPOMDP) with the controller parameterizations 
(29) and the one in [17]. In addition, we give an analysis of the 
policies obtained to explain how the assistive torques maximize 
the return in (15). 

To represent the problem (15), the terminal reward and the 
stage reward of (17) are defined as follows: 
 

�(�� ) = −[�� ��]�
��� − �����

�

�����
− ��������

�� 

(27)

 
�(��, ��) = −

1

2
��

� 
(28)

where the state vector is �� = ���, ��, ����
�

�

 and the control 

input is the motor torque �� = ��. 
Since the driving task is to travel a predefined distance, 

negative human torque and negative motor torque are 
inefficient in terms of metabolic-electrical energy consumption 
over the driving task. Moreover, due to the actuator limitations, 
the maximum torque that the motor can provide is ����. 
Therefore, the control is bounded: 0 ≤ � ≤ ����. Since the 
distance is monotonic, it acts as a proxy for time, which can be 
implicitly used by the algorithm instead of an explicit time 
variable. Therefore, we can use a time-invariant solution 
���(��) to approximate the optimal time-varying solution in 
(19). We approximate the deterministic part �� of the motor 
torque by the following RBF expansion: 

 ���(��) = ��
�� (��) (29) 

Algorithm 2. GPOMDP 
1 Initialize λ� 
2 ��� �= 0, 1, 2, …  Γ 
3     Generate �� trajectories � of length � using λ� 

4     ����� =
1

��
� �� ���� log������

�
���

�
, ���

�

���

� ��

���

��
�
�

� �

���

 

5     λ��� = λ� + � ∙�����with the learning rate � > 0 
6 ��� ��� 

Algorithm 3. PoWER 
1 Initialize λ� 
2 ��� �= 0, 1, 2, …  Γ 
3     Generate a new trajectory � of length � using λ� 
4     Sort the performed trials decreasingly by return  
5     Select the �� trials with the highest return 

6     Update parameters λ��� = λ� +
∑ (λ� − λ�)�(��)� �

���

∑ �(��)� �
���

 

7 ��� ��� 
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where the RBF � � = exp(−�‖�� − ��‖

�), ����,… ,�  is the center 

vector of the RBFs, � is the total number of RBFs and � is the 
radial parameter. Since the radial parameter � is the same for 
each RBF, all the RBFs have the same shape. PoWER and 
GPOMDP for the Assistance Problem. 

In the rest of the paper, for each variable, a subscript or index 
P (resp. G) stands for PoWER (resp. GPOMDP). 

For PoWER, the general basis functions �  in Algorithm 3 are 
replaced by the RBFs �  in (29). The exploration is carried out 
in the parameter space as previously explained. The zero mean 
Gaussian noise vector �� with the standard deviation �� is 
added to the parameters and renders the action stochastic as 
follows: 
 sat�0, ����, (��

� + ��)�� (��)� (30)

where the stochastic motor torque is saturated between 
0 and ���� and the parameter vector λ�

� is updated by (26). 
Regarding GPOMDP, zero mean Gaussian noise �� is added 

to the executed action and renders the policy (29) stochastic. In 
order to prevent the executed action from violating the action 
saturation limits, the stochastic motor torque is selected with: 

 �������
��

� (��) + ��� (31) 

where ���� is a smooth saturation (the Gaussian error function 
[24] shown at the top of Fig. 1) between [0, ����] such that the 
stochastic action is differentiable with respect to ��

�. When the 
optimal action is close to the borders of the interval [0, ����], 
using the original return (28) without input saturation can lead 
to the divergence of the parameters. To address this problem, a 
penalty function � is added to the stage reward (28) as follows: 
 

�(��, ��) = − �
1

2
��

� + ���(��)� 
(32)

where �� is the constraint penalty weight. The function �, 
shown in Fig. 1 bottom, is defined as follows: 
 

� =

⎩
⎪
⎨

⎪
⎧sin�

� ∙(� − ����)

0.04����

� + 1 0.98���� ≤ � ≤ ����

0 0.02���� ≤ � ≤ 0.98����

sin�
� ∙(−�)

0.04����

� + 1 0 ≤ � ≤ 0.02����

 

(33)

which penalizes the (stochastic) action when it is close to the 
saturation value. The objective of � is to keep the mean value 
of the stochastic actions inside the interval [0, ����].  

Recall that we use a time-invariant policy. Consequently, the 
stochastic action distribution does not depend on the time stage 
�, but on the state ��. According to (31), the distribution 
���

�(��|��) of the stochastic motor torque � is: 
 

���
�(��|��) =

1

� 2���
�

exp�−
�����

��(��) − ��
��

� (��)�
�

2��
� � 

(34)

The derivative of (34) with respect to λ�
� is used to estimate the 

gradient ����� in Algorithm 2 and to update the parameter 
vector λ�

�.  
By tuning the parameters (�, �, �) of the basis functions 

(29), the standard deviation �� and ��, the reward weights 
(��, ��), the learning rate � and the penalty weight ��, we 
have all the conditions to update the parameters λ� or λ�.  

A. Results with PoWER and GPOMDP  

In this section, simulations are carried out to compare the 
proposed methods. The whole set of parameters is shown in 
Table I. The human model parameters are adapted from [14] to 
have a reasonable fatigue and recovery rate, which render the 
optimal more challenging and avoid a trivial optimal solution. 
The control strategy is approximated over the state-space and 
action-space region given in Table I. The configurations and 
learning parameters of the return function, penalty function, 
model-based policy, and model-free policies are shown in Table 
II later. 
For the simulation in Fig. 2, the exploration noise (and the 
learning rate for GPOMDP) are tuned to deliver a good 
performance for each configuration and each algorithm. The 
number in the legend gives the total parameters of the controller 
approximation (29) for each simulation. A mean value along 
with a 95%  confidence interval calculated for 10 independent 
simulations is given (each simulation with 400 trials). Fig. 2 
shows that with the same policy parametrization, PoWER has a 
considerably higher data efficiency than GPOMDP. GPOMDP-
25 and GPOMDP-200 give a similar final performance. 
Considering the mean, 90% of the baseline return is provided 
in around 100 trials by PoWER-25. The same performance is 

Figure 2: Smooth saturation function ���� (above) and penalty function 
�� for ���� = 50� (below) 
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Figure 1: The mean performance and 95% confidence interval on the 
mean value of PoWER with 25 control parameters (PoWER-25), 
PoWER with 200 control parameters (PoWER-200), GPOMDP with 25 
control parameters (GPOMDP-25) and GPOMDP with 200 control 
parameters (GPOMDP-200) 
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given in around 200 trials by PoWER-200. Overall, PoWER-25 
is the best choice among the considered configurations. 

For the next simulations, we focus on the final near-optimal 
behaviours provided by PoWER-25 and GPOMDP-25. To this 
end, 400 trials and 8000 trials are performed to learn the 
parameter vectors λ� and λ�, respectively. The slow learning 
speed of GPOMDP is mainly due to the exploration noise added 
directly to actions at every step. This type of exploration 
strategy can cause a high variance for learning algorithm [21] 
and leads to a poor performance in terms of data-efficiency. As 
shown in Fig. 3, the model-free methods PoWER (red solid 
line) and GPOMDP (blue solid line) are comparable to the 
model-based fuzzy Q-iteration (black dotted line). The final 
return is −82017, −70242, and −69837 for GPOMDP, 

PoWER and fuzzy Q-iteration respectively. Here again, 
PoWER delivers a better solution than GPOMDP in terms of 
final return. 

The simulation was done on an Intel Core i7-6500 CPU @ 
2.50GHz. The average elapsed CPU time to compute a control 
action is 1.0007 ∗ 10��s, 7.6464 ∗ 10��s, 1.4562 ∗ 10��s, 
and 7.5934 ∗ 10��s respectively for PoWER-25, PoWER-200 
GPOMDP-25 and GPOMDP-200. As their elapsed CPU time is 
significantly less than the sampling time of 0.05s, it is possible 
to embed them into a real PAW. 

Remark 2: The RBF grid used for policy approximation has 
only one center on the ��� state for the policy approximation. It 

may appear surprising that the controller works despite this 
limitation. Indeed, we have tested it and it works well for initial 
��� in the interval [0.4, 0.6]. This is because the solutions are 

similar for this range of ���, as confirmed by the baseline fuzzy 

Q-iteration. In additional PG experiments with three centers on 
the ��� state and reduced radius in this dimension, performance 

increased marginally but at the cost of less reliable 
convergence. Another possible reason is that much of the 
optimal control input may be open-loop, and again since the 
distance is monotonic, it acts as a proxy for time. Even if this 
were so, state feedback is nevertheless crucial in practice to 
defend against disturbances, so we choose to apply closed-loop, 
state-feedback policies. 

In the beginning, the motor provides a large assistance and 
the user pushes “hard” to start the wheelchair. After reaching a 
suitable velocity, the user reduces his applied force to recover. 
In the remainder of the task, the motor assistance is reduced 
gradually to minimize the energy consumption while the user 
continues recovering. The assistance provided tries to use as 
little electrical energy as possible and enables the user to reach 
the desired final fatigue state. 

PoWER and GPOMDP have a similar terminal error of 
nearly 0.05 between the final ����

 and the desired final value 

TABLE II 
RETURN FUNCTION, PENALTY FUNCTION, MODEL-BASED POLICY, MODEL-

FREE POLICIES CONFIGURATIONS, AND LEARNING PARAMETERS 

Return function and penalty function configuration 
Reward weight matrix [�� ��] [4000 10�] 
Penalty weight �� 800 

Q-function approximation 
Centers of triangular functions � 
distributed on an equidistant grid 

10 × 10 × 41 over the state-space 

�� = ��, �, ����
�

� 

Number of equidistant discrete 
actions 

15 

Radial basis functions (29) configuration 1 
Radial parameter � 0.5 
Centers of RBFs distributed on an 
equidistant grid 

5 × 5 × 8 

Total number of RBFs � 200 
Radial basis functions (29) configuration 2 

Radial parameter � 0.5 
Centers of RBFs distributed on an 
equidistant grid 

5 × 5 × 1 

Total number of RBFs � 25 
GPOMDP parameters 

Learning rate � 10��  
Standard deviation �� 5 

PoWER parameters 
Importance sampling �� 10  
Standard deviation �� 1 

 
PARAMETERS OF THE CONSIDERED HUMAN-WHEELCHAIR DYNAMICS 

Figure 3: Controlled trajectories provided by Policy Gradient algorithms 
and fuzzy Q-iteration algorithm 

 

TABLE I 
PARAMETERS OF THE CONSIDERED HUMAN-WHEELCHAIR DYNAMICS 

Meaning Notation 
[units] 

Value or domain 

Sampling time �� [s] 0.05 
Human parameters 

Recovery coefficient 
Fatigue coefficient 
MVC 
Fraction of ���� 
Human control gain 

ℛ[s��] 
ℱ [s��] 
��� [N] 

� 
�� 

0.0063 
0.153 
100 
0.5 
30 

Wheelchair parameters 
Wheel radius � [m ] 0.33 
Maximum velocity ���� [rad/s] 7 
System matrix � �

1 0.05
0 0.9406

� 

Input matrix  � �
0

0.0059
� 

Driving schedule configuration 
Finite horizon � 200 
Initial state of fatigue ����

 0.5 

Desired final human fatigue ������� 0.5 

Distance-to-go ���� [rad] 20 

State-space and action-space region 
Distance  � [rad] [0,20] 
Velocity  � [rad/s] [0,7] 
State of fatigue ��� [0.35,0.7] 

Motor torque � [Nm ] [0,50] (���� = 50) 
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�������(compared to 0.02 for fuzzy Q-iteration). This error may 

be reduced by further tuning the parameters. 

V. ADAPTABILITY TO CHANGES IN THE HUMAN FATIGUE 

DYNAMICS 

In this section, we turn our focus towards adaptation to 
human fatigue variability, which is crucial for a personalized 
PAW. In what follows, we investigate only the adaptability of 
PoWER-25 to these changes, since it provided the best results 
in the previous section. The objective of this investigation is to 
confirm the possibility of having a generic solution for different 
human fatigue dynamics. To represent various human fatigue 
dynamics, we change the parameters of (1) as follows: 

ℱ� =
�

�
ℱ;  ℛ� = �ℛ;  ���

� = ���� 

where ℱ,  ℛ, ��� are the nominal parameters used in Section 
IV. A value � > 1 corresponds to a user physically stronger 
than the nominal one, because they get exhausted slower, 
recover faster and have more Maximum Voluntary Contraction 
force. On the contrary, � < 1 corresponds to a physically 
weaker user. Adaptation starts from the parameters found using 
the nominal model. As a baseline, we compare this adaptation 
procedure with simply resetting the parameters to zero values 
when the model changes. The same variance �� of Section IV 
is applied for exploration. 

Both stronger (� = 2) and weaker (� = 1/2) users are 
studied. Fig. 4 shows that PoWER is clearly much more 
efficient, when initialized with the nominal model, being able 
to provide a good return directly and to find a new near-optimal 
solution for the new fatigue dynamics in less than 50 trials.  

In order to verify whether the assistive control can adapt to a 
bigger range of parameter changes, we carry out the same 
comparison for � = 8, 4, 3, 1/3, 1/4, 1/8. Table III gives the 
baseline return for each �, the minimal return for each case and 
the number of trials to converge to 90% of the corresponding 
baseline return for both initializations. The asterisk * represents 
situations where the learning algorithm fails to converge to 90% 
of the baseline return within 400 trials. 

Table III shows that both initializations have similar 
convergence for � = 8. For � = 3, the initialization to zero has 
a faster convergence. This result may be because that the 

initialization to zero is closer to the optimal solution. 
Nevertheless, for all the other �, the initialization with the 
nominal model converges faster. Overall, starting learning with 
the nominal solution can guarantee a higher minimum return. 
Moreover, PoWER with prior knowledge adapts reasonably 
well to human fatigue dynamics changes without tuning again 
the learning parameter �. This study therefore confirms the 
possibility of providing an adaptive solution for different 
human fatigue dynamics. 

VI. REAL-TIME EXPERIMENT 

To demonstrate the effectiveness of the proposed learning 
algorithm, proof-of-concept experiments have been conducted 
on our PAW prototype, which is equipped with two torque 
sensors, two position encoders and a joystick. Via the joystick, 
the user can return a subjective evaluation of their ��� to the 

control algorithm. When the user pushes the joystick to the 
negative or positive Y-direction, the joystick returns to the 
algorithm a discrete value −1 or 1, respectively. The neutral 
position of the joystick returns a discrete value 0. These three 
discrete values −1, 0 and 1 mean respectively that the user feels 
too tired, is comfortable, and feels insufficiently tired (is willing 
to exercise more). The discrete signal is filtered so that when it 
changes between two levels (among -1, 0 and 1), its filtered 
version I provides a gradual transition between these levels. 
Furthermore, to avoid the need for too many pushes of the 
joystick, after such a transition the filtered signal is kept nearly 
constant for a certain duration. 

Figure 4: The mean performance of PoWER for both initialization (Top: 
η=2 and bottom η=1/2) 
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TABLE III 
POWER WITH VARYING FATIGUE MODEL (ZERO: INITIALIZATION TO ZERO, 

NOMINAL: INITIALIZATION WITH THE NOMINAL MODEL. THE MINIMAL 

RETURN IS NORMALIZED BY THE CORRESPONDING BASELINE RETURN) 

� Baseline return 
(fuzzy Q-
iteration) 

PoWER 
Minimal return Number of trials 

Nominal Zero Nominal Zero 
8 -361950 1.25 2.30 39 37 

4 -96723 1.76 4.96 33 56 

3 -54018 2.14 7.58 47 34 

2 -32744 2.38 12.43 48 65 

1/2 -150920 1.51 5.25 10 * 

1/3 -207400 1.86 5.52 198 * 

1/4 -299540 1.76 4.50 37 * 

1/8 -657620 1.56 2.73 30 * 

 

 

Figure 5: The total return of each trial 
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The driving scenario consists in riding on a straight flat road 

with a given reference velocity ���� set by the user. The 

velocity estimated from the position encoders is available via 
the computer connected to the data acquisition system. The 
control objective is to minimize both the electrical energy and 
the use of the joystick, while tracking the reference velocity. 
Therefore, the stage reward function is: 
 

�� = −�� ��� − �����
�

�

− ����
� − ����

� 
(35)

where �����
 is the given reference velocity at discrete sample 

�. The reward weights are �� = 10, �� = 0.25 and �� = 0.05. 
Note that any joystick signal � ≠ 0 is penalized. The controller 
is configured as a PI-type law: 
 

�� = �� ��� − �����
� + �� � ��� − �����

�
�

���
+ ����

+ �� � ��

�

���
− �����

� 

(36)

The first four terms of the controller (36) are used to track the 
reference values ���� whilst keeping the filtered joystick signal 

� to 0. The term �����
� is for compensating the human input. 

One healthy male volunteer (29-year-old) performed the 
proof-of-concept experiments. There are 5-minute rest periods 
between consecutive trials. In total, 24 trials with the same 
driving condition have been carried out on the same day to learn 
the parameter vector λ in (35). Fig. 5 shows the total return of 
each trial. Among the 24 trials, 3 trials went unstable at the 
beginning of learning. For these trials, the user stopped 
immediately the wheelchair and a very low return was given to 
the learning algorithm to avoid such situations in the future. The 
return tends to increase gradually after performing these trials. 

We notice that the obtained curve of return is noisy. Due to the 
time-consuming nature of the experiment, it is not feasible to 
perform many trials to obtain a smooth mean return. Therefore, 
we analyze qualitatively the obtained trajectories.  

Fig. 6 shows the trajectories of the first four stable trials and 
the last four trials. We remark that the user does not push the 
joystick anymore in the last four trials. The joystick signal � 
sums up the influence of main physiological and psychological 
factors to tell the learning algorithm what assistive torque is 
suitable to users. The fact that the user does not use anymore 
the joystick means that after training, the provided assistive 
torques are acceptable in terms of the sensation of fatigue. 
Another consequence of training is that the user and the 
controller track together the given velocity more smoothly.  

Through these proof-of-concept experiments, we conclude 
that the proposed learning algorithm PoWER is able to improve 
the performance of the controller (36). For a final commercial 
product, there will be a certain accommodation time to obtain a 
satisfactory performance, during which a health professional 
would help the user interact with the PAW. 

VII. CONCLUSION 

In this paper, a novel PAW control design has been proposed 
for paraplegic wheelchair users. The assistive strategy is based 
on energy optimization, while maintaining a suitable fatigue 
level for users and using minimal electrical energy over a 
distance-to-go. This optimal control problem was solved by the 
online model-free reinforcement learning methods PoWER and 
GPOMDP. Their near-optimality was confirmed by the model-
based approach finite-horizon Q-fuzzy iteration. An important 
contribution is that the near-optimality of finite-horizon Q-

 

Figure 6: The trajectories of the first four stable trials and the last four trial. (The instant where the joystick is pushed is indicated on the � signal) 
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fuzzy iteration was proven. In addition, simulation results 
confirmed that PoWER with a simplified controller 
parameterization provides a considerably higher data 
efficiency, which renders the model-free framework better 
applicable in practice. Moreover, an investigation has been 
done to illustrate that PoWER is also able to adapt to human 
fatigue dynamics changes. Finally, a proof-of-concept 
experiment has been carried out to demonstrate the feasibility 
of the approach in practice. Future work will focus on validating 
the adaptability of the applied assistive algorithm for different 
users with the real wheelchair. 
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