Model-based solution

Model-free approach

Experiments & conclusions

Learning control for a communicating mobile robot

L. Buşoniu, V.S. Varma, I.-C. Morărescu, S. Lasaulce

LB – Technical University of Cluj-Napoca, Romania VSV, I-CM – CNRS & Université de Lorraine - Nancy, France SL – CNRS & Université Paris Sud, France

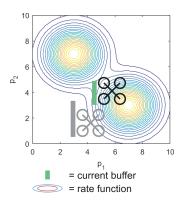
ACC, 10 July 2019 Presented by Aris Kanellopoulos, GATech

Model-based solution

Model-free approach

Experiments & conclusions

Problem statement



- Robot with position *p*, moves with known dynamics:
 *p*_{k+1} = *g*(*p*_k, *u*_k)
- Buffer of size *b* transmitted with: $b_{k+1} = \max \{0, b_k - R(p_k)\}$
- Position-dependent rates *R*(*p*) unknown

Objective: Transmit buffer in minimum time Requires learning about the rate function!

Experiments & conclusions

Problem statement (continued)

Motivation:

Robot must quickly upload (e.g. remote survey) data over an ad-hoc network with unknown rates

Optimal control formalization:

$$\min_{h} V^{h}(x_{0}) := \sum_{k=0}^{\infty} \rho(b_{k})$$

with stage cost: $\rho(b) = \begin{cases} 1 & \text{if } b > 0 \\ 0 & \text{if } b = 0 \end{cases}$ and control law $h(x)$

Note overall state $x = [p^{\top}, b]^{\top}$ with dynamics f(x, u)

Experiments & conclusions

2 Model-based solution

- 3 Model-free approach
- 4 Experiments & conclusions

Problem statement	Model-based solution ●○	Model-free approach	Experiments & conclusions
Dynamic p	rogramming		

To reduce clutter, define DP backup operator:

$$T(x, V) := \min_{u} \left[\rho(b) + V(f(x, u)) \right]$$

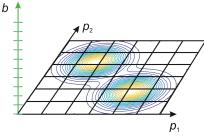
From $V_0 = 0$, iterate until convergence to V^* : $V_{\ell+1}(x) = T(x, V_\ell)$ for all x

then use control: $h(x) \in \arg T(x, V^*)$

with "arg T..." meaning "arg min_u..."

Problem statement	Model-based solution ○●	Model-free approach	Experiments & conclusions

Interpolated dynamic programming



Interpolate on a grid over p and b

 \Rightarrow approximate value function: $\widehat{V}_{\theta}(x) = \varphi^{\top}(x)\theta$

Discretize actions $u \Rightarrow$ approximate DP update:

$$heta_{\ell+1,i} = \mathcal{T}(x_i, \widehat{V}_{ heta_\ell})$$
 for all grid points x_i

Model-based solution

Model-free approach

Experiments & conclusions

2 Model-based solution

Problem statement	Model-based solution	Model-free approach ●0000	Experiments & conclusions
High-level	algorithm		

Learning for the communicating robot repeat at each time step k(i) sample $R(p_k)$, update rate approximator \widehat{R} (ii) using \widehat{R} , run local DP around current state, starting from current parameters θ (iii) choose and apply action u_k (iv) perform Q-learning-like update until $b_{k+1} = 0$

Key features:

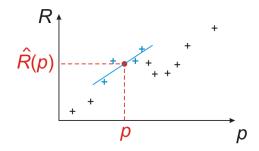
- Single-trajectory learning
- Mixes model-based with model-free
- Learning focuses on unknown part, R

Problem statement	Model-based solution	Model-free approach o●ooo	Experiments & conclusions
(i) Rate fur	ction learning		

Local linear regression, LLR:

- Given database of points $(p_k, R(p_k))$
- For given p, finds the K nearest neighbors
- $\widehat{R}(p)$ found with linear regression on neighbors

Illustration in 1D:

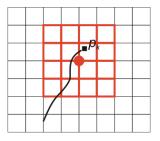


Model-based solution

Model-free approach

Experiments & conclusions

(ii) Local DP sweeps



Run ℓ_{DP} approximate DP updates on a **subgrid** centered on point closest to x_k and extending r_{DP} in each direction (also on *b*, not pictured)

Avoids extrapolating too far ahead, since usually samples of R are behind on the trajectory

Problem statement	Model-based solution	Model-free approach ○○○●○	Experiments & conclusions
(iii) Action	selection		

Easiest option – take the greedy action (as if \hat{V} were optimal): arg $T(x_k, \hat{V}_{\theta})$

Optimistic initialization of \hat{V} to a lower bound

- forces algorithm to explore

Model-based solution

Model-free approach

Experiments & conclusions

(iv) Q-learning-like update

Adapted to V-function and approximator used:

$$\theta \leftarrow \theta + \alpha \varphi(\mathbf{x}_k) \left[T(\mathbf{x}_k, \widehat{\mathbf{V}}_{\theta}) - \widehat{\mathbf{V}}(\mathbf{x}_k; \theta) \right]$$

with learning rate α

Extracts a bit of extra information from each transition

Experiments & conclusions

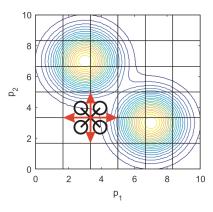
- 2 Model-based solution
- 3 Model-free approach

Model-based solution

Model-free approach

Experiments & conclusions

Simple example



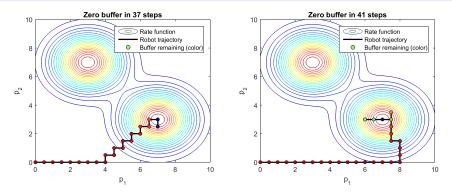
- Integrator dynamics; actions chosen to move on a grid of 21 × 21 points (same as position interpolation grid)
- *b* ∈ [0, 2], 21 grid points
- Rate *R*(*p*) sum of two Gaussians with amplitude 0.1

Model-based solution

Model-free approach

Experiments & conclusions

Typical good trajectory



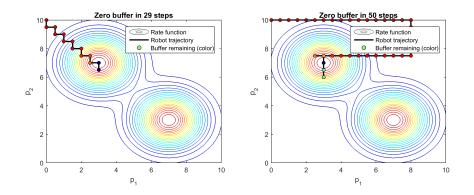
- Left model-based (*R* known), right model-free (*R* unknown)
- Tuned params: K = 4 in LLR, local DP range r_{DP} = 4 with ℓ_{DP} = 10 iterations, learning rate α = 1
- Learning only requires 10% more steps to transmit buffer
- Any DP range works well; no DP (only Q-learning) does not

Model-based solution

Model-free approach

Experiments & conclusions

Typical bad trajectory



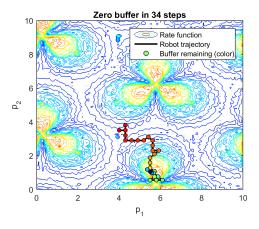
Learning under twice the number of model-based steps

Model-based solution

Model-free approach

Experiments & conclusions

More realistic example



- Realistic radio rates
- Unicycle-like dynamics that include heading as an action
- Same parameters as above, algorithm works

00 00	00000	00000
Conclusions		

Learning approach for mobile robot to communicate under unknown rates

Next steps:

- Stochastic rates
- Experiments
- Analysis

Thank you! (and thanks Aris!) Contact: lucian@busoniu.net