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Idea & background Algorithm: OPD Analysis Switched systems

Part I

Introduction. Single-agent problems
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Overall theme

AI-based control of complex systems

Complexity: general nonlinearity, stochastic dynamics,
unknown behavior, distributed structure . . .

Applications: robotics, control, medicine, . . .
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Setting: Deterministic Markov decision process

At step k , controller measures states x , applies actions u
System: dynamics xk+1 = f (xk , uk )

Performance: reward function rk+1 = ρ(xk , uk )

Objective: apply actions so as to maximize return∑∞

k=0
γk rk+1

with discount factor γ ∈ (0, 1)
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Example: Domestic robot

Domestic robot ensures light switches are off
Abstractization to high-level control (physical actions
implemented by low-level controllers)

States: grid coordinates, switch states
Actions: movements NSEW, toggling switch
Rewards: when switches toggled on→off
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Example: Robot arm

Low-level control
States: link angles and angular velocities
Actions: motor voltages
Rewards: e.g. to reach a desired state,
minus the squared distance to that state



Idea & background Algorithm: OPD Analysis Switched systems

Example: Power-assisted wheelchair (Autonomad,
T.M. Guerra, G. Feng)

Hybrid power source: human and battery
Objective: perform driving task, optimizing assistance to:

(i) attain desired user fatigue level
(ii) minimize battery usage

Challenge: unknown human dynamics in the loop
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Online planning idea

At each step, use a model to solve problem locally:
1. Explore action sequences from current state,

to find a near-optimal sequence
2. Apply first action of this sequence, and repeat

A type of receding-horizon model-predictive control
Extension of classical planning / tree search (A*, B*, AO*)
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Advantages of OP

Near-optimality guarantees depending on
computation n and complexity κ of the problem:

error = O(function(n, κ))

(Munos, 2014)

...for general nonlinear dynamics and rewards
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Talk structure

Online, optimistic planning (OP) in:

Single-agent problems
algorithm
analysis
application to switched systems

Adversarial, two-agent problems
algorithm
analysis
application to dual switched systems
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1 Idea & background

2 Algorithm: Optimistic planning for deterministic systems

3 Analysis

4 Application to switched systems
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Setting

Assumptions

Finite, discrete action space U =
{

u1, . . . , uM}
Bounded reward function ρ(x , u) ∈ [0, 1],∀x , u

Denote current step by 0 (by convention). Then:
Infinite action sequences: u∞ = (u0, u1, . . . )

Solve v∗ = supu∞ v(u∞) :=
∑∞

k=0 γk rk+1



Idea & background Algorithm: OPD Analysis Switched systems

Setting: Values

Finite sequence ud = (u0, . . . , ud−1)

`(ud) =
∑d−1

k=0 γkρ(xk , uk ), lower bound
on returns of u∞ starting with ud

b(ud) = `(ud) + γd

1−γ , diameter
optimistic upper bound on the returns

v(ud) = supu∞ st. w. ud
v(u∞)

value of applying ud and then acting optimally
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Tree structure

Each tree node has the meaning of state
One child for each action,
each transition associated with a reward
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Optimistic planning for deterministic systems (OPD)

initialize empty sequence u0
for t = 1 to n do

select optimistic leaf sequence u†t , maximizing b
expand u†t : children for all actions, setting ` and b

end for
return u∗d maximizing `, and maximal `∗, b∗

(Hren & Munos, 2008)
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Relation to reinforcement learning

RL solves MDPs without using a model, by learning

A deeper relation:

At one state, RL exploration modeled as multi-armed bandit:
Discrete actions = arms with unknown, stochastic rewards
Pull arms to learn, so that after n pulls,
the optimal arm has been pulled the most
Good idea: optimism in the face of uncertainty
– pull arm with best upper confidence bounds



Idea & background Algorithm: OPD Analysis Switched systems

Relation to reinforcement learning (cont’d)

In OP, the model is known, but the optimal sequence is not,
because rewards only known up to depth d
Sample transitions, so that after n expansions,
sequence is close to optimal
Optimism in the face of uncertainty: assume maximal
rewards of 1 beyond depth d
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Example: Inverted pendulum

x = [angle α, velocity α̇]>

u = voltage
ρ(x , u) = −x>Qx − u>Ru,
normalized to [0, 1]

Discount factor γ = 0.98

Objective: stabilize pointing up
Insufficient torque⇒ swing-up required
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Example: Real-time demo

Swingup in simulation: Real-time demo:
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Near-optimality vs. depth

Theorem
1 OPD returns a sequence u∗d so that v(u∗d)

and the optimal value v∗ are both in [`∗, b∗]

2 The near-optimality gap b∗ − `∗ ≤ γd∗

1−γ
where d∗ is the deepest expanded
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Case 1: All paths optimal

Take a tree where all rewards are 1:

b(ud) = 1
1−γ , ∀ud ⇒ OPD expands uniformly, breadth-first

So to expand all nodes down to depth d , we must spend:

n =
d∑

i=0

M i =
Md+1 − 1

M − 1

and the depth grows slowly with budget n
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Case 2: One path optimal

Take a tree where rewards are 1 only along a single path (thick
line), and 0 everywhere else:

b(ud) = 1
1−γ only on optimal path, γd

1−γ elsewhere
⇒ OPD expands only the optimal path

So to expand down to depth d , we must spend only n = d , and
the depth grows fast with n
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General case: Branching factor

Algorithm only expands in near-optimal subtree:

T ∗ =

{
ud

∣∣∣∣ v∗ − v(ud) ≤ γd

1− γ

}
Define κ ∈ [1, M] = asymptotic branching factor of T ∗:
problem complexity measure

E.g. κ = 2, M = 3:
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Depth vs. budget n

To reach depth d in tree with branching factor κ,
we must expand n = O(κd) nodes

⇒ d∗ = Ω(
log n
log κ

)
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Final guarantee: Near-optimality vs. budget

Theorem
3 The near-optimality gap is:

b∗ − `∗ ≤ γd∗

1− γ
=

{
O(n−

log 1/γ
log κ ) if κ > 1

O(γcn) if κ = 1

Generality paid by exponential computation n = O(κd)

But κ can be small in interesting problems!

(Hren & Munos, 2008)
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Setting

Switched system xk+1 = f (xk , uk ),
where now u has the meaning of mode
Stage cost g(xk , uk )

Cost function of infinite mode sequence:

J(u∞) =
∞∑

k=0

γkg(xk , uk )

with discount factor γ ∈ (0, 1)

(Automatica 2017)
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Motivation

Open challenge
Optimal control of nonlinear switched systems

(see survey of Zhu & Antsaklis, 2015)

Optimistic planning offers:
General nonlinear modes
Sequence design
Certification bounds

...but without stability guarantees
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Problem statement

Optimal control, PO: Find J = infu∞ J(u∞)
and corresponding sequence
Worst-case switches, PW: Find J = supu∞ J(u∞)
and corresponding sequence

Assumption

Bounded stage costs g(x , u) ∈ [0, 1],∀x , u
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Direct application of OP

To solve PO, take rewards ρ = 1− g
To solve PW, take rewards ρ = g

Corollary
4 In PO, cost of sequence returned and optimal cost J are in

[ 1
1−γ − b∗, 1

1−γ − `∗], and the gap is O(n−
log 1/γ

log κ ).

5 In PW, cost of sequence returned and worst-case cost J

are in [`∗, b∗], and the gap is O(n−
log 1/γ

log κ ).
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Inverted pendulum simulation

Zero action replaced by PD control mode:
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Minimum dwell time

Minimum dwell time δ (number of steps between
switches) often required due to e.g. fundamental
properties, practical actuator limitations

⇒ Only explore sequences ensuring dwell time δ
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Algorithm: OPδ

initialize u0
for i = 1 to computational budget n do

select optimistic leaf sequence u†d , maximizing b
expand u†d :
if last mode in u†d was active < δ steps then

create single child, continuing same action
else

create all children
end if

end for
return u∗d maximizing `, and maximal `∗, b∗
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Near-optimality vs. depth

Notation: subscript δ = constrained to obey the dwell time

Theorem
1 OPδ returns a sequence u∗d so that vδ(ud) and v∗δ

are both in [`∗, b∗]

2 Near-optimality gap b∗ − `∗ ≤ γd∗

1−γ
where d∗ is the deepest expanded
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Complexity measure

Algorithm only expands in constrained near-optimal
subtree:

T ∗δ =
{

ud constrained
∣∣∣ v∗δ − vδ(ud) ≤ γd

1−γ

}
Define K ∈ [1, Mδ] = the smallest number so that∣∣∣T ∗d ,δ

∣∣∣ = O(K d/δ);
problem complexity measure
Problem is simpler when K is smaller; intuitive meaning
less clear than branching factor κ
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Near-optimality vs. budget

To reach depth d , we expand n = O(K d/δ) nodes
⇒ largest depth d∗ = Ω(δ log n

log K )

Theorem (cont’d)
3 Near-optimality gap is:

b∗ − `∗ ≤ γd∗

1− γ
=

{
O(n−δ

log 1/γ
log K ) if K > 1

O(γcn) if K = 1



Idea & background Algorithm: OPD Analysis Switched systems

Comparison between OPδ and OP

Take largest values of K = Mδ, κ = M
(most difficult problem)

⇒ Gaps are O(n−δ
log 1/γ
log Mδ ) and O(n−

log 1/γ
log M )

Since δ log 1/γ
log Mδ > log 1/γ

log M , OPδ converges faster;
due to OPδ exploring smaller, constrained tree
However, the relationship will vary with the problem
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Solving PO and PW with dwell time

Corollary
4 In PO, cost of sequence returned and optimal cost Jδ are

in [ 1
1−γ − b∗, 1

1−γ − `∗], and the gap is O(n−δ
log 1/γ
log K ).

5 In PW, cost of sequence returned and worst-case cost Jδ

are in [`∗, b∗], and the gap is O(n
−δ

log 1/γ

log K ).
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Part II

Adversarial problems
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Adversarial problem

Look for “our” actions u that maximize return
assuming opponent takes actions w to minimize it

Two-player competitive games, robust control, etc.
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Setting

Maximizer & minimizer agents,
with actions u ∈ U and w ∈W ; |U| = Mu, |W | = Mw

They alternately take an infinite sequence of actions:

(u0, w0, u1, w1, . . . ) =: (z0, z1, z2, . . . ) = z∞

Dynamics xd+1 = f (xd , zd), rewards ρ(xd , zd)

Finite sequence zd = (z0, . . . , zd−1)
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Objective

Infinite-horizon value of sequence z∞:

v(z∞) :=
∞∑

d=0

γdρ(xd , zd).

Objective: discounted minimax-optimal solution:

v∗ := max
u0

min
w0
· · ·max

uk
min
wk
· · · v(z∞)
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Setting: Assumptions

Assumptions
Both agents have discrete actions
The rewards ρ(x , z) are in [0, 1] for all x ∈ X , z ∈ U ∪W .

⇒ lower & upper bounds on all sequences z∞ starting with zd :

`(zd) =
∑d−1

j=0 γ jρ(xj , zj), b(zd) = `(zd) + γd

1−γ

where γd

1−γ is the diameter, as before
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Optimistic minimax search

OMS expands tree of possible minmax sequences,
using lower and upper bounds on node values

Application of classical, best-first B* search
to infinite-horizon problems (Berliner 1979)
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Optimistic minimax search (cont’d)

for t = 1, . . . , n do
propagate lower & upper bounds L, B at each node:

L(z)←

{
`(z), if z leaf
max / minz ′∈children(z) L(z ′), otherwise

B(z)←

{
b(z), if z leaf
max / minz ′∈children(z) B(z ′), otherwise

choose node to expand: z ← root, and while not leaf:

z ←

{
arg maxz ′∈children(z) B(z ′), if z max node
arg minz ′∈children(z) L(z ′), if z min node

expand z
end for
output a maximum-depth expanded node z∗
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Example: HIV treatment

6 states:
T1, T2 – healthy target cells per ml (types 1 & 2 )
T t

1, T t
2 – infected target cells per ml (types 1 & 2)

V – free virus copies per ml
E – immune response cells per ml

Mu = 2 actions u1, u2: application of RTI and PI drugs
Unpredictable drug effectiveness among Mw = 2 levels

Goal: Starting from high level of infection x0,
optimally switch drugs on and off to:

1 maximize immune response
2 minimize virus load
3 minimize drug use

r = cEE − cV V−c1ε1 − c2ε2
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HIV: OMS results

Effectiveness conservatively treated as opponent
Budget of n = 4000 node expansions

Infection eventually controlled without drugs
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Near-optimality vs. diameter

For finite sequence z, let v(z) be the minimax-optimal value
among sequences starting with z

1 If d∗ is the largest depth expanded, the solution z∗

returned by OMS satisfies:

|v∗ − v(z∗)| ≤ γd∗

1− γ
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Explored tree

Algorithm only expands nodes in the subtree:

T ∗ :=
{

zd

∣∣∣ ∣∣v∗ − v(z ′)
∣∣ ≤ γd

1− γ
,∀z ′ on path from root to zd

}
Intuition: From the information available down to node zd

(interval of values of width γd

1−γ ), cannot decide whether the
node is (not) optimal. So it must be explored.
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Example where the full tree is explored

All rewards equal to 1, v∗ = 1
1−γ

All solutions have value v∗, so T ∗ is the full tree∣∣T ∗d ∣∣ = (MuMw )d/2, branching factor κ =
√

MuMw
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General case: Branching factor

Let κ ∈ [1,
√

MuMw ] = asymptotic branching factor of T ∗

Problem simpler when κ smaller
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Depth vs. budget n

To reach depth d in tree with branching factor κ,
we must expand n = O(κd) nodes

⇒ d∗ = Ω(
log n
log κ

)
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Final guarantee: Near-optimality vs. budget

Theorem
2 Given budget n, we have:

|v∗ − v(z∗)| ≤ γd∗

1− γ
=

{
O(n−

log 1/γ
log κ ) if κ > 1

O(γcn) if κ = 1

(ADPRL 2014)

Faster convergence when κ smaller (simpler problem)
Exponential convergence when κ = 1
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Setting

Actions u, w now have the meaning of switching signals,
u controlled, w uncontrolled: dual switched system

(Bolzern et al., 2014)

Signals respectively obey minimum dwell times δu, δw

Notation: subscript δ = constrained to obey dwell times

If δu = δw = 1, problem reduces to standard min-max and
OMS directly applies
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OMSδ for dual switched systems

OMSδ algorithm: mostly the same as OMS,
but when node does not satisfy dwell time condition,
only the child keeping the action constant is created

Example constrained tree for δu = δw = 2:
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Switched control over delayed network

Max action = controlled “mode”
e.g. constant action or low-level controller
Min action = network delay (multiple of sampling time)
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Quanser rotational pendulum

System:
x = rod angle α, base angle θ,
angular velocities
input ω = voltage
Sampling time Ts = 0.04

Goal: swing up & stabilize pointing up:
Reward −x>Qx − ω>Rω,
normalized to [0, 1]

Discount factor γ =
√

0.95
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Results

Mu = 3: #1 constant −6 V, #3 constant 6 V,
#2 a stabilizing mode ω = Kx computed with LQR
Mw = 2: 0 or 1-step delay
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Near-optimality vs. depth

Similar to OMS

1 If d∗ is the largest depth expanded, the solution ẑ returned
by OMSδ satisfies: ∣∣v∗δ − vδ(ẑ)

∣∣ ≤ γd∗

1− γ
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Complexity measure

Different from OMS, generalizes OPδ

At depth d , algorithm only expands in the subtree:

T ∗δ,d :=
{

zd
∣∣ zd obeys dwell time conditions ,∣∣v∗δ − vδ(z ′)

∣∣ ≤ γd

1− γ
,∀z ′ on path from root to zd

}
Let δ = min{δu, δw}, M = max{Mu, Mw}. Define
K ∈ [1, δM] the smallest positive number so that∣∣∣T ∗δ,d ∣∣∣ = O(K d/δ)
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Near-optimality vs. budget

Theorem
Given budget n, we have:

∣∣v∗δ − vδ(ẑ)
∣∣ ≤ {

O(n−δ
log 1/γ
log K ) if K > 1

O(γcn) if K = 1

(ACC 2017)
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Comparison between OMSδ and OMS

Just like in the single-agent case, when exploring the full
trees, OMSδ converges faster than OMS, since its
constrained tree is smaller
However, the relationship will vary with the problem
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Outlook

Summary
Optimistic planning for general nonlinear systems,
with performance guarantees
Natural application to switched systems

Outlook
Combination with learning
Continuous and hybrid actions
Stochastic uncontrolled mode w
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Stochastic-case planner for partially-observable MDPs

Domestic robot makes sure all switches are off
NSEW actions change position on grid,
flip action succeeds stochastically
Switch states observed incorrectly with certain probas
Low-level SLAM and control (IROS 2016)
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