Al planning for nonlinear optimal control Applications to switched systems

Lucian Buşoniu

Technical University of Cluj-Napoca, Romania

IFAC CESCIT, 6 June 2018

Part I

Introduction. Single-agent problems

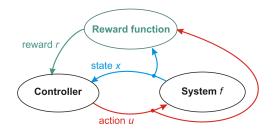
ldea & background ●ooooooo	Algorithm: OPD	Analysis 000000	Switched systems
Overall theme			

Al-based control of complex systems

Complexity: general nonlinearity, stochastic dynamics, unknown behavior, distributed structure ...

Applications: robotics, control, medicine,

0000000	0000000	000000	000000000000
Setting: Determi	iniatia Markau	dogigion prod	000



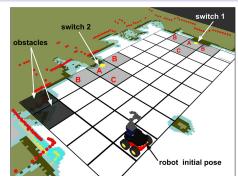
- At step k, controller measures states x, applies actions u
- System: dynamics $x_{k+1} = f(x_k, u_k)$
- Performance: reward function $r_{k+1} = \rho(x_k, u_k)$
- Objective: apply actions so as to maximize return

$$\sum_{k=0}^{\infty} \gamma^k r_{k+1}$$

with discount factor $\gamma \in (0, 1)$

ldea & background	Algorithm: OPD	Analysis	Switched systems
0000000			

Example: Domestic robot



Domestic robot ensures light switches are off Abstractization to high-level control (physical actions implemented by low-level controllers)

- States: grid coordinates, switch states
- Actions: movements NSEW, toggling switch
- Rewards: when switches toggled on→off

Idea & background

Algorithm: OPD

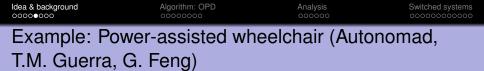
Analysis

Switched systems

Example: Robot arm

Low-level control

- States: link angles and angular velocities
- Actions: motor voltages
- Rewards: e.g. to reach a desired state, minus the squared distance to that state



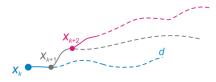
- Hybrid power source: human and battery
- Objective: perform driving task, optimizing assistance to:
 - (i) attain desired user fatigue level
 - (ii) minimize battery usage
- Challenge: unknown human dynamics in the loop

ldea & background ooooooooo	Algorithm: OPD	Analysis 000000	Switched systems

Online planning idea

At each step, use a model to solve problem locally:

- 1. Explore action sequences from current state, to find a near-optimal sequence
- 2. Apply first action of this sequence, and repeat



- A type of receding-horizon model-predictive control
- Extension of classical planning / tree search (A*, B*, AO*)

Near-optimality guarantees depending on computation *n* and complexity κ of the problem:

error = O(function(n, κ))

(Munos, 2014)

• ...for general nonlinear dynamics and rewards

Idea & background	Algorithm: OPD	Analysis 000000	Switched systems
Talk structure			

Online, optimistic planning (OP) in:

- Single-agent problems
 - algorithm
 - analysis
 - application to switched systems
- Adversarial, two-agent problems
 - algorithm
 - analysis
 - application to dual switched systems

2 Algorithm: Optimistic planning for deterministic systems

- 3 Analysis
- 4 Application to switched systems

Setting

Assumptions

- Finite, discrete action space $U = \{u^1, \dots, u^M\}$
- Bounded reward function $\rho(x, u) \in [0, 1], \forall x, u$

Denote current step by 0 (by convention). Then:

- Infinite action sequences: $\boldsymbol{u}_{\infty} = (u_0, u_1, \dots)$
- Solve $v^* = \sup_{\boldsymbol{u}_{\infty}} v(\boldsymbol{u}_{\infty}) := \sum_{k=0}^{\infty} \gamma^k r_{k+1}$

Idea	background

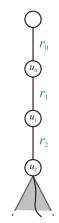
Algorithm: OPD

Analysis

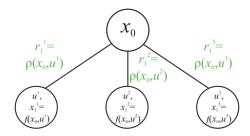
Switched systems

Setting: Values

- Finite sequence $\boldsymbol{u}_d = (u_0, \dots, u_{d-1})$
- $\ell(\boldsymbol{u}_d) = \sum_{k=0}^{d-1} \gamma^k \rho(\boldsymbol{x}_k, \boldsymbol{u}_k)$, lower bound on returns of \boldsymbol{u}_{∞} starting with \boldsymbol{u}_d
- b(u_d) = ℓ(u_d) + ^{γ^d}/_{1-γ}, diameter
 optimistic upper bound on the returns
- v(u_d) = sup_{u∞ st. w. u_d} v(u_∞) value of applying u_d and then acting optimally



	000000	000000	000000000000000000000000000000000000000
Tree structur	re		

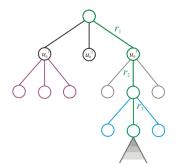


- Each tree node has the meaning of state
- One child for each action, each transition associated with a reward

ldea & background	Algorithm: OPD	Analysis	Switched systems
	0000000		

Optimistic planning for deterministic systems (OPD)

initialize empty sequence \boldsymbol{u}_0 for t = 1 to n do select optimistic leaf sequence $\boldsymbol{u}_t^{\dagger}$, maximizing bexpand $\boldsymbol{u}_t^{\dagger}$: children for all actions, setting ℓ and bend for return \boldsymbol{u}_d^* maximizing ℓ , and maximal ℓ^* , b^*



(Hren & Munos, 2008)

ldea & background	Algorithm: OPD	Analysis	Switched systems
	0000000		

Relation to reinforcement learning

RL solves MDPs without using a model, by learning

A deeper relation:

At one state, RL exploration modeled as multi-armed bandit:

- Discrete actions = arms with unknown, stochastic rewards
- Pull arms to learn, so that after n pulls, the optimal arm has been pulled the most
- Good idea: optimism in the face of uncertainty
 - pull arm with best upper confidence bounds

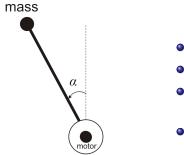
Idea & background	Algorithm: OPD	Analysis 000000	Switched systems

Relation to reinforcement learning (cont'd)

- In OP, the model is known, but the optimal sequence is not, because rewards only known up to depth d
- Sample transitions, so that after *n* expansions, sequence is close to optimal
- Optimism in the face of uncertainty: assume maximal rewards of 1 beyond depth *d*

ldea & background	Algorithm: OPD	Analysis 000000	Switched systems

Example: Inverted pendulum



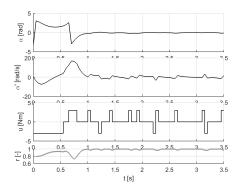
- $x = [angle \alpha, velocity \dot{\alpha}]^{\top}$
- *u* = voltage
- $\rho(x, u) = -x^{\top}Qx u^{\top}Ru$, normalized to [0, 1]
- Discount factor $\gamma = 0.98$

- Objective: stabilize pointing up
- Insufficient torque ⇒ swing-up required

ldea & background	Algorithm: OPD	Analysis	Switched systems
	0000000		

Example: Real-time demo

Swingup in simulation:



Real-time demo:

Idea & background

2 Algorithm: Optimistic planning for deterministic systems

3 Analysis

4 Application to switched systems

Idea & background	Algorithm: OPD	Analysis ●ooooo	Switched systems

Near-optimality vs. depth

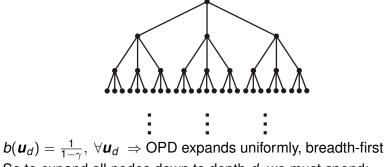
Theorem

- OPD returns a sequence u_d^* so that $v(u_d^*)$ and the optimal value v^* are both in $[\ell^*, b^*]$
- Constraints The near-optimality gap $b^* \ell^* \le \frac{\gamma^{d^*}}{1-\gamma}$ where d^* is the deepest expanded

ldea & back		Algorithm: Ol	PD	Analysis ⊙●○○○○	Switched systems

Case 1: All paths optimal

Take a tree where all rewards are 1:



So to expand all nodes down to depth d, we must spend:

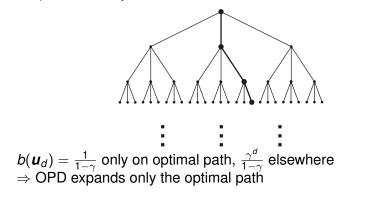
$$n = \sum_{i=0}^{d} M^{i} = \frac{M^{d+1} - 1}{M - 1}$$

and the depth grows slowly with budget n

ldea & background	Algorithm: OPD	Analysis	Switched systems

Case 2: One path optimal

Take a tree where rewards are 1 only along a single path (thick line), and 0 everywhere else:



So to expand down to depth *d*, we must spend only n = d, and the depth grows fast with *n*

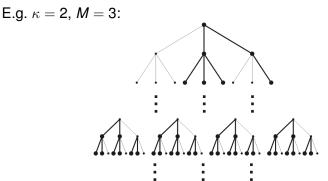
ldea & background	Algorithm: OPD	Analysis	Switched systems
		000000	

General case: Branching factor

• Algorithm only expands in near-optimal subtree:

$$\mathcal{T}^* = \left\{ oldsymbol{u}_d \ \bigg| \ oldsymbol{v}^* - oldsymbol{v}(oldsymbol{u}_d) \leq rac{\gamma^d}{1-\gamma}
ight\}$$

 Define κ ∈ [1, M] = asymptotic branching factor of T*: problem complexity measure



Idea & background	Algorithm: OPD	Analysis ○○○○●○	Switched systems
Depth vs. budge	et n		

To reach depth *d* in tree with branching factor κ , we must expand $n = O(\kappa^d)$ nodes

$$\Rightarrow \quad d^* = \Omega(\frac{\log n}{\log \kappa})$$

ldea & background	Algorithm: OPD	Analysis	Switched systems
		000000	

Final guarantee: Near-optimality vs. budget

Theorem

The near-optimality gap is:

$$b^* - \ell^* \leq rac{\gamma^{d^*}}{1 - \gamma} = egin{cases} \mathrm{O}(n^{-rac{\log 1/\gamma}{\log \kappa}}) & ext{if } \kappa > 1 \ \mathrm{O}(\gamma^{cn}) & ext{if } \kappa = 1 \end{cases}$$

- Generality paid by exponential computation $n = O(\kappa^d)$
- But κ can be small in interesting problems!

(Hren & Munos, 2008)

Idea & background

2 Algorithm: Optimistic planning for deterministic systems

3 Analysis

Application to switched systems

Idea & background	Algorithm: OPD 0000000	Analysis 000000	Switched systems
Setting			

- Switched system $x_{k+1} = f(x_k, u_k)$, where now *u* has the meaning of **mode**
- Stage cost $g(x_k, u_k)$

 \mathbf{z}

• Cost function of infinite mode sequence:

$$J(\boldsymbol{u}_{\infty}) = \sum_{k=0}^{\infty} \gamma^{k} g(x_{k}, u_{k})$$

with discount factor $\gamma \in (0, 1)$

(Automatica 2017)

ldea & background	Algorithm: OPD	Analysis 000000	Switched systems
Motivation			

Open challenge

• Optimal control of nonlinear switched systems

(see survey of Zhu & Antsaklis, 2015)

Optimistic planning offers:

- General nonlinear modes
- Sequence design
- Certification bounds
- ...but without stability guarantees

Idea & background	Algorithm: OPD	Analysis 000000	Switched systems		
Problem statement					

- - Optimal control, PO: Find $\underline{J} = \inf_{\boldsymbol{u}_{\infty}} J(\boldsymbol{u}_{\infty})$ and corresponding sequence
 - Worst-case switches, PW: Find $\overline{J} = \sup_{\boldsymbol{u}_{\infty}} J(\boldsymbol{u}_{\infty})$ and corresponding sequence

Assumption

Bounded stage costs $g(x, u) \in [0, 1], \forall x, u$

Idea & background	Algorithm: OPD	Analysis 000000	Switched systems
Direct application	n of OP		

To solve PO, take rewards $\underline{\rho} = 1 - g$ To solve PW, take rewards $\overline{\overline{\rho}} = g$

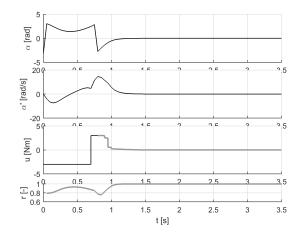
Corollary

- In PO, cost of sequence returned and optimal cost \underline{J} are in $[\frac{1}{1-\gamma} b^*, \frac{1}{1-\gamma} \ell^*]$, and the gap is $O(n^{-\frac{\log 1/\gamma}{\log \kappa}})$.
- Solution In PW, cost of sequence returned and worst-case cost \overline{J} are in $[\ell^*, b^*]$, and the gap is $O(n^{-\frac{\log 1/\gamma}{\log \overline{\kappa}}})$.

Idea & background	Algorithm: OPD	Analysis	Switched systems
			00000000000

Inverted pendulum simulation

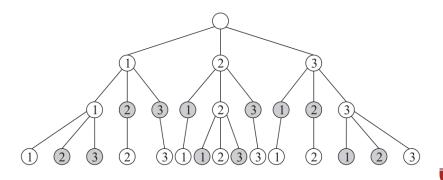
Zero action replaced by PD control mode:



N //	ale can Hardware		
Idea & background	Algorithm: OPD	Analysis 000000	Switched systems

Minimum dwell time

- Minimum dwell time δ (number of steps between switches) often required due to e.g. fundamental properties, practical actuator limitations
- \Rightarrow Only explore sequences ensuring dwell time δ



ldea & background	Algorithm: OPD	Analysis	Switched systems
00000000	00000000	oooooo	
Algorithm: $OP\delta$			

```
initialize u<sub>0</sub>
for i = 1 to computational budget n do
     select optimistic leaf sequence \boldsymbol{u}_{d}^{\dagger}, maximizing b
     expand \boldsymbol{u}_{d}^{\dagger}:
     if last mode in \boldsymbol{u}_{d}^{\dagger} was active < \delta steps then
         create single child, continuing same action
     else
          create all children
     end if
end for
return \boldsymbol{u}_{d}^{*} maximizing \ell, and maximal \ell^{*}, b^{*}
```


ldea & background	Algorithm: OPD	Analysis 000000	Switched systems

Near-optimality vs. depth

Notation: subscript δ = constrained to obey the dwell time

Theorem

- OPδ returns a sequence u^{*}_d so that v_δ(u_d) and v^{*}_δ are both in [ℓ^{*}, b^{*}]
- Solution Near-optimality gap $b^* \ell^* \le \frac{\gamma^{d^*}}{1-\gamma}$ where d^* is the deepest expanded

ldea & background	Algorithm: OPD	Analysis 000000	Switched systems			

Complexity measure

 Algorithm only expands in constrained near-optimal subtree:

$$\mathcal{T}^*_{\delta} = \left\{ \boldsymbol{u}_{d} \text{ constrained } \middle| \ \boldsymbol{v}^*_{\delta} - \boldsymbol{v}_{\delta}(\boldsymbol{u}_{d}) \leq rac{\gamma^d}{1-\gamma}
ight\}$$

- Define $K \in [1, M\delta]$ = the smallest number so that $\left| \mathcal{T}_{d,\delta}^* \right| = O(K^{d/\delta});$ problem complexity measure
- Problem is simpler when K is smaller; intuitive meaning less clear than branching factor κ

Idea & background	Algorithm: OPD	Analysis 000000	Switched systems

Near-optimality vs. budget

To reach depth *d*, we expand $n = O(K^{d/\delta})$ nodes \Rightarrow largest depth $d^* = \Omega(\delta \frac{\log n}{\log K})$

Theorem (cont'd)

Near-optimality gap is:

$$b^* - \ell^* \le \frac{\gamma^{d^*}}{1 - \gamma} = \begin{cases} O(n^{-\delta \frac{\log 1/\gamma}{\log K}}) & \text{if } K > 1\\ O(\gamma^{cn}) & \text{if } K = 1 \end{cases}$$

ldea & background	Algorithm: OPD	Analysis 000000	Switched systems

Comparison between $OP\delta$ and OP

 Take largest values of K = Mδ, κ = M (most difficult problem)

$$\Rightarrow \text{ Gaps are O}(n^{-\delta \frac{\log 1/\gamma}{\log M\delta}}) \text{ and O}(n^{-\frac{\log 1/\gamma}{\log M}})$$

- Since δ log 1/γ / log Mδ > log 1/γ / log M, OPδ converges faster; due to OPδ exploring smaller, constrained tree
- However, the relationship will vary with the problem

Idea & background	Algorithm: OPD	Analysis 000000	Switched systems

Solving PO and PW with dwell time

Corollary

In PO, cost of sequence returned and optimal cost \underline{J}_{δ} are in $[\frac{1}{1-\gamma} - b^*, \frac{1}{1-\gamma} - \ell^*]$, and the gap is $O(n^{-\delta \frac{\log 1/\gamma}{\log K}})$.

So In PW, cost of sequence returned and worst-case cost \overline{J}_{δ} are in $[\ell^*, b^*]$, and the gap is $O(n^{-\delta \frac{\log 1/\gamma}{\log K}})$.

Part II

Adversarial problems

5 Algorithm: Optimistic minimax search

6 Analysis

Application to dual switched systems

Adversarial p	problem		
Algorithm: OMS	Analysis 000000	Dual switched systems	Outlook 000

 Look for "our" actions u that maximize return assuming opponent takes actions w to minimize it

• Two-player competitive games, robust control, etc.

Algorithm: OMS	Analysis oooooo	Dual switched systems	Outlook 000
Setting			

- Maximizer & minimizer agents, with actions $u \in U$ and $w \in W$; $|U| = M_u$, $|W| = M_w$
- They alternately take an infinite sequence of actions:

$$(u_0, w_0, u_1, w_1, \dots) =: (z_0, z_1, z_2, \dots) = \boldsymbol{z}_{\infty}$$

- Dynamics $x_{d+1} = f(x_d, z_d)$, rewards $\rho(x_d, z_d)$
- Finite sequence $\boldsymbol{z}_d = (z_0, \dots, z_{d-1})$

	000000	00000000	000
0000000	000000	00000000	000
Algorithm: OMS	Analysis	Dual switched systems	Outlook

Infinite-horizon value of sequence \boldsymbol{z}_{∞} :

$$v(\mathbf{z}_{\infty}) := \sum_{d=0}^{\infty} \gamma^d \rho(x_d, z_d).$$

Objective: discounted minimax-optimal solution:

$$v^* := \max_{u_0} \min_{w_0} \cdots \max_{u_k} \min_{w_k} \cdots v(\boldsymbol{z}_{\infty})$$

Algorithm: OMS	Analysis 000000	Dual switched systems	Outlook 000
Setting: Ass	umptions		

Assumptions

- Both agents have discrete actions
- The rewards $\rho(x, z)$ are in [0, 1] for all $x \in X, z \in U \cup W$.

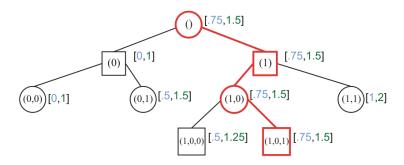
 \Rightarrow lower & upper bounds on all sequences z_{∞} starting with z_d :

$$\ell(\boldsymbol{z}_d) = \sum_{j=0}^{d-1} \gamma^j \rho(\boldsymbol{x}_j, \boldsymbol{z}_j), \quad b(\boldsymbol{z}_d) = \ell(\boldsymbol{z}_d) + \frac{\gamma^d}{1-\gamma}$$

where $\frac{\gamma^d}{1-\gamma}$ is the diameter, as before

Algorithm: OMS	Analysis	Dual switched systems	Outlook
0000●000	000000		000
Optimistic m	ninimax search		

OMS expands tree of possible minmax sequences, using lower and upper bounds on node values



Application of **classical**, **best-first B* search** to infinite-horizon problems

(Berliner 1979)

Algorithm: OMS	Analysis 000000	Dual switched systems	Outlook 000

Optimistic minimax search (confd)

for t = 1, ..., n do propagate lower & upper bounds *L*, *B* at each node: $L(z) \leftarrow \begin{cases} \ell(z), & \text{if } z \text{ leaf} \\ \max / \min_{z' \in \text{children}(z)} L(z'), & \text{otherwise} \end{cases}$ $B(z) \leftarrow \begin{cases} b(z), & \text{if } z \text{ leaf} \\ \max / \min_{z' \in \text{children}(z)} B(z'), & \text{otherwise} \end{cases}$

choose node to expand: $\boldsymbol{z} \leftarrow \text{root}$, and while not leaf:

$$\boldsymbol{z} \leftarrow \begin{cases} \arg \max_{\boldsymbol{z}' \in \mathsf{children}(\boldsymbol{z})} B(\boldsymbol{z}'), & \text{if } \boldsymbol{z} \max \mathsf{ node} \\ \arg \min_{\boldsymbol{z}' \in \mathsf{children}(\boldsymbol{z})} L(\boldsymbol{z}'), & \text{if } \boldsymbol{z} \min \mathsf{ node} \end{cases}$$

expand *z* end for output a maximum-depth expanded node *z**

Algorithm: OMS	Analysis	Dual switched systems	Outlook
○○○○○○●○	000000		000

Example: HIV treatment

6 states:

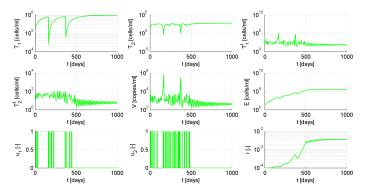
- T_1, T_2 healthy target cells per ml (types 1 & 2)
- T_1^t , T_2^t infected target cells per ml (types 1 & 2)
 - \overline{V} free virus copies per ml
 - E immune response cells per ml
- M_u = 2 actions u₁, u₂: application of RTI and PI drugs Unpredictable drug effectiveness among M_w = 2 levels
- Goal: Starting from high level of infection x_0 , optimally switch drugs on and off to:
 - maximize immune response
 - e minimize virus load
 - Image: minimize drug use

$$r = c_E E - c_V V - c_1 \epsilon_1 - c_2 \epsilon_2$$

	II		
Algorithm: OMS	Analysis	Dual switched systems	Outlook
○○○○○○○●	000000		000

HIV: OMS results

Effectiveness conservatively treated as opponent Budget of n = 4000 node expansions



Infection eventually controlled without drugs

5 Algorithm: Optimistic minimax search

6 Analysis

Application to dual switched systems

8 Outlook

0000000	00000	00000000	000
Algorithm: OMS	Analysis	Dual switched systems	Outlook

Near-optimality vs. diameter

For finite sequence z, let v(z) be the minimax-optimal value among sequences starting with z

If d* is the largest depth expanded, the solution z* returned by OMS satisfies:

$$|\boldsymbol{v}^* - \boldsymbol{v}(\boldsymbol{z}^*)| \leq \frac{\gamma^{\boldsymbol{d}^*}}{1-\gamma}$$

Explored tree			
Algorithm: OMS	Analysis o●oooo	Dual switched systems	Outlook 000

Algorithm only expands nodes in the subtree:

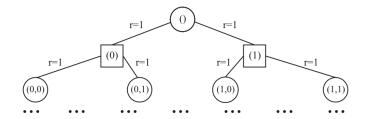
$$\mathcal{T}^* := \left\{ \boldsymbol{z}_d \ \Big| \left| \boldsymbol{v}^* - \boldsymbol{v}(\boldsymbol{z}') \right| \le \frac{\gamma^d}{1 - \gamma}, \forall \boldsymbol{z}' \text{ on path from root to } \boldsymbol{z}_d \right\}$$

• Intuition: From the information available down to node z_d (interval of values of width $\frac{\gamma^d}{1-\gamma}$), cannot decide whether the node is (not) optimal. So it must be explored.

Algorithm: OMS	Analysis ooeooo	Dual switched systems	Outlook

Example where the full tree is explored

- All rewards equal to 1, $v^* = \frac{1}{1-\gamma}$
- All solutions have value v^* , so T^* is the full tree
- $|\mathcal{T}_d^*| = (M_u M_w)^{d/2}$, branching factor $\kappa = \sqrt{M_u M_w}$



Algorithm: O		lysis ●●○○	Dual switched systems	Outlook 000
•				

General case: Branching factor

- Let $\kappa \in [1, \sqrt{M_u M_w}]$ = asymptotic branching factor of \mathcal{T}^*
- Problem simpler when κ smaller

Depth vs. bud	haet n		
Algorithm: OMS	Analysis oooo●o	Dual switched systems	Outlook 000

To reach depth *d* in tree with branching factor κ , we must expand $n = O(\kappa^d)$ nodes

$$\Rightarrow \quad d^* = \Omega(\frac{\log n}{\log \kappa})$$

Algorithm: OMS	Analysis ooooo●	Dual switched systems	Outlook 000

Final guarantee: Near-optimality vs. budget

Theorem

Oiven budget n, we have:

$$|\mathbf{v}^* - \mathbf{v}(\mathbf{z}^*)| \leq rac{\gamma^{d^*}}{1 - \gamma} = egin{cases} \mathrm{O}(n^{-rac{\log 1/\gamma}{\log \kappa}}) & ext{if } \kappa > 1 \ \mathrm{O}(\gamma^{cn}) & ext{if } \kappa = 1 \end{cases}$$

(ADPRL 2014)

- Faster convergence when κ smaller (simpler problem)
- Exponential convergence when $\kappa = 1$

6 Analysis

Application to dual switched systems

8 Outlook

• Actions *u*, *w* now have the meaning of switching signals, *u* controlled, *w* uncontrolled: **dual switched system**

(Bolzern et al., 2014)

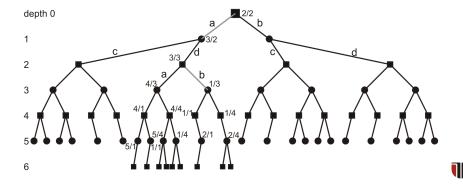
- Signals respectively obey minimum dwell times δ_u , δ_w
- Notation: subscript δ = constrained to obey dwell times
- If $\delta_u = \delta_w = 1$, problem reduces to standard min-max and OMS directly applies

Algorithm: OMS Analysis Dual switched systems Outlook

OMS δ for dual switched systems

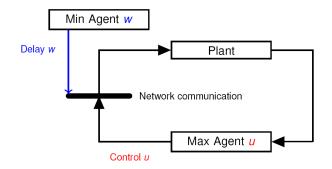
 $OMS\delta$ algorithm: mostly the same as OMS, but when node does not satisfy dwell time condition, only the child keeping the action constant is created

Example constrained tree for $\delta_u = \delta_w = 2$:



Algorithm: OMS	Analysis 000000	Dual switched systems	Outlook 000

Switched control over delayed network



• Max action = controlled "mode"

e.g. constant action or low-level controller

• Min action = network delay (multiple of sampling time)

Algorithm: OMS

Analysis

Dual switched systems

Outlook 000

Quanser rotational pendulum

System:

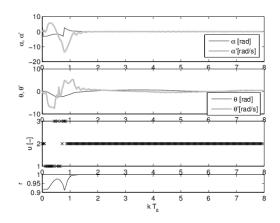
- x = rod angle α, base angle θ, angular velocities
- input ω = voltage
- Sampling time $T_{\rm s} = 0.04$

Goal: swing up & stabilize pointing up:

- Reward −x^TQx − ω^TRω, normalized to [0, 1]
- Discount factor $\gamma = \sqrt{0.95}$

Algorithm: OMS	Analysis	Dual switched systems	Outlook
	000000	○○○○●○○○○	000
Results			

- *M_u* = 3: #1 constant -6 V, #3 constant 6 V, #2 a stabilizing mode ω = Kx computed with LQR
- $M_w = 2$: 0 or 1-step delay



J

NI 12 12			
Algorithm: OMS	Analysis	Dual switched systems	Outlook
	oooooo	○○○○●●○○○	000

Near-optimality vs. depth

Similar to OMS

• If d^* is the largest depth expanded, the solution \hat{z} returned by OMS δ satisfies:

$$ig|oldsymbol{v}^{*}_{\delta} - oldsymbol{v}_{\delta}(\widehat{oldsymbol{z}})ig| \leq rac{\gamma^{oldsymbol{d}^{*}}}{1-\gamma}$$

Complexity r	nogeuro		
Algorithm: OMS	Analysis 000000	Dual switched systems	Outlook 000

Different from OMS, generalizes $OP\delta$

• At depth *d*, algorithm only expands in the subtree:

 $\mathcal{T}^*_{\delta,d} := \left\{ \mathbf{z}_d \mid \mathbf{z}_d \text{ obeys dwell time conditions }, \\ \left| \mathbf{v}^*_{\delta} - \mathbf{v}_{\delta}(\mathbf{z}') \right| \le rac{\gamma^d}{1-\gamma}, \forall \mathbf{z}' \text{ on path from root to } \mathbf{z}_d \right\}$

• Let $\delta = \min{\{\delta_u, \delta_w\}}, M = \max{\{M_u, M_w\}}$. Define $K \in [1, \delta M]$ the smallest positive number so that

$$\left|\mathcal{T}^*_{\delta, \boldsymbol{d}}\right| = \mathrm{O}(\boldsymbol{K}^{\boldsymbol{d}/\delta})$$

Algorithm: OMS Analysis **Dual switched systems** Outlook

Near-optimality vs. budget

Theorem

• Given budget *n*, we have:

$$ig| oldsymbol{v}_{\delta}^* - oldsymbol{v}_{\delta}(\widehat{oldsymbol{z}}) ig| \leq egin{cases} \mathrm{O}(n^{-\deltarac{\log 1/\gamma}{\log K}}) & ext{if } K > 1 \ \mathrm{O}(\gamma^{cn}) & ext{if } K = 1 \end{cases}$$

(ACC 2017)

Algorithm: OMS	Analysis 000000	Dual switched systems	Outloo 000

Comparison between OMS δ and OMS

- Just like in the single-agent case, when exploring the full trees, OMSδ converges faster than OMS, since its constrained tree is smaller
- However, the relationship will vary with the problem

- 5 Algorithm: Optimistic minimax search
- 6 Analysis
 - Application to dual switched systems

Algorithm: OMS	Analysis 000000	Dual switched systems	Outlook ●○○
Outlook			

Summary

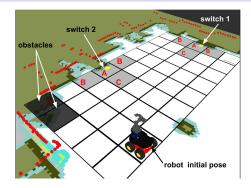
- Optimistic planning for general nonlinear systems, with performance guarantees
- Natural application to switched systems

Outlook

- Combination with learning
- Continuous and hybrid actions
- Stochastic uncontrolled mode w

Algorithm: OMS	Analysis 000000	Dual switched systems	Outlook ○●○

Stochastic-case planner for partially-observable MDPs



- Domestic robot makes sure all switches are off
- NSEW actions change position on grid, flip action succeeds stochastically
- Switch states observed incorrectly with certain probas
- Low-level SLAM and control

0000000	000000	00000000	00•
Algorithm: OMS	Analysis	Dual switched systems	Outlook

- Textbook: Munos, From Bandits to Monte Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning, Foundations and Trends in Machine Learning 7, 2014.
- Hren, Munos, OP of deterministic systems, EWRL 2008.

References

- Zhu, Antsaklis, Optimal control of switched hybrid systems: A brief survey, Discrete Event Dynamic Systems 25, 2015.
- Berliner, The B* Search Algorithm: A Best First Proof Procedure, Artificial Intelligence 1979.
- Bolzern, Colaneri, Nicolao, Design of stabilizing strategies for dual switching stochastic-deterministic linear systems, IFAC World Congress 2014.
- Busoniu, Daafouz, Bragagnolo, Morarescu, Planning for optimal control and performance certification in nonlinear systems with controlled or uncontrolled switches, Automatica 78, 2017.
- Busoniu, Munos, Pall, An Analysis of Optimistic, Best-First Search for Minimax Sequential Decision Making, ADPRL 2014.
- Ben Rejeb, Busoniu, Morarescu, Daafouz, Near-Optimal Control of Nonlinear Switched Systems with Non-Cooperative Switching Rules, ACC 2017.
- Pall, Tamas, Busoniu, An Analysis and Home Assistance Application of Online AEMS2 Planning, IROS 2016.