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Part IV

Approximate dynamic programming
and offline approximate
reinforcement learning
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RL for manipulation of a Rubik’s Cube (OpenAI)

https://openai.com/index/solving-rubiks-cube/
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The need for approximation

Classical RL – representation in tabular form, e.g., Q(x ,u)
separately for all values of x and u
In real applications, x , u often continuous (or discrete with
very many values)!

Tabular representation is impossible
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The need for approximation (continued)

In real applications, the functions of interest must often be
approximated
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Part IV in plan

Reinforcement learning problem
Optimal solution
Exact dynamic programming
Exact reinforcement learning
Approximation techniques
Approximate dynamic programming
Offline approximate reinforcement learning
Online approximate reinforcement learning
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Approximation

Approximation:
a function with (uncountably) infinitely many values
must be represented using a small number of values

f (x) f̂ (x)

?
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Parametric approximation

Parametric approximation: f̂ has a fixed form,
its output is determined by a vector of parameters θ:

f̂ (x ; θ)

1 Linear approximation – weighted combination
of features (basis functions) ϕi :

f̂ (x ; θ) = ϕ1(x)θ1 + ϕ2(x)θ2 + . . . ϕn(x)θn

=
n∑

i=1

ϕi(x)θi = ϕ⊤(x)θ

Note: linear in parameters, can be nonlinear in x

2 Nonlinear approximation: stays in the general form
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Linear parametric approximation: Interpolation

Interpolation:
D-dimensional grid of points
Multilinear interpolation between points
Equivalent to pyramidal features
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Linear parametric approximation: RBF

Radial basis function (Gaussian):

ϕ(x) = exp

[
−(x − c)2

b2

]
(1-dim);

= exp

[
−

D∑
d=1

(xd − cd)
2

b2
d

]
(D-dim)

Optionally, normalization: ϕ̃i(x) =
ϕi (x)∑

i′ ̸=i ϕi′ (x)
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Training linear approximators: least squares

ns points (xj , f (xj)), objective described by system of
equations:

f̂ (x1; θ) = ϕ1(x1)θ1 + ϕ2(x1)θ2 + . . . ϕn(x1)θn = f (x1)

· · ·

f̂ (xns ; θ) = ϕ1(xns)θ1 + ϕ2(xns)θ2 + . . . ϕn(xns)θn = f (xns)

Matrix form:ϕ1(x1) ϕ2(x1) . . . ϕn(x1)
· · · · · · · · · · · ·

ϕ1(xns) ϕ2(xns) . . . ϕn(xns)

 · θ =

 f (x1)
· · ·

f (xns)

 Aθ = b

Linear regression
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Least squares (continued)

Overdetermined system (ns > n), equations cannot all be
satisfied with equality.
⇒ Solve in the least-squares sense:

min
θ

ns∑
j=1

[
f (xj)− f̂ (xj ; θ)

]2

...linear algebra and analysis...

θ = (A⊤A)−1A⊤b (⇐ (A⊤A)θ = A⊤b)
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Example: Rosenbrock’s “banana” function

f (x) = (1− x1)
2 + 100[(x2 + 1.5)− x2

1 ]
2, x = [x1, x2]

⊤

Training: 200 points, uniformly randomly distributed
Validation: 31× 31 point grid
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Rosenbrock function: Linear approximator results

Interpolation on a 6x6 grid: 6x6 RBFs:

Interpolation = collection of multilinear surfaces
RBF approximation is smoother (wide RBFs)
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Nonlinear parametric approximation: neural network

Neural network:
Neurons with (non)linear activation functions
Interconnected in multiple layers, through weighted
connections + biases
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Rosenbrock function: Neural network result

One hidden layer with 10 neurons and tangent-sigmoid
activation functions + linear output layer. 500 training epochs.

Thanks to the greater flexibility of the neural network, the
results are better than those with linear approximators.
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Neural network to find features

Usually, the last layer of a neural network is linear, leading
again to the feature-based approximator:

f̂ (x ; θ) = ϕ⊤(x ; θfeat)θlin

where θ = [θT
feat, θ

T
lin]

T .

Key difference from linear approximation: features ϕ are now
themselves parametrized – by θfeat – and automatically found
by the neural network. In linear approximation, the features
are manually designed.

Note that overall the approximator is nonlinear!
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Neural network features

Example: Convolutional neural net features:

Details to follow later (with Florin)
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Comparison between approximators

Linear approximators are easier to handle theoretically
than nonlinear ones
Nonlinear approximators are more flexible than linear ones
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Approximation in RL

Problems to be solved:
1 Representation: Q(x ,u), V (x), h(x)

Using the approximation techniques discussed earlier

2 Maximization: e.g., maxu Q(x ,u)
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Option 1: h implicit

The policy is implicitly represented...

...by computing greedy actions on demand from Q̂:

h(x) = argmax
u

Q̂(x ,u)

⇒ Main problem: approximating the Q-function
Approximator must ensure efficient solution for argmax

Will be the focus in this lecture
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Option 2: h explicit

The policy is explicitly approximated: ĥ(x)

Advantages:
Continuous actions are easier to handle
The representation can more easily incorporate prior
knowledge
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Action discretization

Approximator must ensure efficient solution for argmax

⇒ Typically: discretize actions

Select M discrete actions u1, . . . ,uj , . . . ,uM ∈ U
Compute “argmax” using explicit enumeration

Example: discretization on a grid
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State-space approximation

Often features ϕ1, . . . , ϕN : X → [0,∞)

Ex. pyramidal, RBF

or perhaps found by neural network
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Approximating Q with discrete actions

Given:
1 N features ϕ1, . . . , ϕN
2 M discrete actions u1, . . . ,uM

Store:
3 N ·M parameters θ

(for each feature–discrete action pair)



Approximation techniques Approximation in DP&RL Q-iteration with interpolation Fitted Q-iteration

Approximating Q with discrete actions (continued)

Approximate Q-function:

Q̂(x ,uj ; θ) =
N∑

i=1

ϕi(x)θi,j = [ϕ1(x) . . . ϕN(x)]

θ1,j
...

θN,j


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Benefit of approximation in RL

Approximation allows applying RL
to realistic problems
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Simple control example: Inverted pendulum

State x = [α, α̇]⊤ with
angle α ∈ [−π, π) rad,
velocity α̇ ∈ [−15π,15π] rad/s
Action u ∈ [−3,3]V
Dynamics:

α̈ = 1/J·
[
mgl sin(α)− (b +

K 2

R
)α̇+

K
R

u
]

Objective: stabilize pointing up, encoded by reward:

ρ(x ,u) = −5α2 − 0.1α̇2 − u2

normalized to [0,1]
Discount factor γ = 0.98
Insufficient power⇒ swing back & forth before stabilizing
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Inverted pendulum: Optimal solution

Left: Q-function for u = 0 Right: policy

Replay
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New questions raised by approximation

1 Convergence: does the algorithm remain convergent?

2 Near-optimality: is the solution at a controlled distance
from the optimum?

3 Consistency: for an ideal approximator with infinite
precision, is the optimal solution recovered?



Approximation techniques Approximation in DP&RL Q-iteration with interpolation Fitted Q-iteration

Algorithm landscape

By model usage:
Model-based: f , ρ known a priori
Model-free: f , ρ unknown (reinforcement learning)

By interaction level:
Offline: algorithm runs in advance
Online: algorithm runs with the system

Exact vs. approximate:
Exact: x ,u small number of discrete values
Approximate: x ,u continuous (or many discrete values)
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Q-function approximator

Interpolation = pyramidal features

Each feature i has center xi

θi,j can be viewed as Q̂(xi ,uj), since: ϕi(xi) = 1, ϕi ′(xi) = 0
for i ′ ̸= i



Approximation techniques Approximation in DP&RL Q-iteration with interpolation Fitted Q-iteration

Q-iteration with interpolation

Recall classical Q-iteration:
repeat at each iteration ℓ

for all x ,u do
Qℓ+1(x ,u)← ρ(x ,u) + γmaxu′ Qℓ(f (x ,u),u′)

end for
until convergence

Q-iteration with interpolation
repeat at each iteration ℓ

for all centers xi , discrete actions uj do
θℓ+1,i,j ← ρ(xi ,uj) + γmaxj ′ Q̂(f (xi ,uj),uj ′ ; θℓ)

end for
until convergence

Stochastic version exists, but here we only consider the
deterministic case
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Illustration
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Policy

Recall the optimal policy:

h∗(x) = argmax
u

Q∗(x ,u)

When Q is approximated using action discretization (e.g.
the interpolating approximator above):

ĥ∗(x) = argmax
uj , j=1,...,M

Q̂(x ,uj ; θ
∗)

θ∗ = parameters at convergence
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Q-iteration w/ interpolation: Illustration of properties

Monotonic convergence to a near-optimal solution



Approximation techniques Approximation in DP&RL Q-iteration with interpolation Fitted Q-iteration

Convergence

Similar to classical Q-iteration:
Each iteration is a contraction with factor γ:

∥θℓ+1 − θ∗∥∞ ≤ γ ∥θℓ − θ∗∥∞
⇒ Monotonic convergence to θ∗
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Near-optimality

Characterize approximator by the minimum distance to Q∗:

ε = min
θ

∥∥∥Q∗(x ,u)− Q̂(x ,u; θ)
∥∥∥
∞

Then:
1 Suboptimality of resulting Q̂(x ,u; θ∗) is bounded:∥∥∥Q∗(x ,u)− Q̂(x ,u; θ∗)

∥∥∥
∞
≤ 2ε

1− γ

2 Suboptimality of policy ĥ∗ is bounded: by∥∥∥Q∗(x ,u)−Qĥ∗
(x ,u)

∥∥∥
∞
≤ 4ε

(1− γ)2
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Consistency

Consistency: Q̂θ∗ → Q∗ as resolution increases

Resolution:


δx = max

x
min

i
∥x − xi∥2

δu = max
u

min
j

∥∥u − uj
∥∥

2

Given certain technical conditions,
⇒ limδx→0,δu→0 Q̂θ∗ = Q∗ — consistency
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Inverted pendulum: Q-iteration w/ interpolation, demo

Features: equidistant grid 41× 21
Discretization: 5 actions, distributed around 0
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Inverted pendulum: Q-iteration w/ interpolation, demo
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Fitted Q-iteration

Extend Q-iteration with interpolation so that it works:
with other approximators
model-free – RL
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Intermediate model-based algorithm

Recall Q-iteration with interpolation:
for all xi , uj θℓ+1,i,j ← ρ(xi ,uj) + γmaxj′ Q̂(f (xi ,uj),uj′ ; θℓ) end for

1 Use arbitrary state-action samples
2 Extend to generic approximator
3 Find parameters using least-squares

get state-action samples (xs,us), s = 1, . . . ,ns
repeat at each iteration ℓ

for s = 1, . . . ,ns do
compute bootstrapped target for Q̂(xs,us; θ):
R̂s ← ρ(xs,us) + γmaxu′ Q̂(f (xs,us),u′; θℓ)

end for
θℓ+1 ← argmin

∑ns
s=1

[
R̂s − Q̂(xs,us; θ)

]2

until termination

Q-iteration with interpolation is equivalent to this generalized
algorithm if samples = all combinations xi ,uj
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Fitted Q-iteration: Algorithm

4 Use transitions instead of model

Fitted Q-iteration
get or collect dataset D = {(xs,us, rs, x ′

s), s = 1, . . . ,ns}
repeat at each iteration ℓ

for s = 1, . . . ,ns do
compute bootstrapped target for Q̂(xs,us; θ):
R̂s ← rs + γmaxu′ Q̂(x ′

s,u′; θℓ)
end for
θℓ+1 ← argmin

∑ns
s=1

[
R̂s − Q̂(xs,us; θ)

]2
=: L(θ)

until termination

L is called the loss function
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Deterministic versus stochastic

In the deterministic case, x ′
s = f (xs,us), rs = ρ(xs,us)

– substitutions are exact

In the stochastic case, x ′
s ∼ f̃ (xs,us, ·), rs = ρ̃(xs,us, x ′

s)

⇒ Algorithm remains valid; intuition:
Ideally, Q(x ,u)← Ex′

{
r + γmaxu′ Q̂(x ′,u′; θℓ)

}
Assuming for the moment all samples are at
(xs,us) = (x ,u),

min
θ

ns∑
s=1

∣∣∣∣rs + γmax
u′

Q̂(x ′
s,u

′; θℓ)− Q̂(x ,u; θ)
∣∣∣∣2

leads to Q̂(x ,u; θ) ≈ E {. . . } (like in Monte-Carlo)
Even if (xs,us) do not repeat, least-squares still
approximate the expected value



Approximation techniques Approximation in DP&RL Q-iteration with interpolation Fitted Q-iteration

Illustration

Targets are bootstrapping estimates for Q∗:

and therefore related to temporal differences.
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Fitted Q-iteration in the unified perspective

Belongs in the TD corner, but similar to DP in that it updates
synchronously the complete Q-function across the entire
state-action space.
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Fitted Q-iteration: Illustration of properties

Convergence to a sequence of solutions,
each of them near-optimal
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Inv. pend.: Fitted Q-iteration w/ interpolation, demo

Features: equidistant grid 11× 9
Action discretization: 3 values, +/- max voltage and 0
Dataset: 10000 samples, uniformly distributed in the
continuous x - discretized u space
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Key terms in this part

function approximation
features / basis functions and parameters
linear and nonlinear approximation
interpolation, radial basis functions, neural network
action discretization
approximate dynamic programming
fitted Q-iteration
convergence, near-optimality, consistency
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Exercises

1 Prove that the updates of Q-iteration with interpolation:

θℓ+1,i,j ← ρ(xi ,uj) + γmax
j ′

Q̂(f (xi ,uj),uj ′ ; θℓ)

are contractive with factor γ. Hint: it is essential that the
features sum up to 1, and therefore the approximate
Q-value is an average of the parameters!

2 What is the limit of the distance ε between Q∗ and the
space of representable Q-functions when δx → 0, δu → 0?
Explain why.

3 Write an approximate V-iteration method with interpolation
and prove that its updates are contractive.

4 Write a fitted V-iteration method. Is this method
model-free?
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