Reinforcement learning Master CPS, Year 2 Semester 1

Lucian Buşoniu, Florin Gogianu

Q-iteration with interpolation

Fitted Q-iteration

Part IV

Approximate dynamic programming and offline approximate reinforcement learning

Approximation techniques

Approximation in DP&RL

Q-iteration with interpolation

Fitted Q-iteration

RL for manipulation of a Rubik's Cube (OpenAI)

Q-iteration with interpolation

Fitted Q-iteration

The need for approximation

- Classical RL representation in tabular form, e.g., Q(x, u) separately for all values of x and u
- In real applications, x, u often continuous (or discrete with very many values)!

• Tabular representation is impossible

Approximation techniques

Approximation in DP&RL

Q-iteration with interpolation

Fitted Q-iteration

The need for approximation (continued)

In real applications, the functions of interest must often be approximated

Part IV in plan

- Reinforcement learning problem
- Optimal solution
- Exact dynamic programming
- Exact reinforcement learning
- Approximation techniques
- Approximate dynamic programming
- Offline approximate reinforcement learning
- Online approximate reinforcement learning

Approximation techniques

Approximation in DP&RL

Q-iteration with interpolation

Fitted Q-iteration

Contents of part IV

Approximation techniques

- 2 Approximation in DP&RL
- Q-iteration with interpolation 3
- Fitted Q-iteration 4

Approximation

Approximation:

a function with (uncountably) infinitely many values must be represented using a small number of values

Q-iteration with interpolation

Fitted Q-iteration

Parametric approximation

Parametric approximation: \hat{f} has a fixed form, its output is determined by a vector of **parameters** θ :

 $\widehat{f}(\boldsymbol{x};\theta)$

Linear approximation – weighted combination of features (basis functions) *φ_i*:

$$\widehat{f}(x; heta) = \phi_1(x) heta_1 + \phi_2(x) heta_2 + \dots \phi_n(x) heta_n$$

 $= \sum_{i=1}^n \phi_i(x) heta_i = \phi^{ op}(x) heta$

Note: linear in parameters, can be nonlinear in x

Nonlinear approximation: stays in the general form

Linear parametric approximation: Interpolation

Interpolation:

- D-dimensional grid of points
- Multilinear interpolation between points
- Equivalent to pyramidal features

Q-iteration with interpolation

Fitted Q-iteration

Linear parametric approximation: RBF

Radial basis function (Gaussian):

$$\phi(x) = \exp\left[-\frac{(x-c)^2}{b^2}\right] \quad (1-\text{dim});$$
$$= \exp\left[-\sum_{d=1}^{D} \frac{(x_d - c_d)^2}{b_d^2}\right] \quad (D-\text{dim})$$

Optionally, normalization: $\tilde{\phi}_i(x) = \frac{\phi_i(x)}{\sum_{i'\neq i} \phi_{i'}(x)}$

Training linear approximators: least squares

 n_s points (x_j, f(x_j)), objective described by system of equations:

$$\widehat{f}(x_1;\theta) = \phi_1(x_1)\theta_1 + \phi_2(x_1)\theta_2 + \dots + \phi_n(x_1)\theta_n = f(x_1)$$
...

$$\widehat{f}(x_{n_s};\theta) = \phi_1(x_{n_s})\theta_1 + \phi_2(x_{n_s})\theta_2 + \ldots + \phi_n(x_{n_s})\theta_n = f(x_{n_s})$$

Matrix form:

$$\begin{bmatrix} \phi_1(x_1) & \phi_2(x_1) & \dots & \phi_n(x_1) \\ \dots & \dots & \dots & \dots \\ \phi_1(x_{n_s}) & \phi_2(x_{n_s}) & \dots & \phi_n(x_{n_s}) \end{bmatrix} \cdot \theta = \begin{bmatrix} f(x_1) \\ \dots \\ f(x_{n_s}) \end{bmatrix} \qquad \mathbf{A}\theta = \mathbf{b}$$

Linear regression

Least squares (continued)

 Overdetermined system (n_s > n), equations cannot all be satisfied with equality.

 \Rightarrow Solve in the least-squares sense:

$$\min_{\theta} \sum_{j=1}^{n_{s}} \left[f(x_{j}) - \widehat{f}(x_{j};\theta) \right]^{2}$$

...linear algebra and analysis...

•
$$\theta = (A^{\top}A)^{-1}A^{\top}b$$
 ($\Leftarrow (A^{\top}A)\theta = A^{\top}b$)

Q-iteration with interpolation

Fitted Q-iteration

Example: Rosenbrock's "banana" function

•
$$f(x) = (1 - x_1)^2 + 100[(x_2 + 1.5) - x_1^2]^2, \qquad x = [x_1, x_2]^\top$$

- Training: 200 points, uniformly randomly distributed
- Validation: 31 × 31 point grid

Q-iteration with interpolation

Fitted Q-iteration

Rosenbrock function: Linear approximator results

- Interpolation = collection of multilinear surfaces
- RBF approximation is smoother (wide RBFs)

Nonlinear parametric approximation: neural network

Neural network:

- Neurons with (non)linear activation functions
- Interconnected in multiple layers, through weighted connections + biases

Fitted Q-iteration

Rosenbrock function: Neural network result

One hidden layer with 10 neurons and tangent-sigmoid activation functions + linear output layer. 500 training epochs.

Thanks to the greater flexibility of the neural network, the results are better than those with linear approximators.

Neural network to find features

Usually, the last layer of a neural network is linear, leading again to the feature-based approximator:

$$\widehat{f}(\boldsymbol{x};\theta) = \phi^{\top}(\boldsymbol{x};\theta_{\text{feat}})\theta_{\text{lin}}$$

where $\theta = [\theta_{\text{feat}}^T, \theta_{\text{lin}}^T]^T$.

Key difference from linear approximation: features ϕ are now themselves parametrized – by θ_{feat} – and **automatically found by the neural network**. In linear approximation, the features are manually designed.

Note that overall the approximator is nonlinear!

Neural network features

Example: Convolutional neural net features:

Details to follow later (with Florin)

Fitted Q-iteration

Comparison between approximators

- Linear approximators are easier to handle theoretically than nonlinear ones
- Nonlinear approximators are more flexible than linear ones

- 2 Approximation in DP&RL
- 3 Q-iteration with interpolation
- 4 Fitted Q-iteration

Approximation in RL

Problems to be solved:

- Representation: Q(x, u), V(x), h(x)Using the approximation techniques discussed earlier
- 2 Maximization: e.g., $\max_u Q(x, u)$

Option 1: h implicit

- The policy is implicitly represented...
- ...by computing greedy actions on demand from \widehat{Q} :

$$h(x) = rg\max_{u} \widehat{Q}(x, u)$$

- ⇒ Main problem: approximating the Q-function
 - Approximator must ensure efficient solution for arg max
 - Will be the focus in this lecture

Option 2: h explicit

• The policy is explicitly approximated: $\hat{h}(x)$

Advantages:

- Continuous actions are easier to handle
- The representation can more easily incorporate prior knowledge

Action discretization

- Approximator must ensure efficient solution for arg max
- ⇒ Typically: discretize actions
 - Select *M* discrete actions *u*₁,..., *u_j*,..., *u_M* ∈ *U* Compute "arg max" using explicit enumeration
 - Example: discretization on a grid $u_1 \quad u_2 \quad \dots \quad u_M$ + + + + + action space U

Q-iteration with interpolation

Fitted Q-iteration

State-space approximation

- Often features $\phi_1, \ldots, \phi_N : X \to [0, \infty)$
- Ex. pyramidal, RBF

or perhaps found by neural network

Fitted Q-iteration

Approximating Q with discrete actions

Given:

- **1** N features ϕ_1, \ldots, ϕ_N
- 2 *M* discrete actions u_1, \ldots, u_M

Store:

 N · M parameters θ (for each feature–discrete action pair)

Approximating Q with discrete actions (continued)

Approximate Q-function:

$$\widehat{Q}(x, u_j; \theta) = \sum_{i=1}^{N} \phi_i(x) \theta_{i,j} = [\phi_1(x) \dots \phi_N(x)] \begin{bmatrix} \theta_{1,j} \\ \vdots \\ \theta_{N,j} \end{bmatrix}$$

Approximation techniques

Approximation in DP&RL

Q-iteration with interpolation

Fitted Q-iteration

Benefit of approximation in RL

Approximation allows applying RL to realistic problems

Q-iteration with interpolation

Fitted Q-iteration

Simple control example: Inverted pendulum

- State $\mathbf{x} = [\alpha, \dot{\alpha}]^{\top}$ with angle $\alpha \in [-\pi, \pi)$ rad, velocity $\dot{\alpha} \in [-15\pi, 15\pi]$ rad/s
- Action *u* ∈ [−3, 3] V
- Oynamics:

$$\ddot{\alpha} = 1/J \cdot \left[mgl\sin(\alpha) - (b + \frac{K^2}{R})\dot{\alpha} + \frac{K}{R}u \right]$$

• Objective: stabilize pointing up, encoded by reward:

$$\rho(\mathbf{x}, \mathbf{u}) = -5\alpha^2 - 0.1\dot{\alpha}^2 - \mathbf{u}^2$$

normalized to [0, 1]

- Discount factor $\gamma = 0.98$
- Insufficient power ⇒ swing back & forth before stabilizing

Fitted Q-iteration

Inverted pendulum: Optimal solution

Left: Q-function for u = 0**Right:** policy

h(α,α') [V]

Fitted Q-iteration

New questions raised by approximation

- Convergence: does the algorithm remain convergent?
- Near-optimality: is the solution at a controlled distance from the optimum?
- Consistency: for an ideal approximator with infinite precision, is the optimal solution recovered?

Algorithm landscape

By model usage:

- Model-based: f, ρ known a priori
- Model-free: f, ρ unknown (reinforcement learning)

By interaction level:

- Offline: algorithm runs in advance
- Online: algorithm runs with the system

Exact vs. approximate:

- Exact: x, u small number of discrete values
- Approximate: x, u continuous (or many discrete values)

- Approximation techniques
- 2 Approximation in DP&RL
- Q-iteration with interpolation
- 4 Fitted Q-iteration

Q-iteration with interpolation

Fitted Q-iteration

Q-function approximator

Interpolation = pyramidal features

- Each feature *i* has center *x_i*
- $\theta_{i,j}$ can be viewed as $\widehat{Q}(x_i, u_j)$, since: $\phi_i(x_i) = 1$, $\phi_{i'}(x_i) = 0$ for $i' \neq i$

Q-iteration with interpolation

Recall classical Q-iteration:

```
repeat at each iteration \ell
for all x, u do
Q_{\ell+1}(x, u) \leftarrow \rho(x, u) + \gamma \max_{u'} Q_{\ell}(f(x, u), u')
end for
until convergence
```

Q-iteration with interpolation

repeat at each iteration ℓ for all centers x_i , discrete actions u_j do $\theta_{\ell+1,i,j} \leftarrow \rho(x_i, u_j) + \gamma \max_{j'} \widehat{Q}(f(x_i, u_j), u_{j'}; \theta_\ell)$ end for until convergence

Stochastic version exists, but here we only consider the deterministic case

Approximation techniques

Approximation in DP&RL

Q-iteration with interpolation

Fitted Q-iteration

Illustration

Policy

• Recall the optimal policy:

$$h^*(x) = \underset{u}{\operatorname{arg\,max}} Q^*(x, u)$$

• When *Q* is approximated using action discretization (e.g. the interpolating approximator above):

$$\widehat{h}^*(x) = \underset{u_j, \ j=1,...,M}{\operatorname{arg max}} \widehat{Q}(x, u_j; \theta^*)$$

 θ^* = parameters at convergence

Q-iteration w/ interpolation: Illustration of properties

Monotonic convergence to a near-optimal solution

Fitted Q-iteration

Convergence

Similar to classical Q-iteration:

• Each iteration is a contraction with factor γ :

$$\left\|\theta_{\ell+1} - \theta^*\right\|_{\infty} \le \gamma \left\|\theta_{\ell} - \theta^*\right\|_{\infty}$$

Q-iteration with interpolation

Fitted Q-iteration

Near-optimality

Characterize approximator by the minimum distance to Q^* :

Suboptimality of resulting $\widehat{Q}(x, u; \theta^*)$ is bounded:

$$\left\| oldsymbol{Q}^*(x,u) - \widehat{oldsymbol{Q}}(x,u; heta^*)
ight\|_\infty \leq rac{2arepsilon}{1-\gamma}$$

2 Suboptimality of policy \hat{h}^* is bounded: by

$$\left\| Q^*(x,u) - Q^{\widehat{h}^*}(x,u) \right\|_{\infty} \leq \frac{4\varepsilon}{(1-\gamma)^2}$$

Q-iteration with interpolation

Fitted Q-iteration

Consistency

• Consistency: $\widehat{Q}^{ heta^*} o Q^*$ as resolution increases

• Resolution:
$$\begin{cases} \delta_x = \max_x \min_j \|x - x_j\|_2\\ \delta_u = \max_u \min_j \|u - u_j\|_2 \end{cases}$$

• Given certain technical conditions, $\Rightarrow \lim_{\delta_x \to 0, \delta_u \to 0} \widehat{Q}^{\theta^*} = Q^* - \text{consistency}$

Q-iteration with interpolation

Fitted Q-iteration

Inverted pendulum: Q-iteration w/ interpolation, demo

Features: equidistant grid 41×21 Discretization: 5 actions, distributed around 0

Approximation techniques

Approximation in DP&RL

Q-iteration with interpolation

Inverted pendulum: Q-iteration w/ interpolation, demo

J

- Approximation techniques
- 2 Approximation in DP&RL
- 3 Q-iteration with interpolation
- 4 Fitted Q-iteration

Fitted Q-iteration

Extend Q-iteration with interpolation so that it works:

- with other approximators
- model-free RL

Fitted Q-iteration

Intermediate model-based algorithm

Recall Q-iteration with interpolation:

for all x_i , $u_j = \theta_{\ell+1,i,j} \leftarrow \rho(x_i, u_j) + \gamma \max_{j'} \widehat{Q}(f(x_i, u_j), u_{j'}; \theta_{\ell})$ end for

- Use arbitrary state-action samples
- Extend to generic approximator
- Find parameters using least-squares

get state-action samples (x_s, u_s) , $s = 1, ..., n_s$ repeat at each iteration ℓ

for $s = 1, ..., n_s$ do compute bootstrapped target for $\widehat{Q}(x_s, u_s; \theta)$: $\widehat{R}_s \leftarrow \rho(x_s, u_s) + \gamma \max_{u'} \widehat{Q}(f(x_s, u_s), u'; \theta_\ell)$ end for

$$heta_{\ell+1} \leftarrow \arg\min \sum_{s=1}^{n_s} \left[\hat{R}_s - \widehat{Q}(x_s, u_s; \theta) \right]$$

until termination

Q-iteration with interpolation is equivalent to this generalized algorithm if samples = all combinations x_i , u_i

Fitted Q-iteration: Algorithm

Fitted Q-iteration

get or collect dataset $\mathcal{D} = \{(x_s, u_s, r_s, x'_s), s = 1, ..., n_s\}$ repeat at each iteration ℓ for $s = 1, ..., n_s$ do compute bootstrapped target for $\widehat{Q}(x_s, u_s; \theta)$: $\widehat{R}_s \leftarrow r_s + \gamma \max_{u'} \widehat{Q}(x'_s, u'; \theta_\ell)$ end for $\theta_{\ell+1} \leftarrow \arg \min \sum_{s=1}^{n_s} [\widehat{R}_s - \widehat{Q}(x_s, u_s; \theta)]^2 =: \mathcal{L}(\theta)$ until termination

 ${\mathcal L}$ is called the ${\color{black} \text{loss function}}$

Deterministic versus stochastic

- In the deterministic case, x'_s = f(x_s, u_s), r_s = ρ(x_s, u_s)
 substitutions are exact
- In the stochastic case, x'_s ~ *f̃*(x_s, u_s, ·), r_s = *ρ̃*(x_s, u_s, x'_s)
 ⇒ Algorithm remains valid; intuition:
 - Ideally, $Q(x, u) \leftarrow \mathrm{E}_{x'}\left\{r + \gamma \max_{u'} \widehat{Q}(x', u'; \theta_\ell)\right\}$
 - Assuming for the moment all samples are at $(x_s, u_s) = (x, u)$,

$$\min_{\theta} \sum_{s=1}^{n_s} \left| r_s + \gamma \max_{u'} \widehat{Q}(x'_s, u'; \theta_\ell) - \widehat{Q}(x, u; \theta) \right|^2$$

leads to Q(x, u; θ) ≈ E {...} (like in Monte-Carlo)
Even if (x_s, u_s) do not repeat, least-squares still approximate the expected value

Q-iteration with interpolation

Fitted Q-iteration

Illustration

Targets are bootstrapping estimates for Q^* :

and therefore related to temporal differences.

Fitted Q-iteration

Fitted Q-iteration in the unified perspective

Belongs in the TD corner, but similar to DP in that it updates synchronously the complete Q-function across the entire state-action space.

Fitted Q-iteration

Fitted Q-iteration: Illustration of properties

Convergence to a **sequence** of solutions, each of them **near-optimal**

Inv. pend.: Fitted Q-iteration w/ interpolation, demo

Features: equidistant grid 11×9 Action discretization: 3 values, +/- max voltage and 0 Dataset: 10000 samples, uniformly distributed in the continuous *x* - discretized *u* space

Key terms in this part

- function approximation
- features / basis functions and parameters
- linear and nonlinear approximation
- interpolation, radial basis functions, neural network
- action discretization
- approximate dynamic programming
- fitted Q-iteration
- convergence, near-optimality, consistency

Exercises

Prove that the updates of Q-iteration with interpolation:

$$\theta_{\ell+1,i,j} \leftarrow \rho(x_i, u_j) + \gamma \max_{j'} \widehat{Q}(f(x_i, u_j), u_{j'}; \theta_\ell)$$

are contractive with factor γ . Hint: it is essential that the features sum up to 1, and therefore the approximate Q-value is an average of the parameters!

- What is the limit of the distance ε between Q* and the space of representable Q-functions when δ_x → 0, δ_u → 0? Explain why.
- Write an approximate V-iteration method with interpolation and prove that its updates are contractive.
- Write a fitted V-iteration method. Is this method model-free?