Reinforcement learning Master CPS, Year 2 Semester 1

Lucian Buşoniu, Florin Gogianu

Part V

Online approximate reinforcement learning

Recap: need for approximation

 In real applications, x, u often continuous (or discrete with very many values)

- Tabular representation impossible
- Approximate functions of interest Q(x, u), V(x), h(x)

Recap: Part 4 – Offline approximate DP and RL

- a model f, ρ
- data (x_s, u_s, r_s, x_s'), $s = 1, \ldots, n_s$
 - find an approximate solution $\widehat{Q}(x, u)$, $\widehat{h}(x)$, etc.
 - control the system using the solution found

Algorithms discussed:

- Q-iteration with interpolation
- Fitted Q-iteration

Part V in plan

- Reinforcement learning problem
- Optimal solution
- Exact dynamic programming
- Exact reinforcement learning
- Approximation techniques
- Approximate dynamic programming
- Offline approximate reinforcement learning
- Online approximate reinforcement learning

Algorithm landscape

By model usage:

- Model-based: f, ρ known a priori
- Model-free: f, ρ unknown (reinforcement learning)

By interaction level:

- Offline: algorithm runs in advance
- Online: algorithm runs with the system

Exact vs. approximate:

- Exact: x, u small number of discrete values
- Approximate: x, u continuous (or many discrete values)

RL principle

We are now truly following, online, the RL interaction scheme

Many algorithms exist; we discuss just a few

Contents of part V

Approximate TD methods

- Approximate SARSA
- Approximate Q-learning
- Maximization and discussion

Policy gradient

3 Outlook

Recall classical SARSA

SARSA with $\varepsilon\text{-greedy}$

for each trajectory do initialize x_0 $u_{0} = \begin{cases} \arg \max_{u} Q(x_{0}, u) & \text{w.p. } (1 - \varepsilon_{0}) \\ \text{unif. random} & \text{w.p. } \varepsilon_{0} \end{cases}$ repeat at each step k apply u_k , measure x_{k+1} , receive r_{k+1} $u_{k+1} = \begin{cases} \arg \max_{u} Q(x_{k+1}, u) & \text{w.p. } (1 - \varepsilon_{k+1}) \\ \text{unif. random} & \text{w.p. } \varepsilon_{k+1} \end{cases}$ $Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha_k$ $[r_{k+1} + \gamma Q(x_{k+1}, u_{k+1}) - Q(x_k, u_k)]$ until trajectory finished end for

Recall derivation of SARSA (on-policy) update

• Update:

$$\begin{aligned} \mathcal{Q}(x_k, u_k) \leftarrow \mathcal{Q}(x_k, u_k) + \alpha_k [r_{k+1} + \gamma \mathcal{Q}(x_{k+1}, u_{k+1}) - \mathcal{Q}(x_k, u_k)] \\ = \mathcal{Q}(x_k, u_k) + \alpha_k [\hat{R}_k - \mathcal{Q}(x_k, u_k)] \end{aligned}$$

- *Â_k* is a bootstrapped estimate (which exploits the Bellman equation) of the Monte-Carlo return *R_k* from (*x_k*, *u_k*) under the current policy *h*
- *R_k* is itself a sample of *Q^h*(*x_k*, *u_k*), so in the end we are running an estimated version of the ideal update:

$$Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha_k [Q^h(x_k, u_k) - Q(x_k, u_k)]$$

Stochastic gradient descent for approximate case

- Extend this idea to a parametric approximator $\hat{Q}(x, u; \theta)$
- We can no longer update *Q* directly, instead we update θ using stochastic gradient descent (SGD) on the square approximation error:

$$\theta_{k+1} = \theta_k - \frac{1}{2} \alpha_k \nabla_\theta \left[Q^h(x_k, u_k) - \widehat{Q}(x_k, u_k; \theta_k) \right]^2$$

= $\theta_k + \alpha_k \nabla_\theta \widehat{Q}(x_k, u_k; \theta_k) \left[Q^h(x_k, u_k) - \widehat{Q}(x_k, u_k; \theta_k) \right]$

• Replace $Q^h(x_k, u_k)$ by Monte Carlo sample R_k , then R_k by its bootstrapped estimate $\hat{R}_k = r_{k+1} + \gamma \hat{Q}(x_{k+1}, u_{k+1}; \theta_k)$: $\theta_{k+1} = \theta_k + \alpha_k \nabla_{\theta} \hat{Q}(x_k, u_k; \theta_k) \left[r_{k+1} + \gamma \hat{Q}(x_{k+1}, u_{k+1}; \theta_k) - \hat{Q}(x_k, u_k; \theta_k) \right]$

Semigradient

$$\theta_{k+1} = \theta_k + \alpha_k \nabla_\theta \widehat{Q}(x_k, u_k; \theta_k) \left[r_{k+1} + \gamma \widehat{Q}(x_{k+1}, u_{k+1}; \theta_k) - \widehat{Q}(x_k, u_k; \theta_k) \right]$$

- The final update is not a full gradient descent, because R

 depends on θ_k via Q
 (x_{k+1}, u_{k+1}; θ_k), but only the second term of the error is differentiated!
- \Rightarrow Such methods are called **semigradient**.
 - The term in squared brackets is an **approximate temporal difference**.

Illustration

Graphical illustration is similar to the classical case:

but now approximation requires use of gradients

Objective and comparison to fitted methods

$$\theta_{k+1} \leftarrow \theta_k + \alpha_k \nabla_{\theta} \widehat{Q}(\mathbf{x}_k, \mathbf{u}_k; \theta_k) \left[Q^h(\mathbf{x}_k, \mathbf{u}_k) - \widehat{Q}(\mathbf{x}_k, \mathbf{u}_k; \theta_k) \right]$$

minimizes the following objective under the distribution arising from (x_k, u_k) samples:

$$\mathcal{L}_{\text{eval}} = \mathrm{E}\left\{\left[\mathcal{Q}^{h}(x, u) - \widehat{\mathcal{Q}}(x, u; \theta)\right]^{2}\right\}$$

• Compare to fitted Q-iteration objective, where the distribution is implicitly also that of the samples:

$$\sum_{s=1}^{n_{\rm s}} \left[\hat{R}_s - \widehat{Q}(x_s, u_s; \theta) \right]^2$$

- If $\sum_{k=0}^{\infty} \alpha_k^2$ is finite and $\sum_{k=0}^{\infty} \alpha_k \to \infty$, SGD converges to a local minimum of \mathcal{L}_{eval} .
- This still holds when Q^h(x_k, u_k) is replaced by Monte Carlo R_k, but not anymore for bootstrapped R_k, due to the semigradient updates!

Semigradient, approximate SARSA

Approximate SARSA

for each trajectory do initialize x_0 choose u_0 (e.g., ε -greedy from $Q(x_0, \cdot; \theta_0)$) **repeat** at each step k apply u_k , measure x_{k+1} , receive r_{k+1} choose u_{k+1} (e.g., ε -greedy from $Q(x_{k+1}, \cdot; \theta_k)$) $\theta_{k+1} = \theta_k + \alpha_k \nabla_{\theta} \widehat{Q}(x_k, U_k; \theta_k)$ $\left[r_{k+1} + \gamma \widehat{Q}(x_{k+1}, u_{k+1}; \theta_k) - \widehat{Q}(x_k, u_k; \theta_k)\right]$ until trajectory finished end for

Exploration is of course necessary in the approximate case as well.

Approximate TD methods

- Approximate SARSA
- Approximate Q-learning
- Maximization and discussion

Policy gradient

3 Outlook

Semigradient Q-learning update

Recall classical Q-learning update:

$$\begin{aligned} \mathcal{Q}(x_k, u_k) \leftarrow \mathcal{Q}(x_k, u_k) + \alpha_k [r_{k+1} + \gamma \max_{u'} \mathcal{Q}(x_{k+1}, u') - \mathcal{Q}(x_k, u_k)] \\ \approx \mathcal{Q}(x_k, u_k) + \alpha_k [\mathcal{Q}^*(x_k, u_k) - \mathcal{Q}(x_k, u_k)] \end{aligned}$$

In the approximate case, perform gradient descent:

$$\begin{aligned} \theta_{k+1} &= \theta_k - \frac{1}{2} \alpha_k \nabla_\theta \left[Q^*(x_k, u_k) - \widehat{Q}(x_k, u_k; \theta_k) \right]^2 \\ &= \theta_k + \alpha_k \nabla_\theta \widehat{Q}(x_k, u_k; \theta_k) \left[Q^*(x_k, u_k) - \widehat{Q}(x_k, u_k; \theta_k) \right] \\ &\approx \theta_k + \alpha_k \nabla_\theta \widehat{Q}(x_k, u_k; \theta_k) \cdot \\ & \left[r_{k+1} + \gamma \max_{u'} \widehat{Q}(x_{k+1}, u'; \theta_k) - \widehat{Q}(x_k, u_k; \theta_k) \right] \end{aligned}$$

Illustration

Semigradient, approximate Q-learning

Approximate TD methods

- Approximate SARSA
- Approximate Q-learning
- Maximization and discussion

2 Policy gradient

Recall: Maximization

Solution 1: Implicit greedy policy

Solution 2: Explicitly represented (approximate) policy

Maximization in approximate TD methods

• Greedy actions are computed on demand from \widehat{Q} :

$$\ldots \underset{u}{\operatorname{arg\,max}} \widehat{Q}(x, u; \theta) \ldots$$

- \Rightarrow Solution 1: The policy is implicitly represented
 - Q-function approximator must ensure efficient solution for arg max
 - Ex. discrete actions & features in x

Demo: robot walking (E. Schuitema)

Method: Approximate Q-learning Approximator: Tile coding

Discussion of approximate TD methods

- Convergence guaranteed for modified versions
- Low complexity
- Exploration and learning rates must be carefully tuned for all methods
- Just like in the classical case, approximate TD methods learn slowly, so they must be accelerated
- Experience replay and n-step returns are nearly directly applicable (the latter for SARSA, but can be extended to off-policy Q-learning)

Policy gradient

3 Outlook

Policy representation

- Type 2: Policy explicitly approximated
- Recall advantages: easier to handle continuous actions, prior knowledge
- For example, feature-based representation:

$$\bar{h}(\boldsymbol{x};\boldsymbol{\mu}) = \sum_{i=1}^{n} \phi_i(\boldsymbol{x}) \mu_i$$

Policy with exploration

• Online $RL \Rightarrow$ policy gradient must explore

• Gaussian exploration applies *u* in *x* with probability:

$$P(\boldsymbol{u}|\boldsymbol{x}) = \mathcal{N}(\bar{h}(\boldsymbol{x};\boldsymbol{\mu}),\sigma) =: \hat{h}(\boldsymbol{x},\boldsymbol{u};\vartheta)$$

with ϑ containing μ as well as the covariances in matrix σ

 So a stochastic policy is represented, directly including random exploration in the parameterization

Approximate TD methods

Policy gradient

Outlook

Trajectory

- Trajectory $\tau := (x_0, u_0, \dots, x_k, u_k, \dots)$ generated with \hat{h} ; and resulting rewards $r_1, \dots, r_{k-1}, \dots$
- Take deterministic MDP for simplicity. Return along the trajectory:

$$R(\tau) = \sum_{k=0}^{\infty} \gamma^k r_{k+1} = \sum_{k=0}^{\infty} \gamma^k \rho(x_k, u_k)$$

Probability of trajectory *τ* under policy parameters *θ*:

$$P_{\vartheta}(au) = \prod_{k=0}^{\infty} \widehat{h}(x_k, u_k; \vartheta)$$

where $x_{k+1} = f(x_k, u_k)$

Objective

Take x_0 fixed, for simplicity

Objective

Maximize expected return from x_0 under policy $\hat{h}(\cdot, \cdot; \vartheta)$:

$$J_{\vartheta} := \mathrm{E}_{\vartheta} \left\{ \textit{R}(au)
ight\} = \int \textit{R}(au) \textit{P}_{\vartheta}(au) \textit{d} au$$

Main idea

Gradient ascent on J_{ϑ} :

 $\vartheta \leftarrow \vartheta + \alpha \nabla_{\vartheta} \boldsymbol{J}_{\vartheta}$

Gradient derivation

$$\begin{aligned} \nabla_{\vartheta} J_{\vartheta} &= \int R(\tau) \nabla_{\vartheta} P_{\vartheta}(\tau) d\tau \\ &= \int R(\tau) P_{\vartheta}(\tau) \nabla_{\vartheta} \log P_{\vartheta}(\tau) d\tau \\ &= \mathrm{E}_{\vartheta} \left\{ R(\tau) \nabla_{\vartheta} \log \left[\prod_{k=0}^{\infty} \widehat{h}(x_{k}, u_{k}; \vartheta) \right] \right\} \\ &= \mathrm{E}_{\vartheta} \left\{ R(\tau) \sum_{k=0}^{\infty} \nabla_{\vartheta} \log \widehat{h}(x_{k}, u_{k}; \vartheta) \right\} \end{aligned}$$

Where we:

- used "likelihood ratio trick" $\nabla_{\vartheta} P_{\vartheta}(\tau) = P_{\vartheta}(\tau) \nabla_{\vartheta} \log P_{\vartheta}(\tau)$
- replaced integral by expectation, and substituted $P_{\vartheta}(\tau)$
- replaced log of product by sum of logs

Gradient implementation

- Many methods exist to estimate gradient, based e.g. on Monte-Carlo
- E.g. REINFORCE uses current policy to execute n_τ sample trajectories, each of finite length K, and estimates:

$$\widehat{\nabla_{\vartheta}}J_{\vartheta} = \frac{1}{n_{\tau}}\sum_{s=1}^{n_{\tau}}\left[\sum_{k=0}^{K-1}\gamma^{k}r_{s,k}\right]\left[\sum_{k=0}^{K-1}\nabla_{\vartheta}\log\widehat{h}(x_{s,k}, u_{s,k}; \vartheta)\right]$$

(with possible addition of a baseline to reduce variance)

• Compare with exact formula:

$$\nabla_{\vartheta} J_{\vartheta} = \mathbf{E}_{\vartheta} \left\{ R(\tau) \sum_{k=0}^{\infty} \nabla_{\vartheta} \log \widehat{h}(x_k, u_k; \vartheta) \right\}$$

• Gradient $\nabla_{\vartheta} \log \hat{h}$ preferably computable in closed-form

Power-assisted wheelchair (with Feng et al.)

- Hybrid power source: human and battery
- Goal: follow reference velocity, optimizing assistance to:
 - (i) attain desired user fatigue level
 - (ii) minimize battery usage
- Challenge: user has unknown dynamics

PAW: Experiment setup

- User sets velocity, pulls/pushes joystick when too tired/wants more exercise
- Reward penalizes velocity error, joystick signal *I*, and assistance magnitude (to save energy)

$$r = -w_1(v - v_{\rm ref})^2 - w_2 l^2 - w_2 u^2$$

 PI-type control with gains tuned by policy gradient (POWER)

Policy gradient

J

PAW: Results

Policy gradient

Open problems

RL research is ongoing

Open problems:

- Safety and stability guarantees
- States that cannot be measured (output feedback)
- Exploration strategies
- Multi-agent systems
- Multi-task learning

Deep reinforcement learning

A way to handle high-dimensional variables when they are *images* (or image-like); or relatively high-dimensional variables (~ 10) when they are numerical.

Deep Q-networks, DQN (DeepMind)

- Q-function represented via a deep neural network using e.g. convolutional layers to process images
- All data added to a replay buffer
- Network trained by SGD to reduce temporal differences, like semigradient Q-learning...

... but on mini-batches of transitions from the replay buffer, like fitted Q-iteration

 \Rightarrow algorithm combines online and offline approximate RL

Deep Q-networks, DQN (DeepMind)

J

Key terms in this part

- stochastic gradient descent
- semigradient
- approximate temporal difference
- policy gradient
- likelihood ratio trick

Exercises

- Derive semigradient updates of the parameters θ to approximate V^h and V^{*}.
- Generalize the derivation of the semigradient update in SARSA to n-step returns.
- Try to derive a full gradient descent formula for SARSA, which takes into account the dependence of the bootstrapped estimate on the parameter vector.

