Reinforcement learning
Master CPS, Year 2 Semester 1

Lucian Busoniu, Florin Gogianu

RL for plasma control in a fusion reactor (DeepMind)

a Learning loop Actor Measuraments . . © .
m Simulated environment a Control policy
+
Control
Learner policy ——»| |Environment | Sensor Power
parameters [riock) LY
A, ! .
i Voltage commands D
Replay @mta — 7 3% Grad-Shafranov
buffer . — & solver (FGE)
t
Outputs: 2 = 19

d Deployment h Vessel cross section

e Our architecture m
Isoflux line
m e
Control
Targets | t—— ey X-point.
in vacuum
Real-time Plasma
boundary

control
f Conventional control system Vessel —|
Axis R, Z

Plasma position

| | Observers
1p.,Z, shape|
targets

eort
Active.

X-point Baffie

_ | Controllers
Strike Legs

Gt
fecatamard pots
ot -
X Limitr
Curents | a—— 16Pabidal , Ohmic , Fast
Voltages- field coils coils coil

Learn to control the plasma confinement magnetic field in a simulated
fusion reactor. Objective: shape and maintain high-temperature

plasma. 0l

https://www.nature.com/articles/s41586-021-04301-9

RL for plasma control in a fusion reactor (DeepMind)

Ml

Snowflake

Various plasma shapes obtained by the learned controller, including a
novel “droplets” configuration.

u

https://www.nature.com/articles/s41586-021-04301-9

RL for manipulation of a Rubik’s Cube (OpenAl)

Learn fine control of a large number of actuators, even in the
presence of external disturbances. 0[]

https://openai.com/index/solving-rubiks-cube/

RL design of digital circuits (Nvidia)

PrefixRL Agent PrefixRL Environment
Q values ©3) @2 01 00
Circuit
(1,0
o Synthesis e
(3.0) st . "
(area, delay);
r, A(area)
A(delay)
(33) (22 (1) (00) ! 33 22 (1) (00) . .
H Circuit
o) 1‘ o) Synthesis
3031 (3:2) 8.3) 20 ! 30 20 e
Representation 9 t Ste1 (area, delay)y,q

Learn optimal placement of parallel prefix circuits such as adders
while optimising for area, delay and power.

https://arxiv.org/abs/2205.07000

Human-level Atari with DQN (DeepMind)

https://www.nature.com/articles/nature14236

Planning for a domestic robot (UTCluj)

Domestic robot ensures that switches are turned off
High-level control (actions “translated” by low-level controllers
into actuator commands)

u

https://ieeexplore.ieee.org/abstract/document/7759736/

Other applications

Artificial intelligence, medicine, networks of agents, economics,
etc.

u

Course contents

Lecture 1: Reinforcement learning problem
Optimal solution

Exact dynamic programming

Exact reinforcement learning

Approximation techniques

Approximate dynamic programming
Approximate reinforcement learning

® 6 6 6 6 o o

Part |

Reinforcement learning problem

Lecture 1 contents

0 Introduction
9 Deterministic case
e Stochastic case

Q Course organization

Introduction
9000000

Why learning?

Learning finds solutions that:
@ cannot be designed in advance

— the problem is too complex

(e.g., control of strongly nonlinear systems)
— the problem is incompletely known

(e.g., robotic exploration of outer space)

@ continuously improve
© adapt to a changing environment over time

Essential for any intelligent system

Introduction
Oe00000

Model-based methods

We will also focus on model-based methods:
@ They form the basis of reinforcement learning
(e.g., dynamic programming)
@ Useful independently of learning, when model available,
as they address complex (e.g., nonlinear) problems

Introduction
00®@0000

RL principle: control view

Reward function p

action u

@ Interact with system: measure states, apply actions
@ Performance feedback in the form of rewards
@ Inspired by human and animal learning

Introduction
000e000

RL principle: Al view

—_— —_—
——

Controller h |
(agent)

action u 7

@ Agent embedded in an environment
that receives actions
and feeds back states and rewards

Introduction
0000e00

Example: Rubik’s cube manipulation

@ States: joint angles, cube and
goal positions and orientations

@ Actions: 11 bins for each of the
20 actuated joints
@ Rewards:
e distance to the goal state
@ positive reward when a goal is
reached
o negative reward when a cube is
dropped

Introduction
00000 e0

Example: Domestic robot

switch 1

@ States: grid coordinates, switch states
@ Actions: move NSEW, toggle switches
@ Rewards: when a switch that was on is turned off
(and penalty when an off switch is turned on!)
Example of abstraction: problem solved high-level, actions
implemented by low-level controllers ur

Introduction
O00000e

Exact vs. approximate; deterministic vs. stochastic

@ Parts 1-3: exact methods — discrete states and actions
with a small number of values

e intermediate step, needed to understand the more difficult
problem with approximation
e useful on its own, if the problem can be abstracted into a
high-level discrete one
@ Parts 4 and onwards: approximate methods — states and
actions continuous, or discrete with many values

System can behave:

@ Deterministically — always responds the same to the same
action in the same state

@ Stochastically

Deterministic case
9000000

9 Deterministic case
@ Markov decision process
@ Policy and objective

Deterministic case
[o] lelelelele}

Simple example: cleaning robot

@
K ‘

= | | 1O

battery

robot object

@ Cleaning robot in a 1-D world
@ Collects trash (reward +5) or battery (reward +1)
@ After either object is collected, episode ends

Deterministic case
00®0000

Cleaning robot: state & action

action u

B O~

state x

@ Robot is in a state x
@ and applies an action u (e.g., moves right)

u=-1 u=1
+ O~
x=0 1 2 3 4 5

@ State space X ={0,1,2,3,4,5}
@ Action space U = {—1,1} = {left, right}

Deterministic case
000e000

Cleaning robot: transition & reward

reward r=5

y

== ~Q

next state x’

@ Robot reaches a new state x’

@ and receives a reward r = quality of the transition
(here, +5 for collecting trash)

Deterministic case
0000e00

Cleaning robot: transition & reward functions

—>—>—>

@ Transition function (system behavior):

x' = f(x,u) = {

X if x terminal (0 or 5)
X+ u otherwise

@ Reward function (immediate performance):
1 ifx=1and u=—1 (battery)
r=px,u)=<¢5 ifx=4andu=1 (trash)
0 otherwise

@ Note: Terminal states cannot be exited
and are not rewarded! up

Deterministic case
00000 e0

A note on rewards

@ In fact, rewards depend on the transition r = j(x, u, x’)

@ But x’ is determined by (x, u) and can be substituted in the
formula:

5()(7 U>X,) = :5(X7 u, f(Xv U)) = p(X, U)

Deterministic case
O00000e

Deterministic Markov decision proces

Deterministic Markov decision process
Consists of:
@ State space X
@ Action space U
© Transition function x’ = f(x,u), f: XxU— X
© Reward function r = p(x,u), p: XxU—=R

1 1
r=pkxu)

M M

r=pxu)

Deterministic case
@®000000

9 Deterministic case

@ Policy and objective

Deterministic case
O®00000

Policy

@ Policy h: maps states x to actions u (state feedback)

—_I_L «— —> —> | —> |
Example h(O) termmal state, action |rrelevant)
h(1) = -1, h(2) =1, h(3) =1, h(4) =1, h(5) =

Deterministic case
00®@0000

Cleaning robot: return (value)

rio r,=0 n‘iS
+ O-— &)
X,=2)

Take h that always goes right

Vh2) =~ + 4" + 42+ 420+ 440 + ...

Since x3 is terminal, all subsequent rewards are 0

Deterministic case
000e000

General return and objective

Find h that from any xo maximizes the discounted return:

Vi(x0) = kZO VK1 = kZO YK o(Xie, (k)

Note: There are other types of return!

Deterministic case
0000e00

Discount factor

Discount factor v € [0, 1):
@ induces a “pseudo-horizon” for optimization
@ bounds the infinite sum
@ represents increasing uncertainty about the future
@ helps algorithm convergence

To choose ~, trade-off between:
@ Long-term solution quality (large)
© Problem “simplicity” (small ~)

In practice, ~ large enough to not ignore important rewards
along system trajectories

Deterministic case
00000e0

Example: choosing for a first-order linear system

Step response of a first-order linear system:

1

08r

061

>

04r

021

0

0 20 40 60 80
k

Value of v so that rewards in steady state are visible from the
initial state?

Deterministic case
O00000e

Solution: choosing ~ for a first-order linear system

For k ~ 60, v¥ should not be too small, e.g.

+%0 > 0.05
v >0.05"%0 ~ 0.9513

~K for v = 0.96:

0.8

06

0.4

0.2

Stochastic case
L

Q Stochastic case
@ Basics of probabilities
@ RL problem in the stochastic case

Stochastic case
@00

Discrete random variables

@ Discrete variable x can take n values, in the set
X ={x1,Xo,...,Xn}.
@ Each value is associated with a probability

p(x1), p(x2), - - ., p(xn), where p(x;) € [0, 1], >2; p(xi) = 1.
p: X — [0, 1] is the probability mass function (PMF).

Example: The value of a die is a discrete random variable, with
n = 6 possible values, xy = 1,..., xs = 6. For a fair die,
p(x)=§Vi=1,...,6

Note: n can grow to infinity; mathematical description remains
valid

Stochastic case
oeo

Expected value (expectation)

@ Average of the values, weighted by their probabilities; the
value “expected” a priori, given the probability distribution:

E{x} =3 px)x

xeX
Example: For a fair die, the expectation is
1 1 1

@ A function with a random variable as an argument,
g : X — Ris itself a random variable, with expectation:
E{9(x)} =) p(x
xeX
Example: If faces 1-4 win 1$, and faces 5-6 win 109,
1 1 1 1 1 1

Stochastic case
ooe

Independence

Random variables x, y are independent if the probability of
vector z = (X, y) is pz(z) = px(x) - py(y), where p, px, p, are
the PMFs of the three variables. Note: concept extends to any
number of variables

Examples:

@ The values of a die rolled at different times are
independent. Among others, the probability of getting a 6 is
independent of how many 6s were rolled in previous steps
Watch out for gambler’s fallacy!

@ Temperature values on two consecutive days are not
independent! The system is dynamic (has inertia), current
values depend on previous ones

Stochastic case
90000000000

Stochastic case

@ State no longer evolves deterministically, but
stochastically

@ E.g. cleaning robot “slips” and:
e moves in the intended direction with probability (w.p.) 0.8
e stays in place w.p. 0.15
e moves in the opposite direction w.p. 0.05

FH | 0%

P=0.05 P=0.15 P=0.8

Stochastic case
0®000000000

Stochastic cleaning robot: transition function

+ ok

f(x,u, x") = probability of reaching x’
after u has been applied in x

1 if x terminal and x’ = x

0.8 if x non-terminal, X’ = x + u
f(x,u,x') = { 0.15 if x non-terminal, x’ = x

0.05 if x non-terminal, X’ = x —u

0 otherwise

Stochastic cleaning robot: reward function
0 0
vy

i !
= o

@ Transition no longer fully determined by (x, u)
= the next state x’ must be explicitly included
@ j(x,u,x’) = reward on reaching x’
as a result of action u in x

@ For cleaning robot:

5 ifx#5andx' =5
px,u,x)=<¢1 ifx#0andx' =0
0 otherwise

Stochastic case
000@0000000

Stochastic Markov decision process

Stochastic Markov decision process
@ State space X
@ Action space U
@ Transition function 7(x, u, x’), f: X x U x X — [0,1]
@ Reward function p(x,u,x’), p: XxUxX—=R

Stochastic case
0000e@000000

Objective in stochastic case

Find h that from any xo maximizes expected discounted return:
VA(X0) = Exq xp.... {kz V< B(Xk, h(Xk)7Xk+1)}
=0

Stochastic case
00000@00000

Policy, discount in stochastic case

@ Policy h(x) has the same structure,
@ discount factor v has the same meaning
as in the deterministic case

Stochastic case
000000e0000

Example: machine replacement

Replace

@ Machine with n different states = wear levels
1=pristine, n=fully degraded

@ Produces revenue v; operating in state i

@ Stochastic wear: wear level i transitions to j > i w.p. pj,
remains / w.p. pjj =1 = pjjt1 — ... — Pin

@ Machine can be instantaneously replaced at any time,
paying cost ¢

Stochastic case
0000000e000

Machine replacement: State and action spaces

Replace

@ State space X = {1,2,...,n}
@ Action space U = {Wait, Replace}

Stochastic case
00000000 e00

Machine replacement: Transition and reward functions

Replace

pj ifu=Wandi<j
fix=iux =j)=<1 fu=Randj=1
0 in any other situation

oy ¥ if u—W
PX=LUX=D=Y oLy ifu=R

Stochastic case
00000000 0e0

Machine replacement: motivation

The RL framework provides a way to formalize and find
an optimal decision policy that
maximizes the long-term value of the machine

Stochastic case
0000000000 e

Key terms in this lecture

@ reinforcement learning, RL
o state

@ action

@ reward

@ transition function

@ reward function

@ Markov decision process
@ policy

@ return

@ discount factor

@ random variable

@ probability mass function

@ expected value b

Course organization
@000

Bibliography

Mandatory material: course slides

Optional books:
@ R. Sutton, A. Barto, Reinforcement Learning: An
Introduction, ed. 2, 2018.
@ D. Bertsekas, Dynamic Programming and Optimal Control,
vol. 2, Athena Scientific, 2012.
@ D. Bertsekas, Reinforcement Learning and Optimal
Control, Athena Scientific, 2024.

@ L. Busoniu, Reinforcement learning and dynamic
programming for control, 2012 (lecture notes).

Course organization
[o] lele]

Logistics

Grading:
@ 50% labs
@ 50% exam
@ 10% lecture quizzes

Lab rules:
@ labs mandatory before joining the exam

@ solution = PDF report + code: max 10p if submitted on
time, max 5p if late

@ solutions must be validated through discussions
@ any copied or LLM-generated lab = ineligible and re-enroll

u

Course organization
[eJe] le]

Website, contact

http://busoniu.net/teaching/r12024
Email: lucian@busoniu.net, florin.gogianu@gmail.com

Info
@ Course lectures (slides)
@ Labs
@ Schedule
@ efc.

Course organization
[eJele])

Quiz

Quiz

	Reinforcement learning problem
	Introduction
	Deterministic case
	Stochastic case
	Course organization

