Reinforcement learning
Master CPS, Year 2 Semester 1

Lucian Busoniu, Florin Gogianu



Part Il

Exact reinforcement learning



Part lll in plan

@ Reinforcement learning problem

@ Optimal solution

@ Exact dynamic programming

@ Exact reinforcement learning

@ Approximation techniques

@ Approximate dynamic programming
@ Approximate reinforcement learning



Algorithm landscape

By model usage:
@ Model-based: f, p known a priori
@ Model-free: f, p unknown (reinforcement learning)

By interaction level:
@ Offline: algorithm runs in advance
@ Online: algorithm runs with the system

Exact vs. approximate:
@ Exact: x, u small number of discrete values
@ Approximate: x, u continuous (or many discrete values)



RL on the machine learning spectrum

Supervised Reinforcement Unsupervised
learning learning learning

more informative feedback less informative feedback

@ Supervised: for each training sample, correct output
known

@ Unsupervised: only input samples, no outputs;
find patterns in the data

@ Reinforcement: correct actions not available, only rewards

But note: RL finds dynamical optimal control!



Contents part Il

o Monte Carlo, MC
9 Exploration
Q Temporal differences, TD

e Accelerating TD methods

e Recap



Monte Carlo
L ]

o Monte Carlo, MC



Monte Carlo
9000000

Reminder: Policy iteration

Policy iteration with Q-functions
initialize policy hg arbitrarily
repeat at each iteration ¢
1: policy evaluation: find Q"
2: policy improvement:
find hyy1(x) = arg max, Q™ (x, v)
until convergence to h*

Note: In RL, we generally use Q-functions so policy
improvement does not require a model



Monte Carlo
0®@00000

Policy evaluation

To find Q"
@ So far: model-based methods
@ Reinforcement learning: model not available

@ Learn Q" from offline data or via online interaction with
the system



Monte Carlo
00e0000

“Monte-Carlo” policy evaluation

Recall: Q"(xg, ug) = Z YK q

k=
@ Trajectory from (xp, Up) to xx (terminal)
using ur = h(x4), ux = h(x2), etc.

= Q"(xg, Ug) = return along trajectory:
K—1

Q"(xo, Up) = ijo erj+1




Monte Carlo
000e000

“Monte-Carlo” policy evaluation (cont'd)

@ Moreover, at each step k:

K1
Q" (xk, ) = Zj:k Vo



Monte Carlo
0000e00

Monte-Carlo policy evaluation: Stochastic case

LE

@ N trajectories (differing due to stochastic transitions)
@ Estimated Q value = mean of the returns, e.g.

N Ki—1

Xo,Uo ZZV”/—H



Monte Carlo
00000e0

Monte-Carlo policy iteration

Monte-Carlo policy iteration

for each iteration ¢ do
perform N trajectories applying hy
reset to 0 accumulator A(x, u), counter C(x, u)
for each step k of each trajectory i do
A(Xic, Uk) < A(Xi, Uk) + Zﬁ? YK 41 (return)
C(xk, ux) + C(xx, ug) + 1
end for
Q" (x, u) « A(x,u)/C(x, u)
he1(X) < arg max, Q"(x, u)
end for

Note: must guarantee that terminal state is reached!



Monte Carlo
000000e

Cleaning robot: Monte Carlo, demo

Monte Carlo, trial 70 [piter 7 done, peval 10]

_:_ —|—|—|— 8

Q(x, left)
Q(x, right)

policy iteration



Exploration
°

9 Exploration



Exploration
@®00000

The need for exploration

In the MC estimate:

Q"(x, u) « A(x, u)/C(x, u) |

how to ensure C(x, u) > 0 — information about each (x, u)?

@ Initial states xp representative
@ Actions:
Up representative, sometimes different from h(xg)
and additionally, possibly:
ui representative, sometimes different from h(xy)



Exploration
O@0000

Exploration-exploitation dilemma

@ Exploration is necessary:
actions different from the current policy

@ Exploitation of current knowledge is necessary:
current policy must be applied for good performance

The exploration-exploitation dilemma
— essential in all RL algorithms

(not only in MC)



Exploration
00®@000

e-greedy strategy

@ Simple solution to the exploration-exploitation dilemma:
e-greedy

U — h(xx) = arg max, Q(xk,u)  with probability (1 — ex)
« a uniformly random action  w.p. g4

@ Exploration probability ¢, € (0,1)
usually decreased over time

@ Main disadvantage: when exploring, actions are fully
random, leading to poor performance



Exploration
[elefe] lele]

Softmax strategy

@ Action selection:
eO(Xk,U)/Tk

=UWp. —/—————-~—
Uk = UW-p > eQ(xi,u") /7

where 7, > 0 is the exploration temperature

@ Taking = — 0, greedy selection recovered;
T — oo gives uniform random

@ Compared to e-greedy, better actions are more likely to be
applied even when exploring



Exploration
0000e0

Bandit-based exploration

At single state, exploration modeled as multi-armed bandit:
@ Action j = arm with reward distribution p;, expectation y;
@ Best arm (optimal action) has expected value p*

@ At step k, we pull arm (try action) ji, getting rx ~ p;,
@ Obijective: After n pulls, small regret: >/ _, u* — 1j,



Exploration
0O0000e

UCB algorithm

Often-used algorithm: after n steps, pick arm with
largest upper confidence bound:

logn

bU) = #y+4[e=,

where:
@ 1i; = mean of rewards observed for arm j so far
@ n; = how many times arm j was pulled
@ ctunable constant, e.g. 3/2

These are only a few simple methods, many others exist,
e.g. Bayesian exploration, intrinsic rewards, optimistic
initialization etc.



Temporal differences
L ]

9 Temporal differences, TD
@ Introduction
@ SARSA
@ Q-learning
@ Discussion



Temporal differences
9000000

Monte-Carlo with incremental updates

Consider the return sample from step k onwards:
K—1

_ ~d—kp,

Instead of averaging such samples to get Q, perform
incremental updates:

Q(Xk, Uk) — Q(Xk, Uk) + Oék[F?k — Q(Xk, Uk)]

where « is a step size, or learning rate



Temporal differences
0O®@00000

Discussion

@ Incremental MC motivated by time-varying problems
(recent samples have larger weights),
but works in time-invariant MDPs as well
@ No longer need to store accumulators A and counters C,
just directly the Q-values
@ If o satisfies “stochastic-approximation” conditions:
@ decreases 0 0, "7, o = finite
@ but not too quickly, 37 ) ax — oo
method converges: lim when # of samples — co = Q-value



Temporal differences
00@0000

From Monte-Carlo to temporal differences

To avoid waiting until trajectory finishes, recall Bellman
equation:

Q"(x,u) = Eyx {ﬁ(x, u, x') +~Q"(x, h(x’))}
and use the return estimate:
Rk = rk1 + vYQ(Xk+1, h(Xk41))




Temporal differences
[eleje] lelele}

Temporal differences (TD)

Otherwise, update remains the same, but let us make the
return estimate explicit:

Q(xk, Uk) < Q(Xk, Ux) + ak[Rk — Q(xk, uk)]
[kt +7Q(Xkq1, h(Xki1)) — Q(Xk, Uk)]

@ [...] is the temporal difference between two estimates of
Q(xx, uk), using information at subsequent time steps

@ Model-free, data-based updates (like MC): ri. 1, Xk 1
e.g. observed while interacting online

@ Updates estimate Q(x, ux) using another estimate,
Q(Xk11, h(xk,1)): bootstrapping
@ Dynamic programming also bootstraps, but using a model

u



Temporal differences
0000e@00

TD vs. MC vs. DP: Unified perspective

Temporal difference Dynamic programming
width of estlrnates
1 sample; expected value
model-free model-based
1 step
depth ol |8
. © o
of estimates = §
@

full trajectory

andn T R

Monte Carlo Exhaustive search
(graph search, online planning)

u



TD for policy evaluation

TD for policy evaluation

for each trajectory do
initialize xg, choose the initial action uy
repeat at each step k
apply ux, measure X 1, receive ry 4
choose the next action uy 1 ~ h(xx,1)
Q(Xk, uk) < Q(xk, ug) + k-
(M1 + YQ(Xk1, Uk1) — Q(Xk, k)]
until trajectory finished
end for

Note: we replaced h(xx. 1) by uk.1, chosen according to h



Temporal differences
000000

Exploration-exploitation

choose the next action vy ~ h(Xk11)

@ Information about (x, u) # (x, h(x)) necessary
= exploration

@ h must be followed
=- exploitation

@ E.g. e-greedy:

_ J h(Xie1) W.p. (1 — ek41)
U1 = .
unif. random  w.p. g4 1



Temporal differences
@®00000000

e Temporal differences, TD

@ SARSA



Temporal differences
O®0000000

Recall: MC

MC policy iteration
for each iteration ¢ do
perform N trajectories applying h,
reset to 0 accumulator A(x, u), counter C(x, u)
for each step k of each trajectory i do
A(Xic; Uk) = A(Xi, Uk) + Z;if ¥7Kri 41 (return)
C(Xk, Uk) + C(xx, ug) + 1
end for
Q" (x,u) + A(x,u)/C(x, u)
hy1(x) « arg max, Q™ (x, u)
end for



Temporal differences
00®000000

Optimistic policy improvement

@ Policy unchanged for N trajectories
= Algorithm learns slowly

@ Policy improvement after each trajectory
= optimistic

@ We will also use e-greedy exploration



Optimistic MC

initialize to 0 accumulator A(x, u), counter C(x, u)
for each trajectory do
execute trajectory, e.g., applying e-greedy:
argmax, Q(xx,u) w.p. (1 —ek)
unif. random W.p. €
for each step k do
A(Xk, Uk) < A(Xk, Uk) + Z_;(:7(1 YK
C(Xk, Ux) < C(xx, ug) + 1
end for
Q(x, u) < A(x,u)/C(x,u)
end for

@ himplicit, greedy in Q
@ update of Q = implicit improvement of h up



Temporal differences
0000e0000

Optimism in TD

@ Earlier TD algorithm: fixed h

@ What is the fastest we can improve hin TD?
After each transition.

= interpretation: policy iteration
optimistic at the transition level

@ himplicit, greedy in Q
(updating Q = implicit improvement of h)



Temporal differences
00000e@000

SARSA

SARSA with e-greedy
for each trajectory do

initialize xg
argmax, Q(xo,u) w.p. (1 —¢p)
| unif. random W.p. €9

repeat at each step k
apply ux, measure Xy 1, receive ry. 1

arg max, Q(Xk+1,U)  W.p. (1 —ekrq)
unif. random W.P. €k11
Q(Xk, Uk) — Q(Xk, Uk) + Q-
[Fk1 + Y Q(Xkt1, Uks1) — Q(Xk, Uk )]
until trajectory finished
end for

U1 =



Temporal differences
000000800

Origin of name “SARSA”

(Xks Uks Tk15 Xk41, Uk1) =
(State, Action, Reward, State, Action) = SARSA



Temporal differences
0O000000e0

Cleaning robot: SARSA, demo

Parameters: a = 0.2, ¢ = 0.3 (constant)
Xo = 2 or 3 (random)

SARSA, trial 8, step 3

r1© S
—|—|—

T

——Q(x,left
25— Q(x, right)

0 1 2 3 4 5
state,
. —e—a-q'||
3 —\\6\;
2 " " " L
0 1 2 3 4 5 6 7
rial



Temporal differences
O0000000e

Machine replacement: SARSA, demo

Parameters: o = 0.1, ¢ = 0.3 (constant), 20 steps per trajectory
Xo = 1
SARSA, trial 30 completed

L (w | R

Qix, VWait)
Qix, Replace) [




Temporal differences
900000

e Temporal differences, TD

@ Q-learning



Temporal differences
O®@0000

Bootstrapping estimate of Q*
Bellman optimality equation:
Q*(x,u) = Ey {ﬁ(x, u, x") + max Q* (X, u’)}

leads to estimate:
Qi = M1 + 7 max QX1 )




Temporal differences
[oJe] lelele}

TD update for Q*

Q(Xk, Uk) < Q(xk, k) + k[ Q — Q(xk, )]
[t 7 max QX1 U') = QXK U]



Temporal differences
000e00

Q-learning

Q-learning with e-greedy
for each trajectory do
initialize xg
repeat at each step k
arg max, Q(xx,u) W.p. (1 — &)
unif. random W.p. £k
apply ux, measure xy. 1, receive ri
Q(Xk, Uk) — Q(Xk, Uk) + ok
(i1 + 5 max QX1 U') = Qxk, U]
until trajectory finished
end for



Temporal differences
0O000e0

Cleaning robot: Q-learning, demo

Parameters — same as SARSA: a = 0.2, ¢ = 0.3 (constant)
Xo = 2 or 3 (random)

Q-learning, trial 8, step 3

r1© S
—|—|—

T

——Q(x,left
25— Q(x, right)

. state, x
4 [—*—a-q|
3 i
2 . . . . >

0 1 2 3 4 5 6

ria



Temporal differences
O0000e

Machine replacement: Q-learning, demo

Parameters: o = 0.1, ¢ = 0.3 (constant), 20 steps per trajectory
Xo =1

Q-learning, trial 30 completed

R | R |98,
6
Qix, VWait)
5 Qix, Replace) [1
4
3
2
1
0 .
1 2 3 4 5
85 =
8 —®—a-a
75
7 . L .
0 5 10 15 20 25 30




Temporal differences
| Jelele]

e Temporal differences, TD

@ Discussion



Temporal differences
0e00

Convergence

Conditions for convergence to Q*:

@ All pairs (x, u) continue to be updated:
ensured by exploration, e.g. e-greedy

@ Stochastic-approximation conditions: learning rate
decreases to zero, > 7 ai = finite, but not too quickly:
Y kg Gtk — 0O

Additionally, for SARSA:

© The policy must become greedy at infinity
e.g.limg_ex =0



Temporal differences
jeJol le]

On-policy / off-policy

SARSA: on-policy
@ Always estimates the Q-function of the current policy

Q-learning: off-policy
@ Independently of the current policy,
always estimates the optimal Q-function



Temporal differences
O00e

TD: Discussion

Advantages
@ Simple to understand and implement
@ Low complexity = fast execution

SARSA vs. Q-learning

@ SARSA less complex than Q-learning
(no max in the Q-function update)

Learning rate and exploration sequences ay, ¢k
significantly influence performance

Main disadvantage
@ Large amount of data required



Accelerating TD
°

e Accelerating TD methods
@ Motivation
@ Experience replay
@ n-step returns



Accelerating TD
@000

The need to accelerate TD

Main disadvantage: TD learns slowly — requires a lot of data

In practice, data costs:
@ time
@ profit (low performance due to exploration)
@ system wear

Accelerating RL = efficient use of data ‘




Accelerating TD
(o] lele}

Example: 2D navigation

B

o

@ Navigation in a discrete 2D world
from Start to Goal

@ Reward = 10 only upon reaching G (terminal state)



Accelerating TD
ooeo

Example: TD
r:::] Q\
(G G
IS o i e A T
S| S|

@ We choose SARSA, a = 1; initialize Q=0
@ Updates along trajectory on the left:

Q(Xs,us) =0+ - Q(x5,Us) = 0
Q(X5,U5): 104+~-0=10

@ A new transition from x4 to x5
needed to propagate the information to x4! up



Accelerating TD
o00e

Accelerating TD: 2 ideas

@ Store and replay experience
@ Use n-step returns



Accelerating TD
90000000

Q Accelerating TD methods

@ Experience replay



Accelerating TD
0e000000

Experience replay (ER)

@ Store each transition (X, Uk, Xk+1, Mk+1)
(and for SARSA, also uk. 1) in a database

II
N
.

@ At each step, replay m transitions from database
(in addition to normal updates)



Accelerating TD

Q-learning with ER

Q-learning with ER

for each trajectory do
initialize xg
repeat at each step k
apply uk, measure xy. 1, receive ri
Q(Xk, Uk) < Q(Xk, Uk) + ak:

(i1 max QU1 U') = Qxk, U]
add (xk, Uk, Xk11, k1) to the database
ReplayExperience

until trajectory ends
end for



Accelerating TD
000e@0000

ReplayExperience procedure

ReplayExperience
loop mtimes
fetch a transition (x, u, x’, r) from the database
Q(x,u) + Q(x,u) + a-
[r + v max Q(x', u) — Q(x, u)]
end loop ’



Accelerating TD
0000e000

Replay direction

Order of replaying transitions:
@ Forward

@ Backward

© Arbitrary



Accelerating TD
00000e00

Example: Influence of replay direction

@ Green: normal updates, purple: experience replay
@ Left: forward replay; right: backward replay
@ Backward replay preferable in exact RL



Accelerating TD
000000e0O

Example: Aggregating information

red--==fF=-a - =T

Lt L
s|- «;Sli

@ Experience replay aggregates information
from multiple trajectories

@ The indicated cell benefits from information
along both trajectories

A 4
=
N




Accelerating TD
0O000000e

Cleaning robot: Q-learning with ER, demo

Parameters: o = 0.2, e = 0.3, n = 5, backward direction
Xo = 2 or 3 (random)

ER-Q-learning, trial 13, step 2 [replaying trial 8, step 2]

L || |5 8

=

5 T T
—Qx, lef)
4 Qgx, tight)




Accelerating TD
@®0000

Q Accelerating TD methods

@ n-step returns



Accelerating TD
lo] lelele]

Recall: MC and TD return estimates

Ry = et +7Q(Xkr1, h(Xk11))

Is there something in-between?



Accelerating TD
loJo] lele]

Middle ground: n-step return

SARSA (on-policy):

R =t + e+ +9" n
+ 'VnO(Xk+na Ukn)




Accelerating TD
loJole] Jo]

Example: Effect of n-step return

r:::] 0\

G G
| R —— 1
f\S S

Forn=3:

Q(xs,us) =10+ 0 (terminal)
Q(X4,Us) =0+~10+0 (terminal)
Q(x3,u3) =0+~0+~210+0 (terminal)
Q(x2, uz) =0+ ~0+~20 +~°0 (bootstrap)



Accelerating TD
O000e

TD versus MC

@ n=1recovers TD, n — oo recovers MC

@ Intermediate values mix TD and MC, leading to a tunable
bias-variance tradeoff

more bias

more variance



Recap
@®0000

e Recap



Recap
Oe000

Recap: Methods in Part lll

Monte-Carlo methods, MC:
e MC policy iteration
e MC with incremental updates

Exploration-exploitation dilemma:

@ c-greedy widely used
e Many other solutions exist, like UCB

Temporal differences, TD:

e TD for policy evaluation

e Optimistic policy improvements
e SARSA

e Q-learning

Accelerating TD:

e Experience replay
e n-step returns



Recap
(e]e] lele]

Key terms in this part

@ Monte-Carlo methods

@ exploration-exploitation dilemma
@ e-greedy, softmax, bandits

@ optimistic policy improvement

@ learning rate

@ bootstrapping

@ temporal differences

@ SARSA

@ Q-learning

()

experience replay
@ n-step returns



Recap
O00e0

Exercises

@ Does the exponential schedule ax = of, with o € (0,1) a
constant, satisfy the stochastic approximation conditions?

@ Is Q-learning guaranteed to converge when ¢, = ¢, a
constant in (0, 1)? What about SARSA? How about when
you use an exponential decrease ¢y = £4?

© Would a Monte-Carlo algorithm that improves the policy
after every transition (like TD) make sense?

© Would Q-learning (without n-step returns as they are
nontrivial in the off-policy case) propagate information
faster than SARSA for the gridworld trajectory example?



Recap
O0O00e

Exercises (cont'd)

© Assuming that we have access to a model only for the
purposes of policy improvement, provide V-function
alternates for all algorithms in this part. Do this in the same
order as for Q-functions:

e Monte Carlo estimates, averaging-based and incremental
e Bootstrapping estimates and updates
e Policy evaluation, SARSA, and Q-learning
Don’t forget to draw trees and highlights, it will help you
visualize things.



	Exact reinforcement learning
	Monte Carlo, MC
	Exploration
	Temporal differences, TD
	Accelerating TD methods
	Recap


