
Reinforcement learning
Master CPS, Year 2 Semester 1

Lucian Buşoniu, Florin Gogianu



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Part III

Exact reinforcement learning



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Part III in plan

Reinforcement learning problem
Optimal solution
Exact dynamic programming
Exact reinforcement learning
Approximation techniques
Approximate dynamic programming
Approximate reinforcement learning



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Algorithm landscape

By model usage:
Model-based: f , ρ known a priori
Model-free: f , ρ unknown (reinforcement learning)

By interaction level:
Offline: algorithm runs in advance
Online: algorithm runs with the system

Exact vs. approximate:
Exact: x ,u small number of discrete values
Approximate: x ,u continuous (or many discrete values)



Monte Carlo Exploration Temporal differences Accelerating TD Recap

RL on the machine learning spectrum

Supervised: for each training sample, correct output
known
Unsupervised: only input samples, no outputs;
find patterns in the data
Reinforcement: correct actions not available, only rewards

But note: RL finds dynamical optimal control!



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Contents part III

1 Monte Carlo, MC

2 Exploration

3 Temporal differences, TD

4 Accelerating TD methods

5 Recap



Monte Carlo Exploration Temporal differences Accelerating TD Recap

1 Monte Carlo, MC

2 Exploration

3 Temporal differences, TD

4 Accelerating TD methods

5 Recap



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Reminder: Policy iteration

Policy iteration with Q-functions
initialize policy h0 arbitrarily
repeat at each iteration ℓ

1: policy evaluation: find Qhℓ

2: policy improvement:
find hℓ+1(x) = argmaxu Qhℓ(x ,u)

until convergence to h∗

Note: In RL, we generally use Q-functions so policy
improvement does not require a model



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Policy evaluation

To find Qh:
So far: model-based methods
Reinforcement learning: model not available
Learn Qh from offline data or via online interaction with
the system



Monte Carlo Exploration Temporal differences Accelerating TD Recap

“Monte-Carlo” policy evaluation

Recall: Qh(x0,u0) =
∞∑

k=0
γk rk+1

Trajectory from (x0,u0) to xK (terminal)
using u1 = h(x1), u2 = h(x2), etc.

⇒ Qh(x0,u0) = return along trajectory:

Qh(x0,u0) =
∑K−1

j=0
γ j rj+1



Monte Carlo Exploration Temporal differences Accelerating TD Recap

“Monte-Carlo” policy evaluation (cont’d)

Moreover, at each step k :

Qh(xk ,uk ) =
∑K−1

j=k
γ j−k rj+1



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Monte-Carlo policy evaluation: Stochastic case

N trajectories (differing due to stochastic transitions)
Estimated Q value = mean of the returns, e.g.

Qh(x0,u0) =
1
N

N∑
i=1

Ki−1∑
j=0

γ j ri,j+1



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Monte-Carlo policy iteration

Monte-Carlo policy iteration
for each iteration ℓ do

perform N trajectories applying hℓ

reset to 0 accumulator A(x ,u), counter C(x ,u)
for each step k of each trajectory i do

A(xk ,uk )← A(xk ,uk ) +
∑Ki−1

j=k γ j−k ri,j+1 (return)
C(xk ,uk )← C(xk ,uk ) + 1

end for
Qhℓ(x ,u)← A(x ,u)/C(x ,u)
hℓ+1(x)← argmaxu Qhℓ(x ,u)

end for

Note: must guarantee that terminal state is reached!



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Cleaning robot: Monte Carlo, demo



Monte Carlo Exploration Temporal differences Accelerating TD Recap

1 Monte Carlo, MC

2 Exploration

3 Temporal differences, TD

4 Accelerating TD methods

5 Recap



Monte Carlo Exploration Temporal differences Accelerating TD Recap

The need for exploration

In the MC estimate:

Qh(x ,u)← A(x ,u)/C(x, u)

how to ensure C(x ,u) > 0 – information about each (x ,u)?

1 Initial states x0 representative
2 Actions:

u0 representative, sometimes different from h(x0)
and additionally, possibly:

uk representative, sometimes different from h(xk )



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Exploration-exploitation dilemma

Exploration is necessary:
actions different from the current policy
Exploitation of current knowledge is necessary:
current policy must be applied for good performance

The exploration-exploitation dilemma
– essential in all RL algorithms

(not only in MC)



Monte Carlo Exploration Temporal differences Accelerating TD Recap

ε-greedy strategy

Simple solution to the exploration-exploitation dilemma:
ε-greedy

uk =

{
h(xk ) = argmaxu Q(xk ,u) with probability (1− εk )

a uniformly random action w.p. εk

Exploration probability εk ∈ (0,1)
usually decreased over time
Main disadvantage: when exploring, actions are fully
random, leading to poor performance



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Softmax strategy

Action selection:

uk = u w.p.
eQ(xk ,u)/τk∑
u′ eQ(xk ,u′)/τk

where τk > 0 is the exploration temperature
Taking τ → 0, greedy selection recovered;
τ →∞ gives uniform random
Compared to ε-greedy, better actions are more likely to be
applied even when exploring



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Bandit-based exploration

At single state, exploration modeled as multi-armed bandit:
Action j = arm with reward distribution ρj , expectation µj

Best arm (optimal action) has expected value µ∗

At step k , we pull arm (try action) jk , getting rk ∼ ρjk

Objective: After n pulls, small regret:
∑n

k=1 µ
∗ − µjk



Monte Carlo Exploration Temporal differences Accelerating TD Recap

UCB algorithm

Often-used algorithm: after n steps, pick arm with
largest upper confidence bound:

b(j) = µ̂j +

√
c
log n

nj

where:
µ̂j = mean of rewards observed for arm j so far
nj = how many times arm j was pulled
c tunable constant, e.g. 3/2

These are only a few simple methods, many others exist,
e.g. Bayesian exploration, intrinsic rewards, optimistic
initialization etc.



Monte Carlo Exploration Temporal differences Accelerating TD Recap

1 Monte Carlo, MC

2 Exploration

3 Temporal differences, TD
Introduction
SARSA
Q-learning
Discussion

4 Accelerating TD methods

5 Recap



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Monte-Carlo with incremental updates

Consider the return sample from step k onwards:

Rk =
∑K−1

j=k
γ j−k rj+1

Instead of averaging such samples to get Q, perform
incremental updates:

Q(xk ,uk )← Q(xk ,uk ) + αk [Rk −Q(xk ,uk )]

where αk is a step size, or learning rate



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Discussion

Incremental MC motivated by time-varying problems
(recent samples have larger weights),
but works in time-invariant MDPs as well
No longer need to store accumulators A and counters C,
just directly the Q-values
If α satisfies “stochastic-approximation” conditions:

1 decreases to 0,
∑∞

k=0 α
2
k = finite

2 but not too quickly,
∑∞

k=0 αk →∞
method converges: lim when # of samples→∞ = Q-value



Monte Carlo Exploration Temporal differences Accelerating TD Recap

From Monte-Carlo to temporal differences

To avoid waiting until trajectory finishes, recall Bellman
equation:

Qh(x ,u) = Ex ′

{
ρ̃(x ,u, x ′) + γQh(x ′,h(x ′))

}
and use the return estimate:

R̂k = rk+1 + γQ(xk+1,h(xk+1))



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Temporal differences (TD)

Otherwise, update remains the same, but let us make the
return estimate explicit:

Q(xk ,uk )←Q(xk ,uk ) + αk [R̂k −Q(xk ,uk )]

[rk+1 + γQ(xk+1,h(xk+1))−Q(xk ,uk )]

[. . . ] is the temporal difference between two estimates of
Q(xk ,uk ), using information at subsequent time steps
Model-free, data-based updates (like MC): rk+1, xk+1
e.g. observed while interacting online
Updates estimate Q(xk ,uk ) using another estimate,
Q(xk+1,h(xk+1)): bootstrapping
Dynamic programming also bootstraps, but using a model



Monte Carlo Exploration Temporal differences Accelerating TD Recap

TD vs. MC vs. DP: Unified perspective



Monte Carlo Exploration Temporal differences Accelerating TD Recap

TD for policy evaluation

TD for policy evaluation
for each trajectory do

initialize x0, choose the initial action u0
repeat at each step k

apply uk , measure xk+1, receive rk+1
choose the next action uk+1 ∼ h(xk+1)
Q(xk ,uk )← Q(xk ,uk ) + αk ·

[rk+1 + γQ(xk+1,uk+1)−Q(xk ,uk )]
until trajectory finished

end for

Note: we replaced h(xk+1) by uk+1, chosen according to h



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Exploration-exploitation

choose the next action uk+1 ∼ h(xk+1)

Information about (x ,u) ̸= (x ,h(x)) necessary
⇒ exploration
h must be followed
⇒ exploitation

E.g. ε-greedy:

uk+1 =

{
h(xk+1) w.p. (1− εk+1)

unif. random w.p. εk+1



Monte Carlo Exploration Temporal differences Accelerating TD Recap

1 Monte Carlo, MC

2 Exploration

3 Temporal differences, TD
Introduction
SARSA
Q-learning
Discussion

4 Accelerating TD methods

5 Recap



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Recall: MC

MC policy iteration
for each iteration ℓ do

perform N trajectories applying hℓ

reset to 0 accumulator A(x ,u), counter C(x ,u)
for each step k of each trajectory i do

A(xk ,uk )← A(xk ,uk ) +
∑Ki−1

j=k γ j−k ri,j+1 (return)
C(xk ,uk )← C(xk ,uk ) + 1

end for
Qhℓ(x ,u)← A(x ,u)/C(x ,u)
hℓ+1(x)← argmaxu Qhℓ(x ,u)

end for



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Optimistic policy improvement

Policy unchanged for N trajectories
⇒ Algorithm learns slowly

Policy improvement after each trajectory
= optimistic

We will also use ε-greedy exploration



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Optimistic MC

Optimistic MC

initialize to 0 accumulator A(x ,u), counter C(x ,u)
for each trajectory do

execute trajectory, e.g., applying ε-greedy:

uk =

{
argmaxu Q(xk ,u) w.p. (1− εk )

unif. random w.p. εk
for each step k do

A(xk ,uk )← A(xk ,uk ) +
∑K−1

j=k γ j−k rj+1
C(xk ,uk )← C(xk ,uk ) + 1

end for
Q(x ,u)← A(x ,u)/C(x ,u)

end for

h implicit, greedy in Q
update of Q ⇒ implicit improvement of h



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Optimism in TD

Earlier TD algorithm: fixed h

What is the fastest we can improve h in TD?
After each transition.

⇒ interpretation: policy iteration
optimistic at the transition level

h implicit, greedy in Q
(updating Q ⇒ implicit improvement of h)



Monte Carlo Exploration Temporal differences Accelerating TD Recap

SARSA

SARSA with ε-greedy
for each trajectory do

initialize x0

u0 =

{
argmaxu Q(x0,u) w.p. (1− ε0)

unif. random w.p. ε0
repeat at each step k

apply uk , measure xk+1, receive rk+1

uk+1 =

{
argmaxu Q(xk+1,u) w.p. (1− εk+1)

unif. random w.p. εk+1

Q(xk ,uk )← Q(xk ,uk ) + αk ·
[rk+1 + γQ(xk+1,uk+1)−Q(xk ,uk )]

until trajectory finished
end for



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Origin of name “SARSA”

(xk ,uk , rk+1, xk+1,uk+1) =
(State, Action, Reward, State, Action) = SARSA



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Cleaning robot: SARSA, demo

Parameters: α = 0.2, ε = 0.3 (constant)
x0 = 2 or 3 (random)



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Machine replacement: SARSA, demo

Parameters: α = 0.1, ε = 0.3 (constant), 20 steps per trajectory
x0 = 1



Monte Carlo Exploration Temporal differences Accelerating TD Recap

1 Monte Carlo, MC

2 Exploration

3 Temporal differences, TD
Introduction
SARSA
Q-learning
Discussion

4 Accelerating TD methods

5 Recap



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Bootstrapping estimate of Q∗

Bellman optimality equation:

Q∗(x ,u) = Ex ′

{
ρ̃(x ,u, x ′) + γmax

u′
Q∗(x ′,u′)

}
leads to estimate:

Q̂k = rk+1 + γmax
u′

Q(xk+1,u′)



Monte Carlo Exploration Temporal differences Accelerating TD Recap

TD update for Q∗

Q(xk ,uk )←Q(xk ,uk ) + αk [Q̂k −Q(xk ,uk )]

[rk+1 + γmax
u′

Q(xk+1,u′)−Q(xk ,uk )]



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Q-learning

Q-learning with ε-greedy
for each trajectory do

initialize x0
repeat at each step k

uk =

{
argmaxu Q(xk ,u) w.p. (1− εk )

unif. random w.p. εk
apply uk , measure xk+1, receive rk+1
Q(xk ,uk )← Q(xk ,uk ) + αk ·

[rk+1 + γmax
u′

Q(xk+1,u′)−Q(xk ,uk )]

until trajectory finished
end for



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Cleaning robot: Q-learning, demo

Parameters – same as SARSA: α = 0.2, ε = 0.3 (constant)
x0 = 2 or 3 (random)



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Machine replacement: Q-learning, demo

Parameters: α = 0.1, ε = 0.3 (constant), 20 steps per trajectory
x0 = 1



Monte Carlo Exploration Temporal differences Accelerating TD Recap

1 Monte Carlo, MC

2 Exploration

3 Temporal differences, TD
Introduction
SARSA
Q-learning
Discussion

4 Accelerating TD methods

5 Recap



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Convergence

Conditions for convergence to Q∗:
1 All pairs (x ,u) continue to be updated:

ensured by exploration, e.g. ε-greedy
2 Stochastic-approximation conditions: learning rate

decreases to zero,
∑∞

k=0 α
2
k = finite, but not too quickly:∑∞

k=0 αk →∞

Additionally, for SARSA:
3 The policy must become greedy at infinity

e.g. limk→∞ εk = 0



Monte Carlo Exploration Temporal differences Accelerating TD Recap

On-policy / off-policy

SARSA: on-policy
Always estimates the Q-function of the current policy

Q-learning: off-policy
Independently of the current policy,
always estimates the optimal Q-function



Monte Carlo Exploration Temporal differences Accelerating TD Recap

TD: Discussion

Advantages
Simple to understand and implement
Low complexity⇒ fast execution

SARSA vs. Q-learning
SARSA less complex than Q-learning
(no max in the Q-function update)

Learning rate and exploration sequences αk , εk
significantly influence performance

Main disadvantage
Large amount of data required



Monte Carlo Exploration Temporal differences Accelerating TD Recap

1 Monte Carlo, MC

2 Exploration

3 Temporal differences, TD

4 Accelerating TD methods
Motivation
Experience replay
n-step returns

5 Recap



Monte Carlo Exploration Temporal differences Accelerating TD Recap

The need to accelerate TD

Main disadvantage: TD learns slowly – requires a lot of data

In practice, data costs:
time
profit (low performance due to exploration)
system wear

Accelerating RL = efficient use of data



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Example: 2D navigation

Navigation in a discrete 2D world
from Start to Goal
Reward = 10 only upon reaching G (terminal state)



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Example: TD

We choose SARSA, α = 1; initialize Q = 0
Updates along trajectory on the left:

. . .

Q(x4,u4) = 0 + γ ·Q(x5,u5) = 0
Q(x5,u5) = 10 + γ · 0 = 10

A new transition from x4 to x5
needed to propagate the information to x4!



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Accelerating TD: 2 ideas

1 Store and replay experience
2 Use n-step returns



Monte Carlo Exploration Temporal differences Accelerating TD Recap

1 Monte Carlo, MC

2 Exploration

3 Temporal differences, TD

4 Accelerating TD methods
Motivation
Experience replay
n-step returns

5 Recap



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Experience replay (ER)

Store each transition (xk ,uk , xk+1, rk+1)
(and for SARSA, also uk+1) in a database

At each step, replay m transitions from database
(in addition to normal updates)



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Q-learning with ER

Q-learning with ER
for each trajectory do

initialize x0
repeat at each step k

apply uk , measure xk+1, receive rk+1
Q(xk ,uk )← Q(xk ,uk ) + αk ·

[rk+1 + γmax
u′

Q(xk+1,u′)−Q(xk ,uk )]

add (xk ,uk , xk+1, rk+1) to the database
ReplayExperience

until trajectory ends
end for



Monte Carlo Exploration Temporal differences Accelerating TD Recap

ReplayExperience procedure

ReplayExperience
loop m times

fetch a transition (x ,u, x ′, r) from the database
Q(x ,u)← Q(x ,u) + α·

[r + γmax
u′

Q(x ′,u′)−Q(x ,u)]

end loop



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Replay direction

Order of replaying transitions:
1 Forward
2 Backward
3 Arbitrary



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Example: Influence of replay direction

Green: normal updates, purple: experience replay
Left: forward replay; right: backward replay
Backward replay preferable in exact RL



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Example: Aggregating information

Experience replay aggregates information
from multiple trajectories
The indicated cell benefits from information
along both trajectories



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Cleaning robot: Q-learning with ER, demo

Parameters: α = 0.2, ε = 0.3, n = 5, backward direction
x0 = 2 or 3 (random)



Monte Carlo Exploration Temporal differences Accelerating TD Recap

1 Monte Carlo, MC

2 Exploration

3 Temporal differences, TD

4 Accelerating TD methods
Motivation
Experience replay
n-step returns

5 Recap



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Recall: MC and TD return estimates

Rk =
∑K−1

j=k
γ j−k rj+1

R̂k = rk+1 + γQ(xk+1,h(xk+1))

Is there something in-between?



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Middle ground: n-step return

SARSA (on-policy):

R̂k =rk+1 + γrk+2 + . . .+ γn−1rk+n

+ γnQ(xk+n,uk+n)



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Example: Effect of n-step return

For n = 3:

Q(x5,u5) = 10 + 0 (terminal)
Q(x4,u4) = 0 + γ10 + 0 (terminal)

Q(x3,u3) = 0 + γ0 + γ210 + 0 (terminal)

Q(x2,u2) = 0 + γ0 + γ20 + γ30 (bootstrap)
. . .



Monte Carlo Exploration Temporal differences Accelerating TD Recap

TD versus MC

n = 1 recovers TD, n→∞ recovers MC
Intermediate values mix TD and MC, leading to a tunable
bias-variance tradeoff



Monte Carlo Exploration Temporal differences Accelerating TD Recap

1 Monte Carlo, MC

2 Exploration

3 Temporal differences, TD

4 Accelerating TD methods

5 Recap



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Recap: Methods in Part III

Monte-Carlo methods, MC:
MC policy iteration
MC with incremental updates

Exploration-exploitation dilemma:
ε-greedy widely used
Many other solutions exist, like UCB

Temporal differences, TD:
TD for policy evaluation
Optimistic policy improvements
SARSA
Q-learning

Accelerating TD:
Experience replay
n-step returns



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Key terms in this part

Monte-Carlo methods
exploration-exploitation dilemma
ϵ-greedy, softmax, bandits
optimistic policy improvement
learning rate
bootstrapping
temporal differences
SARSA
Q-learning
experience replay
n-step returns



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Exercises

1 Does the exponential schedule αk = αk , with α ∈ (0,1) a
constant, satisfy the stochastic approximation conditions?

2 Is Q-learning guaranteed to converge when εk = ε, a
constant in (0,1)? What about SARSA? How about when
you use an exponential decrease εk = εk?

3 Would a Monte-Carlo algorithm that improves the policy
after every transition (like TD) make sense?

4 Would Q-learning (without n-step returns as they are
nontrivial in the off-policy case) propagate information
faster than SARSA for the gridworld trajectory example?



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Exercises (cont’d)

5 Assuming that we have access to a model only for the
purposes of policy improvement, provide V-function
alternates for all algorithms in this part. Do this in the same
order as for Q-functions:

Monte Carlo estimates, averaging-based and incremental
Bootstrapping estimates and updates
Policy evaluation, SARSA, and Q-learning

Don’t forget to draw trees and highlights, it will help you
visualize things.


	Exact reinforcement learning
	Monte Carlo, MC
	Exploration
	Temporal differences, TD
	Accelerating TD methods
	Recap


