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Exact reinforcement learning



Part lll in plan

@ Reinforcement learning problem

@ Optimal solution

@ Exact dynamic programming

@ Exact reinforcement learning

@ Approximation techniques

@ Approximate dynamic programming
@ Approximate reinforcement learning



Algorithm landscape

By model usage:
@ Model-based: f, p known a priori
@ Model-free: f, p unknown (reinforcement learning)

By interaction level:
@ Offline: algorithm runs in advance
@ Online: algorithm runs with the system

Exact vs. approximate:
@ Exact: x, u small number of discrete values
@ Approximate: x, u continuous (or many discrete values)



RL on the machine learning spectrum

Supervised Reinforcement Unsupervised
learning learning learning

more informative feedback less informative feedback

@ Supervised: for each training sample, correct output
known

@ Unsupervised: only input samples, no outputs;
find patterns in the data

@ Reinforcement: correct actions not available, only rewards

But note: RL finds dynamical optimal control!
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Reminder: Policy iteration

Policy iteration with Q-functions
initialize policy hg arbitrarily
repeat at each iteration ¢
1: policy evaluation: find Q"
2: policy improvement:
find hy,1(x) = argmax, Q" (x, u)
until convergence to h*

Note: In RL, we generally use Q-functions so policy
improvement does not require a model
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Policy evaluation

To find Q”:
@ So far: model-based methods
@ Reinforcement learning: model not available

@ Learn Q" from offline data or via online interaction with
the system
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“Monte-Carlo” policy evaluation

o0
Recall: Q"(xg, ug) = > Y41
k=0

b

@ Trajectory from (xp, Up) to xx (terminal)
using uy = h(xy), Uz = h(x2), etc.
= Q"(xo, Ug) = return along trajectory:
K—1

Q" (X0, Up) = Z/:o Vg1 01
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“Monte-Carlo” policy evaluation (cont'd)

@ Moreover, at each step k:

K-1
Q" (xk, uk) = Zj:k SR/
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Monte-Carlo policy evaluation: Stochastic case

@ N trajectories (differing due to stochastic transitions)
@ Estimated Q value = mean of the returns, e.g.

1 .
Q"(%, Uo) = N 2 > Arije
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Monte-Carlo policy iteration

Monte-Carlo policy iteration

for each iteration ¢ do
perform N trajectories applying hy
reset to 0 accumulator A(x, u), counter C(x, u)
for each step k of each trajectory i do
A(Xk, U) — A(Xk, Ux) + ZJK:T YK j41 (return)
C(Xk, Uk) — C(Xk7 Uk) +1
end for
Q" (x,u) — A(x,u)/C(x, u)
he,1(x) < argmax, Q" (x, u)
end for

Note: must guarantee that terminal state is reached!
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Cleaning robot:

Monte Carlo, demo

Monte Carlo, trial 70 [piter 7 done, peval 10]
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The need for exploration

In the MC estimate:

Q"(x, u) — A(x, u)/C(x, u) |

how to ensure C(x, u) > 0 —information about each (x, u)?

@ Initial states xp representative
© Actions:
up representative, sometimes different from h(xg)
and additionally, possibly:
ux representative, sometimes different from h(xy)
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Exploration-exploitation dilemma

@ Exploration is necessary:
actions different from the current policy

@ Exploitation of current knowledge is necessary:
current policy must be applied for good performance

The exploration-exploitation dilemma
— essential in all RL algorithms J

(not only in MC)
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e-greedy strategy

@ Simple solution to the exploration-exploitation dilemma:
e-greedy

U — h(xx) = argmax, Q(xx, u)  with probability (1 — ex)
“Ta uniformly random action  w.p. g

@ Exploration probability ¢4 € (0,1)
usually decreased over time

@ Main disadvantage: when exploring, actions are fully
random, leading to poor performance
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Softmax strategy

@ Action selection:
eQxk,u) /7«

Uk =Uu W-p- Zu/ eo(xk,u/)/,rk

where 7, > 0 is the exploration temperature

@ Taking 7 — 0, greedy selection recovered;
T — oo gives uniform random

@ Compared to e-greedy, better actions are more likely to be
applied even when exploring
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Bandit-based exploration

At single state, exploration modeled as multi-armed bandit:
@ Action j = arm with reward distribution p;, expectation y;
@ Best arm (optimal action) has expected value p*

@ At step k, we pull arm (try action) jx, getting rx ~ p;,
@ Obijective: After n pulls, small regret: > _, u* — M,
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UCB algorithm

Often-used algorithm: after n steps, pick arm with
largest upper confidence bound:

N~ log n
b(j) = 1 + CT
i
where:
@ /i; = mean of rewards observed for arm j so far
@ n; = how many times arm j was pulled

@ ctunable constant, e.g. 3/2

These are only a few simple methods, many others exist,
e.g. Bayesian exploration, intrinsic rewards, optimistic
initialization etc.
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e Temporal differences, TD
@ [ntroduction
@ SARSA
@ Q-learning
@ Discussion
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Monte-Carlo with incremental updates

Consider the return sample from step k onwards:
K—1

i—k
Ry = Z/':k 0 lj+1

Instead of averaging such samples to get Q, perform
incremental updates:

Q(Xk, Ux) — Q(Xk, k) + ak[Rx — Q(Xk, uk)]

where « is a step size, or learning rate
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Discussion

@ Incremental MC motivated by time-varying problems
(recent samples have larger weights),
but works in time-invariant MDPs as well
@ No longer need to store accumulators A and counters C,
just directly the Q-values
@ If « satisfies “stochastic-approximation” conditions:
@ decreases to 0, 3", o = finite
@ but not too quickly, >~ ax — oo
method converges: lim when # of samples — oo = Q-value
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From Monte-Carlo to temporal differences

To avoid waiting until trajectory finishes, recall Bellman
equation:

Q"(x,u) = Eyx {ﬁ(x, u, x') +~Q"(x, h(x’))}
and use the return estimate:
Rk = rk1 + vYQ(Xk+1, h(Xk41))
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Temporal differences (TD)

Otherwise, update remains the same, but let us make the
return estimate explicit:

Q(xk, Uk) < Q(xk, Uk) + k[ Rk — Q(Xk, uk)]
= Q(Xk, Uk) + k[t +7Q(Xkp1, h(Xki1)) — Q(Xk, Uk)]

@ [...] is the temporal difference between two estimates of
Q(xx, Uk), using information at subsequent time steps

@ Model-free, data-based updates (like MC): ri. 1, Xk 1
e.g. observed while interacting online

@ Updates estimate Q(xk, ux) using another estimate,
Q(Xk11, h(xk11)): bootstrapping
@ Dynamic programming also bootstraps, but using a model

u
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TD vs. MC vs. DP: Unified perspective

Temporal difference Dynamic programming
W|dth of estlmates
1 sample; expected value
model-free model-based
1 step
depth ol |2
of estimates S §
@

full trajectory

andn T i

Monte Carlo Exhaustive search
(graph search, online planning)

u
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TD for pollcy evaluation

TD for policy evaluation

for each trajectory do
initialize xp, choose the initial action ug
repeat at each step k
apply uk, measure X, 1, receive ry 4
choose the next action vy 1 ~ h(xx11)
Q(Xk, Uk) «— Q(Xk, Uk) + ak:
[kt + Y Q(Xks1, Uk1) — Q(Xk, Uk)]
until trajectory finished
end for

Note: we replaced h(xx. 1) by ux.1, chosen according to h
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Exploration-exploitation

choose the next action uy1 ~ h(Xk11)

@ Information about (x, u) # (x, h(x)) necessary
= exploration

@ h must be followed
= exploitation

@ E.g. e-greedy:

) h(Xk41) w.p. (1 —€xt1)
Uk = .
unif. random  w.p. g4 1
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e Temporal differences, TD

@ SARSA



Recall MC

MC policy iteration
for each iteration ¢ do
perform N trajectories applying hy
reset to 0 accumulator A(x, u), counter C(x, u)
for each step k of each trajectory i do
A(Xi, Ug) — A(Xk, Ug) + Zﬁ? V=Kri j 11 (return)
C(xk, ux) — C(xx, ux) + 1
end for
Q" (x, u) — A(x,u)/C(x, u)
hey1(x) — argmax, Q™ (x, u)
end for
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Optimistic policy improvement

@ Policy unchanged for N trajectories
= Algorithm learns slowly

@ Policy improvement after each trajectory
= optimistic

@ We will also use e-greedy exploration
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Optimistic MC
initialize to 0 accumulator A(x, u), counter C(x, u)
for each trajectory do
execute trajectory, e.g., applying e-greedy:
argmax, Q(xx,u) w.p. (1 — &)
unif. random W.p. €k
for each step k do ‘
Ak, k) — A, tie) + S Ak
C( Xk, Uk) < C(Xi, Ux) + 1
end for
Q(x, u) — A(x,u)/C(x, u)
end for

@ himplicit, greedy in Q
@ update of Q = implicit improvement of h up
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Optimism in TD

@ Earlier TD algorithm: fixed h

@ What is the fastest we can improve hin TD?
After each transition.

= interpretation: policy iteration
optimistic at the transition level

@ himplicit, greedy in Q
(updating Q = implicit improvement of h)
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SARSA

SARSA with e-greedy
for each trajectory do

initialize xg
_Jargmax, Q(xo,u) w.p. (1 —¢o)
| unif. random W.p. €0

repeat at each step k
apply uk, measure xx. 1, receive ri 1
argmax, Q(xx+1,u)  W.p. (1 —exs1)
unif. random W.P. €kt 1
Q(Xk, Uk) — O(Xk./ Uk) + Qi+
[kt + 7 Q(Xkq 1, Uks1) — Q(Xk, Uk)]
until trajectory finished
end for

U1 =
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Origin of name “SARSA”

(Xks Uk Mt X1, Uk 1) =
(State, Action, Reward, State, Action) = SARSA
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Cleaning robot: SARSA, demo

Parameters: o = 0.2, ¢ = 0.3 (constant)
Xo = 2 or 3 (random)

SARSA, trial 8, step 3

F© S
—|—|—

T

——Q(x, left)
25— Q(x, right)
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4 —e—a-q'|
3 \
2 : :
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Machine replacement: SARSA, demo

Parameters: o« = 0.1, ¢ = 0.3 (constant), 20 steps per trajectory
Xo = 1
SARSA, trial 30 completed

LW | R

Qix, VWait)
Qix, Replace) [

1 @ 0 o =~ M oW Ao,
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e Temporal differences, TD

@ Q-learning
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Bootstrapping estimate of Q*
Bellman optimality equation:
Q*(x,u) = By {ﬁ(x, u,xX')+~ max Q" (X, u’)}

leads to estimate:
Qe = Tt + 7 Max QX1 u)
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TD update for Q*

Q(Xk, tk) «—Q(xk, ) + i[O — Q(xk, k)]
(i1 -+ max Qx4 U') — QXk )]
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Q-learning

Q-learning with e-greedy
for each trajectory do
initialize xg
repeat at each step k
_Jargmax, Q(xk,u) w.p. (1 —ex)
| unif. random W.p. £k
apply uk, measure Xy 1, receive ri 1
Q(Xk, Ux) «— Q(Xk, Uk) + ax:
(i1 + 7 max QX1 U') = Qlxi, Uk)]
until trajectory finished
end for
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Cleaning robot: Q-learning, demo

Parameters — same as SARSA: a = 0.2, £ = 0.3 (constant)
Xo = 2 or 3 (random)

Q-learning, trial 8, step 3

F© S
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Machine replacement: Q-learning, demo

Parameters: o« = 0.1, ¢ = 0.3 (constant), 20 steps per trajectory

Xo = 1
Q-learning, trial 30 completed
R | R |48,
6
Qix, VWait)
5 Qix, Replace) [1
4
3
2
1
0 1 2 3 4 5
85 T T tt
8 —$—a-a
75
7 . X .
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e Temporal differences, TD

@ Discussion
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Convergence

Conditions for convergence to Q*:

@ All pairs (x, u) continue to be updated:
ensured by exploration, e.g. e-greedy

@ Stochastic-approximation conditions: learning rate
decreases to zero, > ;> , o2 = finite, but not too quickly:

Ziozo Qg — 00

Additionally, for SARSA:

© The policy must become greedy at infinity
e.0.limg_ e =0
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On-policy / off-policy

SARSA: on-policy
@ Always estimates the Q-function of the current policy

Q-learning: off-policy
@ Independently of the current policy,
always estimates the optimal Q-function
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TD: Discussion

Advantages
@ Simple to understand and implement
@ Low complexity = fast execution

SARSA vs. Q-learning

@ SARSA less complex than Q-learning
(no max in the Q-function update)

Learning rate and exploration sequences ay, ¢k
significantly influence performance

Main disadvantage
@ Large amount of data required
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0 Accelerating TD methods
@ Motivation
@ Experience replay
@ n-step returns
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The need to accelerate TD

Main disadvantage: TD learns slowly — requires a lot of data

In practice, data costs:
@ time
@ profit (low performance due to exploration)
@ system wear

Accelerating RL = efficient use of data
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Example: 2D navigation

@ Navigation in a discrete 2D world
from Start to Goal

@ Reward = 10 only upon reaching G (terminal state)
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Example: TD
r=1Q
G G
IS e o T
'S 'S

@ We choose SARSA, o = 1; initialize Q=0
@ Updates along trajectory on the left:

Q(x4, Us) =0+ - Q(x5,U5) = 0
Q(X5,U5): 104+~-0=10

@ A new transition from x4 to x5
needed to propagate the information to x,! up
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Accelerating TD: 2 ideas

@ Store and replay experience
© Use n-step returns
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0 Accelerating TD methods

@ Experience replay
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Experience replay (ER)

@ Store each transition (X, Uk, Xk+1, Mk+1)
(and for SARSA, also uk. 1) in a database

. >
Im”
.

@ At each step, replay m transitions from database
(in addition to normal updates)



Monte Carlo Exploration Temporal differen: Accelerating TD

Q-learning with ER

Q-learning with ER

for each trajectory do
initialize xg
repeat at each step k
apply ux, measure X 1, receive r 4
Q(Xk, Uk) — Q(Xk, Uk) + o
[rk1 + v max Q(Xk+1, U") — Q(xx, Ug)]

add (xk, Uk, Xk11, k1) to the database
ReplayExperience
until trajectory ends
end for
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ReplayExperience procedure

ReplayExperience

loop mtimes
fetch a transition (x, u, x’, r) from the database
Q(x,u) — Q(x,u) + o
[r +~ymax Q(x', u) — Q(x, u)]
u/

end loop
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Replay direction

Order of replaying transitions:
@ Forward

© Backward

© Arbitrary
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Example: Influence of replay direction

@ Green: normal updates, purple: experience replay
@ Left: forward replay; right: backward replay
@ Backward replay preferable in exact RL
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Example: Aggregating information

sk

In. s
g sH

@ Experience replay aggregates information
from multiple trajectories

@ The indicated cell benefits from information
along both trajectories




Cleaning robot: Q-learning with ER, demo
Parameters: o = 0.2, e = 0.3, m = 5, backward direction

Xo = 2 or 3 (random)

ER-Q-earning, trial 13, step 2 [replaying trial 8, step 2]

L || |5 8
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0 Accelerating TD methods

@ n-step returns
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A

Rk = reer + vQ(Xk1, h(Xkr1))

Is there something in-between?
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Middle ground: n-step return

SARSA (on-policy):

Ry =l + kg2 + -+ A1 Ik+n
+ ’ynQ(Xk+n, Uk+n)




Accelerating TD
[e]e]e] lo}

Example: Effect of n-step return

r:::] Q\

i\G/ff G
| R ——
f\S S

For n=3:

Q(xs,us) =10+ 0 (terminal)
Q(X4,Us) =0+~10+0 (terminal)
Q(x3,u3) =0+~0++210+0 (terminal)
Q(xo, Up) = 0 +~0 +~20 +~°0 (bootstrap)
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TD versus MC

@ n =1 recovers TD, n — oo recovers MC

@ Intermediate values mix TD and MC, leading to a tunable
bias-variance tradeoff

more bias

more variance

} — N —

/
n=1— f( |
/ MC

original TD \
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Recap: Methods in Part lll

Monte-Carlo methods, MC:
e MC policy iteration
e MC with incremental updates

Exploration-exploitation dilemma:

e c-greedy widely used
e Many other solutions exist, like UCB

Temporal differences, TD:

e TD for policy evaluation

e Optimistic policy improvements
e SARSA

e Q-learning

Accelerating TD:

e Experience replay
@ n-step returns
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Key terms in this part

@ Monte-Carlo methods

@ exploration-exploitation dilemma
@ c-greedy, softmax, bandits

@ optimistic policy improvement

@ learning rate

@ bootstrapping

@ temporal differences

@ SARSA

@ Q-learning

@ experience replay
@ n-step returns
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Exercises

@ Does the exponential schedule o = of, with a € (0,1) a
constant, satisfy the stochastic approximation conditions?

@ Is Q-learning guaranteed to converge when ¢, = ¢, a
constant in (0, 1)? What about SARSA? How about when
you use an exponential decrease ¢, = £¢?

© Would a Monte-Carlo algorithm that improves the policy
after every transition (like TD) make sense?

© Would Q-learning (without n-step returns as they are
nontrivial in the off-policy case) propagate information
faster than SARSA for the gridworld trajectory example?
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Exercises (cont'd)

@ Assuming that we have access to a model only for the
purposes of policy improvement, provide V-function
alternates for all algorithms in this part. Do this in the same
order as for Q-functions:

e Monte Carlo estimates, averaging-based and incremental
e Bootstrapping estimates and updates
e Policy evaluation, SARSA, and Q-learning
Don’t forget to draw trees and highlights, it will help you
visualize things.
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