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Part III in plan

Reinforcement learning problem
Optimal solution
Exact dynamic programming
Exact reinforcement learning
Approximation techniques
Approximate dynamic programming
Approximate reinforcement learning
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Algorithm landscape

By model usage:
Model-based: f , ρ known a priori
Model-free: f , ρ unknown (reinforcement learning)

By interaction level:
Offline: algorithm runs in advance
Online: algorithm runs with the system

Exact vs. approximate:
Exact: x , u small number of discrete values
Approximate: x , u continuous (or many discrete values)



Monte Carlo Exploration Temporal differences Accelerating TD Recap

RL on the machine learning spectrum

Supervised: for each training sample, correct output
known
Unsupervised: only input samples, no outputs;
find patterns in the data
Reinforcement: correct actions not available, only rewards

But note: RL finds dynamical optimal control!
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Reminder: Policy iteration

Policy iteration with Q-functions
initialize policy h0 arbitrarily
repeat at each iteration `

1: policy evaluation: find Qh`

2: policy improvement:
find h`+1(x) = arg maxu Qh`(x , u)

until convergence to h∗

Note: In RL, we generally use Q-functions so policy
improvement does not require a model
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Policy evaluation

To find Qh:
So far: model-based methods
Reinforcement learning: model not available
Learn Qh from offline data or via online interaction with
the system
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“Monte-Carlo” policy evaluation

Recall: Qh(x0, u0) =
∞∑

k=0
γk rk+1

Trajectory from (x0, u0) to xK (terminal)
using u1 = h(x1), u2 = h(x2), etc.

⇒ Qh(x0, u0) = return along trajectory:

Qh(x0, u0) =
∑K−1

j=0
γ j rj+1
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“Monte-Carlo” policy evaluation (cont’d)

Moreover, at each step k :

Qh(xk , uk ) =
∑K−1

j=k
γ j−k rj+1
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Monte-Carlo policy evaluation: Stochastic case

N trajectories (differing due to stochastic transitions)
Estimated Q value = mean of the returns, e.g.

Qh(x0, u0) =
1
N

N∑
i=1

Ki−1∑
j=0

γ j ri,j+1
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Monte-Carlo policy iteration

Monte-Carlo policy iteration
for each iteration ` do

perform N trajectories applying h`

reset to 0 accumulator A(x , u), counter C(x , u)
for each step k of each trajectory i do

A(xk , uk )← A(xk , uk ) +
∑Ki−1

j=k γ j−k ri,j+1 (return)
C(xk , uk )← C(xk , uk ) + 1

end for
Qh`(x , u)← A(x , u)/C(x , u)
h`+1(x)← arg maxu Qh`(x , u)

end for

Note: must guarantee that terminal state is reached!
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Cleaning robot: Monte Carlo, demo
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The need for exploration

In the MC estimate:

Qh(x , u)← A(x , u)/C(x, u)

how to ensure C(x , u) > 0 – information about each (x , u)?

1 Initial states x0 representative
2 Actions:

u0 representative, sometimes different from h(x0)
and additionally, possibly:

uk representative, sometimes different from h(xk )



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Exploration-exploitation dilemma

Exploration is necessary:
actions different from the current policy
Exploitation of current knowledge is necessary:
current policy must be applied for good performance

The exploration-exploitation dilemma
– essential in all RL algorithms

(not only in MC)
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ε-greedy strategy

Simple solution to the exploration-exploitation dilemma:
ε-greedy

uk =

{
h(xk ) = arg maxu Q(xk , u) with probability (1− εk )

a uniformly random action w.p. εk

Exploration probability εk ∈ (0, 1)
usually decreased over time
Main disadvantage: when exploring, actions are fully
random, leading to poor performance
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Softmax strategy

Action selection:

uk = u w.p.
eQ(xk ,u)/τk∑
u′ eQ(xk ,u′)/τk

where τk > 0 is the exploration temperature
Taking τ → 0, greedy selection recovered;
τ →∞ gives uniform random
Compared to ε-greedy, better actions are more likely to be
applied even when exploring
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Bandit-based exploration

At single state, exploration modeled as multi-armed bandit:
Action j = arm with reward distribution ρj , expectation µj

Best arm (optimal action) has expected value µ∗

At step k , we pull arm (try action) jk , getting rk ∼ ρjk

Objective: After n pulls, small regret:
∑n

k=1 µ∗ − µjk
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UCB algorithm

Often-used algorithm: after n steps, pick arm with
largest upper confidence bound:

b(j) = µ̂j +

√
c

log n
nj

where:
µ̂j = mean of rewards observed for arm j so far
nj = how many times arm j was pulled
c tunable constant, e.g. 3/2

These are only a few simple methods, many others exist,
e.g. Bayesian exploration, intrinsic rewards, optimistic
initialization etc.
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Monte-Carlo with incremental updates

Consider the return sample from step k onwards:

Rk =
∑K−1

j=k
γ j−k rj+1

Instead of averaging such samples to get Q, perform
incremental updates:

Q(xk , uk )← Q(xk , uk ) + αk [Rk −Q(xk , uk )]

where αk is a step size, or learning rate
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Discussion

Incremental MC motivated by time-varying problems
(recent samples have larger weights),
but works in time-invariant MDPs as well
No longer need to store accumulators A and counters C,
just directly the Q-values
If α satisfies “stochastic-approximation” conditions:

1 decreases to 0,
∑∞

k=0 α2
k = finite

2 but not too quickly,
∑∞

k=0 αk →∞
method converges: lim when # of samples→∞ = Q-value
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From Monte-Carlo to temporal differences

To avoid waiting until trajectory finishes, recall Bellman
equation:

Qh(x , u) = Ex ′

{
ρ̃(x , u, x ′) + γQh(x ′, h(x ′))

}
and use the return estimate:

R̂k = rk+1 + γQ(xk+1, h(xk+1))
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Temporal differences (TD)

Otherwise, update remains the same, but let us make the
return estimate explicit:

Q(xk , uk )← Q(xk , uk ) + αk [R̂k −Q(xk , uk )]

= Q(xk , uk ) + αk [rk+1 + γQ(xk+1, h(xk+1))−Q(xk , uk )]

[. . . ] is the temporal difference between two estimates of
Q(xk , uk ), using information at subsequent time steps
Model-free, data-based updates (like MC): rk+1, xk+1
e.g. observed while interacting online
Updates estimate Q(xk , uk ) using another estimate,
Q(xk+1, h(xk+1)): bootstrapping
Dynamic programming also bootstraps, but using a model
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TD vs. MC vs. DP: Unified perspective
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TD for policy evaluation

TD for policy evaluation
for each trajectory do

initialize x0, choose the initial action u0
repeat at each step k

apply uk , measure xk+1, receive rk+1
choose the next action uk+1 ∼ h(xk+1)
Q(xk , uk )← Q(xk , uk ) + αk ·

[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk )]
until trajectory finished

end for

Note: we replaced h(xk+1) by uk+1, chosen according to h
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Exploration-exploitation

choose the next action uk+1 ∼ h(xk+1)

Information about (x , u) 6= (x , h(x)) necessary
⇒ exploration
h must be followed
⇒ exploitation

E.g. ε-greedy:

uk+1 =

{
h(xk+1) w.p. (1− εk+1)

unif. random w.p. εk+1



Monte Carlo Exploration Temporal differences Accelerating TD Recap

1 Monte Carlo, MC

2 Exploration

3 Temporal differences, TD
Introduction
SARSA
Q-learning
Discussion

4 Accelerating TD methods

5 Recap



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Recall: MC

MC policy iteration
for each iteration ` do

perform N trajectories applying h`

reset to 0 accumulator A(x , u), counter C(x , u)
for each step k of each trajectory i do

A(xk , uk )← A(xk , uk ) +
∑Ki−1

j=k γ j−k ri,j+1 (return)
C(xk , uk )← C(xk , uk ) + 1

end for
Qh`(x , u)← A(x , u)/C(x , u)
h`+1(x)← arg maxu Qh`(x , u)

end for
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Optimistic policy improvement

Policy unchanged for N trajectories
⇒ Algorithm learns slowly

Policy improvement after each trajectory
= optimistic

We will also use ε-greedy exploration
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Optimistic MC

Optimistic MC

initialize to 0 accumulator A(x , u), counter C(x , u)
for each trajectory do

execute trajectory, e.g., applying ε-greedy:

uk =

{
arg maxu Q(xk , u) w.p. (1− εk )

unif. random w.p. εk
for each step k do

A(xk , uk )← A(xk , uk ) +
∑K−1

j=k γ j−k rj+1
C(xk , uk )← C(xk , uk ) + 1

end for
Q(x , u)← A(x , u)/C(x , u)

end for

h implicit, greedy in Q
update of Q ⇒ implicit improvement of h
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Optimism in TD

Earlier TD algorithm: fixed h

What is the fastest we can improve h in TD?
After each transition.

⇒ interpretation: policy iteration
optimistic at the transition level

h implicit, greedy in Q
(updating Q ⇒ implicit improvement of h)
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SARSA

SARSA with ε-greedy
for each trajectory do

initialize x0

u0 =

{
arg maxu Q(x0, u) w.p. (1− ε0)

unif. random w.p. ε0
repeat at each step k

apply uk , measure xk+1, receive rk+1

uk+1 =

{
arg maxu Q(xk+1, u) w.p. (1− εk+1)

unif. random w.p. εk+1

Q(xk , uk )← Q(xk , uk ) + αk ·
[rk+1 + γQ(xk+1, uk+1)−Q(xk , uk )]

until trajectory finished
end for
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Origin of name “SARSA”

(xk , uk , rk+1, xk+1, uk+1) =
(State, Action, Reward, State, Action) = SARSA
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Cleaning robot: SARSA, demo

Parameters: α = 0.2, ε = 0.3 (constant)
x0 = 2 or 3 (random)
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Machine replacement: SARSA, demo

Parameters: α = 0.1, ε = 0.3 (constant), 20 steps per trajectory
x0 = 1
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Bootstrapping estimate of Q∗

Bellman optimality equation:

Q∗(x , u) = Ex ′

{
ρ̃(x , u, x ′) + γ max

u′
Q∗(x ′, u′)

}
leads to estimate:

Q̂k = rk+1 + γ max
u′

Q(xk+1, u′)
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TD update for Q∗

Q(xk , uk )←Q(xk , uk ) + αk [Q̂k −Q(xk , uk )]

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )]
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Q-learning

Q-learning with ε-greedy
for each trajectory do

initialize x0
repeat at each step k

uk =

{
arg maxu Q(xk , u) w.p. (1− εk )

unif. random w.p. εk
apply uk , measure xk+1, receive rk+1
Q(xk , uk )← Q(xk , uk ) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )]

until trajectory finished
end for
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Cleaning robot: Q-learning, demo

Parameters – same as SARSA: α = 0.2, ε = 0.3 (constant)
x0 = 2 or 3 (random)
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Machine replacement: Q-learning, demo

Parameters: α = 0.1, ε = 0.3 (constant), 20 steps per trajectory
x0 = 1
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Convergence

Conditions for convergence to Q∗:
1 All pairs (x , u) continue to be updated:

ensured by exploration, e.g. ε-greedy
2 Stochastic-approximation conditions: learning rate

decreases to zero,
∑∞

k=0 α2
k = finite, but not too quickly:∑∞

k=0 αk →∞

Additionally, for SARSA:
3 The policy must become greedy at infinity

e.g. limk→∞ εk = 0
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On-policy / off-policy

SARSA: on-policy
Always estimates the Q-function of the current policy

Q-learning: off-policy
Independently of the current policy,
always estimates the optimal Q-function
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TD: Discussion

Advantages
Simple to understand and implement
Low complexity⇒ fast execution

SARSA vs. Q-learning
SARSA less complex than Q-learning
(no max in the Q-function update)

Learning rate and exploration sequences αk , εk
significantly influence performance

Main disadvantage
Large amount of data required
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The need to accelerate TD

Main disadvantage: TD learns slowly – requires a lot of data

In practice, data costs:
time
profit (low performance due to exploration)
system wear

Accelerating RL = efficient use of data
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Example: 2D navigation

Navigation in a discrete 2D world
from Start to Goal
Reward = 10 only upon reaching G (terminal state)
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Example: TD

We choose SARSA, α = 1; initialize Q = 0
Updates along trajectory on the left:

. . .

Q(x4, u4) = 0 + γ ·Q(x5, u5) = 0
Q(x5, u5) = 10 + γ · 0 = 10

A new transition from x4 to x5
needed to propagate the information to x4!
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Accelerating TD: 2 ideas

1 Store and replay experience
2 Use n-step returns
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Experience replay (ER)

Store each transition (xk , uk , xk+1, rk+1)
(and for SARSA, also uk+1) in a database

At each step, replay m transitions from database
(in addition to normal updates)
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Q-learning with ER

Q-learning with ER
for each trajectory do

initialize x0
repeat at each step k

apply uk , measure xk+1, receive rk+1
Q(xk , uk )← Q(xk , uk ) + αk ·

[rk+1 + γ max
u′

Q(xk+1, u′)−Q(xk , uk )]

add (xk , uk , xk+1, rk+1) to the database
ReplayExperience

until trajectory ends
end for
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ReplayExperience procedure

ReplayExperience
loop m times

fetch a transition (x , u, x ′, r) from the database
Q(x , u)← Q(x , u) + α·

[r + γ max
u′

Q(x ′, u′)−Q(x , u)]

end loop
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Replay direction

Order of replaying transitions:
1 Forward
2 Backward
3 Arbitrary
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Example: Influence of replay direction

Green: normal updates, purple: experience replay
Left: forward replay; right: backward replay
Backward replay preferable in exact RL
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Example: Aggregating information

Experience replay aggregates information
from multiple trajectories
The indicated cell benefits from information
along both trajectories
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Cleaning robot: Q-learning with ER, demo

Parameters: α = 0.2, ε = 0.3, m = 5, backward direction
x0 = 2 or 3 (random)
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Recall: MC and TD return estimates

Rk =
∑K−1

j=k
γ j−k rj+1

R̂k = rk+1 + γQ(xk+1, h(xk+1))

Is there something in-between?
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Middle ground: n-step return

SARSA (on-policy):

R̂k =rk+1 + γrk+2 + . . . + γn−1rk+n

+ γnQ(xk+n, uk+n)
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Example: Effect of n-step return

For n = 3:

Q(x5, u5) = 10 + 0 (terminal)
Q(x4, u4) = 0 + γ10 + 0 (terminal)

Q(x3, u3) = 0 + γ0 + γ210 + 0 (terminal)

Q(x2, u2) = 0 + γ0 + γ20 + γ30 (bootstrap)

. . .
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TD versus MC

n = 1 recovers TD, n→∞ recovers MC
Intermediate values mix TD and MC, leading to a tunable
bias-variance tradeoff
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Recap: Methods in Part III

Monte-Carlo methods, MC:
MC policy iteration
MC with incremental updates

Exploration-exploitation dilemma:
ε-greedy widely used
Many other solutions exist, like UCB

Temporal differences, TD:
TD for policy evaluation
Optimistic policy improvements
SARSA
Q-learning

Accelerating TD:
Experience replay
n-step returns
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Key terms in this part

Monte-Carlo methods
exploration-exploitation dilemma
ε-greedy, softmax, bandits
optimistic policy improvement
learning rate
bootstrapping
temporal differences
SARSA
Q-learning
experience replay
n-step returns
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Exercises

1 Does the exponential schedule αk = αk , with α ∈ (0, 1) a
constant, satisfy the stochastic approximation conditions?

2 Is Q-learning guaranteed to converge when εk = ε, a
constant in (0, 1)? What about SARSA? How about when
you use an exponential decrease εk = εk?

3 Would a Monte-Carlo algorithm that improves the policy
after every transition (like TD) make sense?

4 Would Q-learning (without n-step returns as they are
nontrivial in the off-policy case) propagate information
faster than SARSA for the gridworld trajectory example?



Monte Carlo Exploration Temporal differences Accelerating TD Recap

Exercises (cont’d)

5 Assuming that we have access to a model only for the
purposes of policy improvement, provide V-function
alternates for all algorithms in this part. Do this in the same
order as for Q-functions:

Monte Carlo estimates, averaging-based and incremental
Bootstrapping estimates and updates
Policy evaluation, SARSA, and Q-learning

Don’t forget to draw trees and highlights, it will help you
visualize things.
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