DC Motor Guide

Setup
Plug in the Arduino to the PC with a USB cable. Plug the power adaptor into the 12V barrel (not the one

on the Arduino board).

Finding COM Port

e On Windows
With the Arduino connected to the computer, open Device Manager (from search bar or
Windows settings), and look for the USB Serial Device under the Ports tab. This will show you the COM port
that the Arduino is currently assigned.

v & DESKTOP-4117M7M
i Audio inputs and outputs
P Batteries
0 Bluetooth
@ Cameras
=] Computer
wa Disk drives
I Display adapters
I Firmware
¥ Human Interface Devices
*= |DE ATA/ATAPI controllers
== Keyboards
@ Mice and other pointing devices
[Monitors
¥ Network adapters
v @ Ports (COM & LPT)
#§ USB Serial Device (COM3) e
= Print queues
D Processors
B9 Security devices
¥ Software components
B Software devices
iy Sound, video and game controllers
S Storage controllers
¥m System devices

e On Linux
Open Matlab and run the ‘seriallist’ command. This will return a list of available serial ports. The

Arduino is usually assigned to /dev/ttyACMO on Linux.

Using The run Function
Calling the run function will run the DC Motor system. It takes 3 parameters:

o u-—The input vector, containing an input value between -1 and 1 (-100% and 100% of max

torque) for each sample.

o portNum — A string containing the COM port number.

o Ts—(Optional) The sampling time (in seconds) to run the system with. This is set by default to
5ms, so you can omit this if you don’t need to change the settling time.

The function returns 3 vectors:

o vel — A vector containing the velocity of the motor in RPM.
o alpha— A vector containing the angle of the motor shaft in degrees.

o t— A time vector

These 3 vectors have the same length as u.

Here’s an example of how the function is used:
u = [zeros(10, 1); ©.5*0ones(1000, 1)];
[vel, alpha, t] = run(u, '4');
plot(t, vel);
Occasionally, the system will not run when calling the run function. If this occurs, a second attempt at

running the system will usually function correctly. If the second attempt fails, ask a teaching assistant for help.

Considerations for u and Ts

The run function clears the USB read buffer when it first runs, so in order to let it do so, it’s best to
prepend your u vector with about 10 zeros.

| added a few helper functions for generating input vectors:
ustep(n) — generates a step signal with n — 10 samples. The first 10 samples are 0.

urand(n) — generates a random staircase input vector. Contains steps of random values with a
width of 100 samples each.

Ex:

ul

0.5*%ustep(1000);

u2

urand(1000) ;

The output vectors (vel and alpha) are only as long as u, so if you want to run an impulse, you need to
append enough zeros to the end of u to see the entire impulse response.

The minimum Ts (for the windows version) is 2.5ms. Any lower than that and the true sampling time
won’t be stable. Here’s an example of setting a 10ms sampling time:

[vel, alpha, t] = run(u, '4', 10e-3);

