Approximate dynamic programming and
reinforcement learning for control

Lucian Busoniu

Universitat Politécnica de Valéncia, 21-23 June 2017

Part Il

Optimistic planning

o Introduction

Intro
00000

Recall: Deterministic problem

Reward function

action u

@ Observe states x, apply actions u, receive rewards r
@ System: dynamics xx 1 = (X, Uk)
@ Performance: reward function re.1 = p(Xx, Uk)

@ Objective: maximize discounted return >~ , YK,
discount factor v € (0, 1)

Intro
0e0000

Part lll in course structure

°
°
@ Optimistic planning

Methods presented so far are the main ones in the field
In this part, current research topic in the ROCON group at
Cluj.

Intro
[e]e] lele]e]

Online planning idea

At each step k, solve local optimal control at state x:
@ Infinite action sequences: U, = (Uk, Uki1,---)
@ Optimization problem: sup,_ v(Uss) (= > 70V ki 144)
1. Explore sequences from x, to find a near-optimal one
2. Apply first action of this sequence, and repeat

Receding-horizon model-predictive control

Intro
[e]e]e] le]e]

Optimistic planning (OP) idea

initialize set of all possible sequences
repeat
select most promising, optimistic set
refine selected set
until computation budget n exhausted
return sequence in best set

Intro
0000e0

Advantages of OP

@ Near-optimality guarantees as a function of
computation n and of complexity x of the problem:

error = O(g(n, k))

@ ...for general nonlinear dynamics and rewards

@ Since it reruns at each state, no direct dependence on
state space size — continuous states not a problem

Intro
00000e

Algorithm landscape

By model usage:
@ Model-based: f, p known
@ Model-free: f, p unknown (reinforcement learning)

By interaction level:
@ Offline: algorithm runs in advance
@ Online: algorithm runs with the system

Exact vs. approximate:
@ Exact: x, u small number of discrete values
@ Approximate: x, u continuous (or many discrete values)

9 Optimistic planning with discrete actions
@ Setting and algoritm
@ Analysis
@ Examples and real-time application

OPD
®00

Problem setting

Assumptions
e Finite, discrete action space U = {u',...,uM}
@ Bounded reward function p(x, u) € [0,1],Vx, u

@ Again, continuous states handled natively
@ If actions continuous = must be discretized

OPD
o] 1}

Values
@ Finite sequence uy also seen as set of infinite O
sequences (Ug, ..., Ug_1,%,%,...)
d—1 Gﬂ) plxe)
@ ((uy) = Zk:o ’Yk/)(xk, Ux)
lower bound on returns of U, € Uy
p () plrou)
® b(ug) = {(uUg) + 7=
upper bound on returns of U, € Uy W) pleai)
® v(ug) = SUPy_ cu, v(Us) ;%

value of applying uy and then acting optimally

u

OPD
ocoe

Algorithm: OPD

Optimistic planning for deterministic systems (OPD)

initialize empty sequence ug (= all infinite sequences)
loop ntimes
select optimistic leaf sequence uL, maximizing b
expand u': initialize all values for the d + 1-th action
end loop
return greedy uy. maximizing /

OPD
€000000

9 Optimistic planning with discrete actions

@ Analysis

Near- optlmallty VS. depth

@ OPD returns a sequence u}., with length
ad* = the deepest expanded d

@ This sequence is near-optimal:

9"

v —v(ug.) < T

where v* the optimal value (at xg)

Summary and oper

OPD
00®0000

Case 1: All paths optimal

Take a tree where all rewards are 1:

b(ug) = 115, Yuy = OPD expands uniformly, breadth-first
So to expand all nodes down to depth d, we must spend:

ad+1 _
n*ZMd M 11

and the tree grows very slowly with budget n up

OPD
000@000

Case 2: One path optimal

Take a tree where rewards are 1 only along a single path (thick
line), and 0 everywhere else:

b(uy) = %7 only on optimal path, % elsewhere
= OPD expands only the optimal path

So to expand down to depth d, we must spend only n = d, and
the tree grows very fast with n 0l

OPD
0000@00

General case: Branching factor

@ Algorithm only expands in near-optimal subtree:

T*:{ud‘v*—v(ud)gé}

@ Define x = asymptotic branching factor of 7*:
problem complexity measure, « € [1, K]

Eg. k=2, M=23:

OPD
0000000

Depth vs. budget n

To reach depth d in tree with branching factor «,
we must expand n = O(x%) nodes

log n
log k

= d =Q

*ummgu‘y«‘ and oper

Final guarantee Near- optlmallty vs. budget

Theorem

@ OPD returns a long sequence uj., d* = Q(;237)
@ This sequence is near-optimal:

a* _log1/y .
vy < 2 = o B e

1T—7 0O(y"/©) if k=1

@ General optimal control, paid by exponential computation
n = 0(x%
@ But x can be small in interesting problems!

OPD
©000000

9 Optimistic planning with discrete actions

@ Examples and real-time application

OPD
0®00000

Recall: Inverted pendulum swing-up

mass

" @ x=[o,d]", u=voltage

@

Challenging for planning:
long trajectories, misleading short-term rewards

@ Stabilize pointing up, requires swing-up

OPD
00®0000

Simulation: Inverted pendulum demo

Demo

Swingup trajectory:

5 T T T T T
=)
2 of
3

-5

10Q ns 1 158 2 25

o' [rad/s]
8 o

nas 1 15 2 28

: °M
E

-5 L

10 05 1 15 2 25 3
Eo.s% {

0

0 05 1 15 2 25 3

tls]

OPD
000®000

Real-time idea

Challenge: computation time large and must be handled!
@ Usually only first action of each sequence is sent to
actuator
@ But remember: OP returns long sequences!

= Send a longer subsequence (length d’),
and use the time to compute in the background

OPD
0000800

Real-time architecture

@ Compute initial sequence (system assumed stable)

@ Send to buffer, and immediately start computing
next sequence from predicted state

k=d’

> ‘[System }—

(U ey Ungeq)

Computation thread...

. '
OP(X,,) <—Predictor(x,)<—

OPD
0000000

Setting up real-time OPD

@ We usually want to use all available time: n = Ld’%J

= Select subsequence length d’ so that:
T, ’
128 _ L d'je 1>
d T. K 1>0

@ Or, when x, ¢ unknown:

(d=-NDK-1)-KI* +1>0

OPD
0000000

Real-time results: Inverted pendulum

u

OPC

e Optimistic planning with continuous actions
@ Setting and algorithm
@ Analysis
@ Examples

OPC Summary and oper

Assumptions

@ Rewards r € [0,1]

@ Scalar continuous action space U = [0, 1]
(can be extended to vector actions)

@ Lipschitz-continuous dynamics and rewards:
|f(x, u) = f(x', U] < Le(||x = X'|| + |u—u'|)
‘p(X7 U) - p(X,a Ul)’ S LP(HX - X/H + ‘U - Ul‘)

@ L < 1: most restrictive

OPC
[o] Telelele)

Search refinement

@ Split U™ iteratively, leading to a tree of hyperboxes

@ Each box i only represents explicitly
dimensions already split, k =0,...,K; — 1

: N —K-1 _k
@ Box i has value v(i) = > ," 7l k+1,
rewards of center sequence
u

OPC
008000

Lipschitz value function
@ For any two action sequences U, U.:
L, - k
‘V(Uoo) - V(Ugo)’ < ‘I—'YL)‘kZO’Y ‘Uk — UH

@ Intuition: states (and so rewards) may diverge somewhat,
but divergence controlled due to yLs < 1

OPC
000800

Box upper bound

@ For any sequence U in box i:

L max{1,L
v(Us) < V(i) + 1_{ LP}ZV Wk = b(i
R A

@ w; x width of dimension k, 1 if not split yet

w, W,

Wy

@ b(i) b-value of box i

OPC
000000

Diameter and dimension selection

@ Diameter (/) := S o Y Wik
= uncertainty on values in the box

@ Impact of dimension k on uncertainty is ykw,;k

= when splitting a box, choose dimension with largest
impact, to reduce uncertainty the most

@ Always split into odd T > 1/~ pieces

OPC
00000®

OPC algorithm

Optimistic planning with continuous actions (OPC)

Input: budget of model calls n

initialize tree with root box U>°

while n not exhausted do
select optimistic leaf box iT = arg max; . b(/)
select max-impact dimension k' = arg max, v*w;;
split it along k', creating T children on the tree

end while

return best center sequence seen, i* = argmax; v(i)

Computation measured by model calls (f, p) instead of node
expansions, since an expansion simulates sequences of
varying lengths, at varying computational costs

OPC
©00000

e Optimistic planning with continuous actions

@ Analysis

OPC
0®0000

Near-optimality vs. diameter

OPC returns a sequence i* that is near-optimal:
v —v(i*) < 6"

where §* is the smallest diameter of any expanded node

OPC
008000

Diameter vs. depth

Given depth in tree d =total number of splits:

=1
(i) = O(yV%), where 7 = [983/T]

Diameters vary by the order of splits, but they all converge to 0
roughly exponentially in v/d. Example:

10° smallest diameter
largest diameter
bound behavior
S w—" L
107

140 160 180 200 220 240 260 280
h

OPC
000@00

Branching factor

@ OPC only expands in near-optimal subtree:
T ={ieT|v' —v(i)<di(i)}

@ Special cases more complicated than OPD, but
asymptotic branching factor t € [1, T] of 7* remains good
problem complexity measure

Eg.t=2,T=3:

mm mm

OPC
000080

Depth vs. budget n

To reach depth d in tree with branching factor ¢,
we must expand O(t) nodes,
which takes n = O(dt9) = O(t?) model calls

~ logn

= largest depth d* = Q(@)

Summary and oper

Final guarantee: Near-optimality vs. budget

Theorem
After spending n model calls, OPC suboptimality is:

2(r—1)logn
v —v(i") < 5% < §(d") = { O17Y 472‘°9f), ift>1
O(y"""®), it t =1

@ Convergence faster when t smaller
@ When t = 1, convergence is fast, with power n'/*

@ When t > 1, we pay for generality: exponential
computation t9 to reach depth d

OPC
€0000

e Optimistic planning with continuous actions

@ Examples

OPC
0@000

Inverted pendulum demo

Note different variant of the algorithm called ‘simultaneous’
OPC, with nearly the same guarantees

Demo

OPC
00800

Quanser pendulum

System:

@ x =rod angle «a, base angle 6,
angular velocities

@ u = motor voltage € [-9,9]V
@ Sampling time T, = 0.05

Goal: stabilize pointing up:
@ p=—a?—0%—.005(a%+62)—.05u°,
normalized to [0, 1]
@ Discount factor v = 0.85
@ Swingup required

OPC
00000

Controlled trajectory

n = 5000 model calls; note adaptive discretization
of control magnitude

20
10
<, /_‘\/_ _ a [rad]
o'[rad/s]
-10
100 ns 1 15 2 25
S

6 [rad]
@'[rad/s]

5 n& 1 15 2 25

-10

- 0.9
0.8

0.5 1 1.5 2 25

g

OPC
0000®

Real-time control

Uses the same parallelized real-time framework as OPD

Real-time demo

OMS

0 Optimistic minimax search
@ Algorithm
@ Analysis
@ Example

OMS

Problem setting

@ Maximizer & minimizer agents,
with actions u € U and w € W; |U| = Ny, |W| = Ny

@ They alternately take an infinite sequence of actions:
(Ug, wo, Uy, wy,...) = (20,21,22,...) = 2o

@ Dynamics x4.1 = f(Xg4, Zg), rewards r(xy, Zg)
@ Denote finite sequence z4 = (2p,...,24_1)

OMS

Objective

Infinite-horizon value of sequence z.:
(0.9}
V(Zso) =Y ¥ p(Xa: Zd).
d=0
Objective: discounted minimax-optimal solution:

v :=maxmin---maxmin--- Vv(Z)
Up Wo Uy Wy

OMS

Main assumption

Assumption
The rewards p(x,z) arein [0,1] forall x € X,ze€ UU W. J

= lower & upper bounds on all sequences z, starting with z4:
— i d
I(2q) = Y00 Vo(X;, Z), b(2g) = (2g) + 7= =: I(24) + 6(d)

where diameter 6(d) = %

OMS
®00

0 Optimistic minimax search
@ Algorithm

OMS
oceo

OMS algorithm

OMS expands tree of possible minmax sequences,
using lower and upper bounds on node values

Natural application of optimistic principle, and already known
since ~1980 as best-first B* search

Summary and oper

OMS algorithm (cont'd)

for/=1,....,ndo
propagate lower & upper bounds L, B at each node:

Lz) {/(z), | f z leaf
max / Minz cchildren(z) L(2'), otherwise

B(z) — {b(z), | f 2 leaf
max / Minz cchildren(z) B(2'), otherwise

choose node to expand: z < root, and while not leaf:
;. Jag méxz,ech”dren(z) B(Z'), ?f z m.ax node
arg Min,cenigren(z) L(2'), if Z min node

expand z
end for w
output a maximum-depth expanded node z u

OMS
©000000

0 Optimistic minimax search

@ Analysis

OMS
000000

Near-optimality versus diameter

For finite sequence z, let v(z) be the minimax-optimal value
among sequences starting with z

If d* is the largest depth expanded, the solution Z returned by
OMS is 6(d*)-optimal:

d*

* > *) i
v —v(z)\gd(d)—1_7

Note the sequence is already d* steps long, by definition

OMS
00®0000

Explored tree

@ Algorithm only expands nodes in the subtree:

T :={zq||v* — v(Z')| < é(d),VZ' on path from root to z4}

@ Intuition: From the information available down to node z4

(interval of values of width §(d) = %), cannot decide
whether the node is (not) optimal. So it must be explored.

OMS
0008000

Example where the full tree is explored

@ All rewards equal to 1, v* = 1=

@ All solutions have value v*, so 7* is the full tree
@ |7;| = (NuNw)?2, branching factor 8 = \/NyNw

OMS
0000000

General case: Branching factor

@ Low-complexity special case more involved; in general,
branching factor remains a good measure of complexity

@ Let 5 € [1,/NyNw] = asymptotic branching factor of 7*
@ Problem simpler when 3 smaller

OMS
0000000

Depth vs. budget n

To reach depth d in tree with branching factor g,
we must expand n = O(39) nodes

log n
log 8

%

= d"=Q(

OMS
000000@

Final guarantee: Near-optimality vs. budget

Theorem
Given budget n, we have:

v — v(@)| < 5(d) = L

d* _log1/~ .
O(n g5) if g >1
1—7

0(y"©) if =1

@ Faster convergence when 3 smaller (simpler problem)
@ Exponential convergence when 5 = 1

OMS

0 Optimistic minimax search

@ Example

OMS

HIV infection treatment

@ 6 states:

Ty, To, T;, T; —healthy & infected target cells / ml (type 1 & 2)
V., E —free virus copies & immune response cells / ml

@ 2 binary actions uy, u»: application of RTIl and PI drugs
@ Disturbance: stochastic drug effectiveness

Goal: Starting from high level of infection xg,
optimally switch drugs on and off to:

@ maximize immune response
© minimize virus load
© minimize drug use

r=ceE —cyV—cie1 — Coeo

OMS

ooe
HIV: OMS results
.
Budget of n = 4000 node expansions
_ 10 _ 10 _ 10"
E E E
K4 8 0 8
3 10 3 10 3 10
=X k=3 k=3
= = AN
10 10 10
0 500 1000 0 500 1000 0 500 1000
t [days] t [days] t[days]
10 _ 10 10"
£ E £
2 40 £ g 10
8 g 8
S < w
10 > 10°
0 500 1000 0 500 1000 0 500 1000
t [days] t [days] t [days]
1 1 10°
= o5 = 05 = 10°
K
() — . o UL . L e T S ——
0 500 1000 0 500 1000 0 500 1000
t [days] t [days] t [days]

Infection eventually controlled without drugs

Summary and open issues

e Summary and open issues

Summary and open issues
e0

Open issues

RL & DP active research fields

Open problems:
@ Approximator design
@ Data efficiency
@ High-dimensional states and actions
@ Unmeasurable states
@ Safety and stability guarantees

Summary and open issues
oce

Summary

RL, DP, and planning =
Near-optimal control of general nonlinear,
possibly unknown systems

Appendix

References for Part Il

@ Munos, From Bandits to Monte Carlo Tree Search: The
Optimistic Principle Applied to Optimization and Planning,
Foundations and Trends in Machine Learning, 7, 2014.

@ Hren, Munos, OP of deterministic systems, EWRL 2008.

@ Busoniu, Pall, Munos, Discounted Near-Optimal Control of
General Continuous-Action Nonlinear Systems Using
Optimistic Planning, ACC 2016.

@ Busoniu, Pall, Munos, An analysis of optimistic, best-first

search for minimax sequential decision making, ADPRL
2014.

+ control applications: TAC’16, Automatica’17, ACC’17, etc.
u

	Introduction
	Introduction

	Optimistic planning with discrete actions
	Setting and algoritm
	Analysis
	Examples and real-time application

	Optimistic planning with continuous actions
	Setting and algorithm
	Analysis
	Examples

	Optimistic minimax search
	Algorithm
	Analysis
	Example

	Summary and open issues
	Summary and open issues

	Appendix

