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Recall: Deterministic problem

Observe states x , apply actions u, receive rewards r
System: dynamics xk+1 = f (xk , uk )

Performance: reward function rk+1 = ρ(xk , uk )

Objective: maximize discounted return
∑∞

k=0 γk rk+1,
discount factor γ ∈ (0, 1)
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Part III in course structure

Problem definition. Discrete-variable exact methods
Continuous-variable, approximation-based methods
Optimistic planning

Methods presented so far are the main ones in the field
In this part, current research topic in the ROCON group at
Cluj.
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Online planning idea

At each step k , solve local optimal control at state xk :
Infinite action sequences: u∞ = (uk , uk+1, . . . )

Optimization problem: supu∞ v(u∞) (=
∑∞

i=0 γ i rk+1+i)

1. Explore sequences from xk , to find a near-optimal one
2. Apply first action of this sequence, and repeat

Receding-horizon model-predictive control
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Optimistic planning (OP) idea

initialize set of all possible sequences
repeat

select most promising, optimistic set
refine selected set

until computation budget n exhausted
return sequence in best set
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Advantages of OP

Near-optimality guarantees as a function of
computation n and of complexity κ of the problem:

error = O(g(n, κ))

...for general nonlinear dynamics and rewards

Since it reruns at each state, no direct dependence on
state space size – continuous states not a problem
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Algorithm landscape

By model usage:
Model-based: f , ρ known
Model-free: f , ρ unknown (reinforcement learning)

By interaction level:
Offline: algorithm runs in advance
Online: algorithm runs with the system

Exact vs. approximate:
Exact: x , u small number of discrete values
Approximate: x , u continuous (or many discrete values)
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Problem setting

Assumptions

Finite, discrete action space U =
{

u1, . . . , uM}
Bounded reward function ρ(x , u) ∈ [0, 1],∀x , u

Again, continuous states handled natively
If actions continuous⇒ must be discretized



Intro OPD OPC OMS Summary and open issues

Values

Finite sequence ud also seen as set of infinite
sequences (u0, . . . , ud−1, ?, ?, . . . )

`(ud) =
∑d−1

k=0 γkρ(xk , uk )
lower bound on returns of u∞ ∈ ud

b(ud) = `(ud) + γd

1−γ
upper bound on returns of u∞ ∈ ud

v(ud) = supu∞∈ud
v(u∞)

value of applying ud and then acting optimally
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Algorithm: OPD

Optimistic planning for deterministic systems (OPD)
initialize empty sequence u0 (= all infinite sequences)
loop n times

select optimistic leaf sequence u†d , maximizing b
expand u†d : initialize all values for the d + 1-th action

end loop
return greedy u∗d∗ maximizing `



Intro OPD OPC OMS Summary and open issues

1 Introduction

2 Optimistic planning with discrete actions
Setting and algoritm
Analysis
Examples and real-time application

3 Optimistic planning with continuous actions

4 Optimistic minimax search

5 Summary and open issues



Intro OPD OPC OMS Summary and open issues

Near-optimality vs. depth

1 OPD returns a sequence u∗d∗ , with length
d∗ = the deepest expanded d

2 This sequence is near-optimal:

v∗ − v(u∗d∗) ≤
γd∗

1− γ

where v∗ the optimal value (at x0)
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Case 1: All paths optimal

Take a tree where all rewards are 1:

b(ud) = 1
1−γ , ∀ud ⇒ OPD expands uniformly, breadth-first

So to expand all nodes down to depth d , we must spend:

n =
d∑

i=0

Md =
Md+1 − 1

M − 1

and the tree grows very slowly with budget n
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Case 2: One path optimal

Take a tree where rewards are 1 only along a single path (thick
line), and 0 everywhere else:

b(ud) = 1
1−γ only on optimal path, γd

1−γ elsewhere
⇒ OPD expands only the optimal path

So to expand down to depth d , we must spend only n = d , and
the tree grows very fast with n
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General case: Branching factor

Algorithm only expands in near-optimal subtree:

T ∗ =
{

ud

∣∣∣ v∗ − v(ud) ≤ γd

1−γ

}
Define κ = asymptotic branching factor of T ∗:
problem complexity measure, κ ∈ [1, K ]

E.g. κ = 2, M = 3:
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Depth vs. budget n

To reach depth d in tree with branching factor κ,
we must expand n = O(κd) nodes

⇒ d∗ = Ω(
log n
log κ

)
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Final guarantee: Near-optimality vs. budget

Theorem

OPD returns a long sequence u∗d∗ , d∗ = Ω( log n
log κ)

This sequence is near-optimal:

v∗ − v(u∗d∗) ≤
γd∗

1− γ
=

{
O(n−

log 1/γ
log κ ) if κ > 1

O(γn/C) if κ = 1

General optimal control, paid by exponential computation
n = O(κd)

But κ can be small in interesting problems!
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Recall: Inverted pendulum swing-up

x = [α, α̇]>, u = voltage
Stabilize pointing up, requires swing-up

Challenging for planning:
long trajectories, misleading short-term rewards
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Simulation: Inverted pendulum demo

Demo
Swingup trajectory:
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Real-time idea

Challenge: computation time large and must be handled!

Usually only first action of each sequence is sent to
actuator
But remember: OP returns long sequences!

⇒ Send a longer subsequence (length d ′),
and use the time to compute in the background
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Real-time architecture

Compute initial sequence (system assumed stable)
Send to buffer, and immediately start computing
next sequence from predicted state
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Setting up real-time OPD

We usually want to use all available time: n =
⌊
d ′ Ts

Te

⌋
.

⇒ Select subsequence length d ′ so that:

d ′
Ts

Te
− κd ′/c − 1 ≥ 0

Or, when κ, c unknown:

(d ′
Ts

Te
− 1)(K − 1)− K d ′+1 + 1 ≥ 0
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Real-time results: Inverted pendulum
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Assumptions

Rewards r ∈ [0, 1]

Scalar continuous action space U = [0, 1]
(can be extended to vector actions)
Lipschitz-continuous dynamics and rewards:∥∥f (x , u)− f (x ′, u′)

∥∥ ≤ Lf (
∥∥x − x ′

∥∥ +
∣∣u − u′

∣∣)∣∣ρ(x , u)− ρ(x ′, u′)
∣∣ ≤ Lρ(

∥∥x − x ′
∥∥ +

∣∣u − u′
∣∣)

γLf < 1: most restrictive



Intro OPD OPC OMS Summary and open issues

Search refinement

Split U∞ iteratively, leading to a tree of hyperboxes

Each box i only represents explicitly
dimensions already split, k = 0, . . . , Ki − 1

Box i has value v(i) =
∑Ki−1

k=0 γk ri,k+1,
rewards of center sequence
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Lipschitz value function

For any two action sequences u∞, u′∞:∣∣v(u∞)− v(u′∞)
∣∣ ≤ Lρ

1− γLf

∞∑
k=0

γk ∣∣uk − u′k
∣∣

Intuition: states (and so rewards) may diverge somewhat,
but divergence controlled due to γLf < 1



Intro OPD OPC OMS Summary and open issues

Box upper bound

For any sequence u∞ in box i :

v(u∞) ≤ v(i) +
max{1, Lρ}

1− γLf

∞∑
k=0

γkwi,k := b(i)

wi,k width of dimension k , 1 if not split yet

b(i) b-value of box i
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Diameter and dimension selection

Diameter δ(i) :=
max{1,Lρ}

1−γLf

∑∞
k=0 γkwi,k

= uncertainty on values in the box

Impact of dimension k on uncertainty is γkwi,k

⇒ when splitting a box, choose dimension with largest
impact, to reduce uncertainty the most

Always split into odd T > 1/γ pieces
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OPC algorithm

Optimistic planning with continuous actions (OPC)
Input: budget of model calls n

initialize tree with root box U∞

while n not exhausted do
select optimistic leaf box i† = arg maxi∈L b(i)
select max-impact dimension k† = arg maxk γkwi†,k
split i† along k†, creating T children on the tree

end while
return best center sequence seen, i∗ = arg maxi v(i)

Computation measured by model calls (f , ρ) instead of node
expansions, since an expansion simulates sequences of
varying lengths, at varying computational costs



Intro OPD OPC OMS Summary and open issues

1 Introduction

2 Optimistic planning with discrete actions

3 Optimistic planning with continuous actions
Setting and algorithm
Analysis
Examples

4 Optimistic minimax search

5 Summary and open issues



Intro OPD OPC OMS Summary and open issues

Near-optimality vs. diameter

OPC returns a sequence i∗ that is near-optimal:

v∗ − v(i∗) ≤ δ∗

where δ∗ is the smallest diameter of any expanded node



Intro OPD OPC OMS Summary and open issues

Diameter vs. depth

Given depth in tree d =total number of splits:

δ(i) = Õ(γ

q
2d τ−1

τ2 ), where τ =
⌈

log 1/T
log γ

⌉

Diameters vary by the order of splits, but they all converge to 0
roughly exponentially in

√
d . Example:
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Branching factor

OPC only expands in near-optimal subtree:
T ∗ = {i ∈ T | v∗ − v(i) ≤ δ(i)}

Special cases more complicated than OPD, but
asymptotic branching factor t ∈ [1, T ] of T ∗ remains good
problem complexity measure

E.g. t = 2, T = 3:
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Depth vs. budget n

To reach depth d in tree with branching factor t ,
we must expand O(td) nodes,
which takes n = O(dtd) = Õ(td) model calls

⇒ largest depth d∗ = Ω̃(
log n
log t

)
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Final guarantee: Near-optimality vs. budget

Theorem
After spending n model calls, OPC suboptimality is:

v∗ − v(i∗) ≤ δ∗ ≤ δ(d∗) =

Õ(γ

r
2(τ−1) log n

τ2 log t ), if t > 1
Õ(γn1/4b), if t = 1

Convergence faster when t smaller
When t = 1, convergence is fast, with power n1/4

When t > 1, we pay for generality: exponential
computation td to reach depth d
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Inverted pendulum demo

Note different variant of the algorithm called ‘simultaneous’
OPC, with nearly the same guarantees

Demo
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Quanser pendulum

System:
x = rod angle α, base angle θ,
angular velocities
u = motor voltage ∈ [−9, 9] V
Sampling time Ts = 0.05

Goal: stabilize pointing up:
ρ = −α2−θ2− .005(α̇2 + θ̇2)− .05u2,
normalized to [0, 1]

Discount factor γ = 0.85
Swingup required
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Controlled trajectory

n = 5000 model calls; note adaptive discretization
of control magnitude
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Real-time control

Uses the same parallelized real-time framework as OPD

Real-time demo
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Problem setting

Maximizer & minimizer agents,
with actions u ∈ U and w ∈W ; |U| = NU , |W | = NW

They alternately take an infinite sequence of actions:

(u0, w0, u1, w1, . . . ) =: (z0, z1, z2, . . . ) = z∞

Dynamics xd+1 = f (xd , zd), rewards r(xd , zd)

Denote finite sequence zd = (z0, . . . , zd−1)
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Objective

Infinite-horizon value of sequence z∞:

v(z∞) :=
∞∑

d=0

γdρ(xd , zd).

Objective: discounted minimax-optimal solution:

v∗ := max
u0

min
w0
· · ·max

uk
min
wk
· · · v(z∞)
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Main assumption

Assumption

The rewards ρ(x , z) are in [0, 1] for all x ∈ X , z ∈ U ∪W .

⇒ lower & upper bounds on all sequences z∞ starting with zd :

l(zd) =
∑d−1

j=0 γ jρ(xj , zj), b(zd) = l(zd) + γd

1−γ =: l(zd) + δ(d)

where diameter δ(d) = γd

1−γ
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OMS algorithm

OMS expands tree of possible minmax sequences,
using lower and upper bounds on node values

Natural application of optimistic principle, and already known
since ∼1980 as best-first B* search
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OMS algorithm (cont’d)

for ` = 1, . . . , n do
propagate lower & upper bounds L, B at each node:

L(z)←

{
l(z), if z leaf
max / minz ′∈children(z) L(z ′), otherwise

B(z)←

{
b(z), if z leaf
max / minz ′∈children(z) B(z ′), otherwise

choose node to expand: z ← root, and while not leaf:

z ←

{
arg maxz ′∈children(z) B(z ′), if z max node
arg minz ′∈children(z) L(z ′), if z min node

expand z
end for
output a maximum-depth expanded node ẑ
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Near-optimality versus diameter

For finite sequence z, let v(z) be the minimax-optimal value
among sequences starting with z

If d∗ is the largest depth expanded, the solution ẑ returned by
OMS is δ(d∗)-optimal:∣∣v∗ − v(ẑ)

∣∣ ≤ δ(d∗) =
γd∗

1− γ

Note the sequence is already d∗ steps long, by definition
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Explored tree

Algorithm only expands nodes in the subtree:

T ∗ :=
{

zd
∣∣ ∣∣v∗ − v(z ′)

∣∣ ≤ δ(d),∀z ′ on path from root to zd
}

Intuition: From the information available down to node zd

(interval of values of width δ(d) = γd

1−γ ), cannot decide
whether the node is (not) optimal. So it must be explored.
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Example where the full tree is explored

All rewards equal to 1, v∗ = 1
1−γ

All solutions have value v∗, so T ∗ is the full tree∣∣T ∗d ∣∣ = (NUNW )d/2, branching factor β =
√

NUNW
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General case: Branching factor

Low-complexity special case more involved; in general,
branching factor remains a good measure of complexity
Let β ∈ [1,

√
NUNW ] = asymptotic branching factor of T ∗

Problem simpler when β smaller
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Depth vs. budget n

To reach depth d in tree with branching factor β,
we must expand n = O(βd) nodes

⇒ d∗ = Ω(
log n
log β

)
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Final guarantee: Near-optimality vs. budget

Theorem
Given budget n, we have:

∣∣v∗ − v(ẑ)
∣∣ ≤ δ(d∗) =

γd∗

1− γ

{
O(n−

log 1/γ
log β ) if β > 1

O(γn/C) if β = 1

Faster convergence when β smaller (simpler problem)
Exponential convergence when β = 1
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HIV infection treatment

6 states:
T1, T2, T t

1, T t
2 – healthy & infected target cells / ml (type 1 & 2 )

V , E – free virus copies & immune response cells / ml

2 binary actions u1, u2: application of RTI and PI drugs
Disturbance: stochastic drug effectiveness

Goal: Starting from high level of infection x0,
optimally switch drugs on and off to:

1 maximize immune response
2 minimize virus load
3 minimize drug use

r = cEE − cV V−c1ε1 − c2ε2
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HIV: OMS results

Budget of n = 4000 node expansions

Infection eventually controlled without drugs
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Open issues

RL & DP active research fields

Open problems:
Approximator design
Data efficiency
High-dimensional states and actions
Unmeasurable states
Safety and stability guarantees
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Summary

RL, DP, and planning =
Near-optimal control of general nonlinear,

possibly unknown systems
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References for Part III

Munos, From Bandits to Monte Carlo Tree Search: The
Optimistic Principle Applied to Optimization and Planning,
Foundations and Trends in Machine Learning, 7, 2014.
Hren, Munos, OP of deterministic systems, EWRL 2008.
Busoniu, Pall, Munos, Discounted Near-Optimal Control of
General Continuous-Action Nonlinear Systems Using
Optimistic Planning, ACC 2016.
Busoniu, Pall, Munos, An analysis of optimistic, best-first
search for minimax sequential decision making, ADPRL
2014.

+ control applications: TAC’16, Automatica’17, ACC’17, etc.
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